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Abstract. Current sheets are magnetic structures which are importantfor activity processes in the
coronae of the Sun and of other stars. To lowest order currentsheets can be described as one-
dimensional equilibria of a collisionless plasma described by the Vlasov-Maxwell equations. In the
present paper, a general mathematical framework for one-dimensional equilibrium solutions of the
Vlasov-Maxwell equations is presented. The equilibrium equations for the magnetic vector potential
are equivalent to the motion of a particle in a two-dimensional potential.The theory is applied to
some examples for one-dimensional current sheets.
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INTRODUCTION

Magnetic activity processes in the coronae of the Sun and of other stars belong to the
most fascinating phenomena in plasma astrophysics. Astrophysical plasmas usually sat-
isfy the conditions for ideal magnetohydrodynamics (MHD) being valid to describe them
extremely well, but nevertheless non-ideal processes suchas, for example, magnetic re-
connection are known to play an important role in most coronal activity processes.

It is well-known that one way of overcoming this apparent contradiction is the forma-
tion of strongly localized regions of strong electric current, i.e. magnetic current sheets.
In these regions ideal MHD can break down, allowing for non-ideal process such as
magnetic reconnection to occur. Although these non-ideal processes occur only on very
small length scales, they still have a global effect in the release of stored magnetic en-
ergy.

To understand the physics behind these non-ideal processesbetter, kinetic theory
instead of MHD has to be used and because the time and length scales on which theses
processes occur are usually much shorter than typical collision times and mean free
paths, it is appropriate to use collisionless theory.

Plasma equilibria are suitable starting points for investigating these processes. For
collisionless plasmas, the relevant equilibria are self-consistent solutions of the Vlasov-
Maxwell (VM) equations[1, 2]. Due to the generic structure of current sheets they can
be modelled by 1D equilibria as a first approximation.

The Vlasov equation is formally solved by making the equilibrium distribution func-
tions of the particle species depend on the one-particle constants of motion only. Using
the resulting charge and current densities in the steady state Maxwell equations leads
to a system of partial differential equations for the electric potential and the magnetic
vector potential.



GENERAL THEORY

We assume all quantities depend only onz and that the magnetic field has components
Bx andBy. The magnetic field components are written in terms of a vector potentialA
where

Bx = −
dAy

dz
(1)

By =
dAx

dz
. (2)

Due to the symmetries of the system (time independence and spatial independence
of x and z) the three obvious constants of motion for each particle species are the
Hamiltonian or particle energy for each speciess,

Hs =
1

2ms
[(pxs −qsAx)

2+(pys −qsAy)
2+ p2

zs]+qsφ , (3)

whereφ is the electric potential, the canonical momentum in thex-direction,pxs,

pxs = msvx +qsAx, (4)

and the canonical momentum in they-direction,pys,

pys = msvy +qsAy, (5)

wherems andqs are the mass and charge of each species.
All positive functionsfs satisfying the appropriate conditions for existence of velocity

moments etc and depending only on the constants of motion,

fs = fs(Hs, pxs, pys) (6)

solve the steady-state Vlasov equation

v ·
∂ fs

∂r
+

qs

ms
(E+v×B) ·

∂ fs

∂v
= 0. (7)

To calculate 1D VM equilibria we have to solve the steady-state Maxwell equations

−
d2φ
dz2 =

1
ε0

σ(Ax,Ay,φ) (8)

−
d2Ax

dz2 = µ0 jx(Ax,Ay,φ) (9)

−
d2Ay

dz2 = µ0 jy(Ax,Ay,φ) (10)

where the source terms are the electric charge density and the current densities in the
x and y directions, which are defined in the usual way as velocity moments of the



equilibrium distribution functions,fs. We assume that the plasma is quasineutral, which
can be expressed to lowest order as

σ(Ax,Ay,φ) = 0. (11)

This equation implicitly defines the quasineutral electricpotentialφqn where

φqn = φqn(Ax,Ay). (12)

An interesting aspect of the 1D Vlasov-Maxwell equilibriumproblem is that is com-
pletely equivalent to the classical mechanics problem of a (pseudo-)particle in a 2D
potential[3]. To start with, the force balance condition for the equilibrium requires that

B2

2µ0
+P = PT = constant, (13)

whereP is thePzz component of the plasma pressure tensor. It turns out that Ampère’s
law can be written as

d2Ax

dz2 = −µ0
∂P
∂Ax

(14)

d2Ay

dz2 = −µ0
∂P
∂Ay

. (15)

These two equations are the equations of motion for a pseudo-particle with positionAx,
Ay in the potentialP(Ax,Ay) andz as time. The Hamiltonian of this pseudo-particle is
the total pressure defined in Eq. (13) (modulo a factorµ0)

HA =
1
2

(

dAx

dz

)2

+
1
2

(

dAy

dz

)2

+ µ0P(Ax,Ay). (16)

As we will see this equivalence allows us to study some properties of the solutions
without having to solve the equations in the same way as discussing particle motion in a
given potential.

EXAMPLES

As an example we consider the case of an anisotropi drifting Maxwellian distribution
function given by

fs = cs exp

(

−
Hs

kBTs⊥
+

∆Ts

2mskBTs⊥Ts‖
bs p2

xs +
∆Ts

2mskBTs⊥Ts‖
p2

ys

)

, (17)

where∆Ts = Ts‖−Ts⊥ ≥ 0 is assumed. The resulting pressureP(Ax,Ay) is a Gaussian
function of Ax and Ay with the parameterbs determining the difference in the width
of the Gaussian in theAx- andAy-directions. The resulting equations cannot be solved



FIGURE 1. The two examples with thebs = 0.0 case shown in the two plots on the left andbs = 1.0
case shown in the two plots on the right.

analytically (except for one special case), but by looking at the shape of the pressure
function one can immediately see that bothAx andAy will be periodic functions ofz,
although usually with different periods.

We show plots for the two special casesbs = 0.0 andbs = 1.0 in Figures 1. The case
bs = 0.0 gives rise to purely anti-parallel magnetic field configurations (Bx = 0), whereas
the casebs = 1.0 allows for analytical solutions, which are linear force-free [4]. In the
linear force-free case the pressure functionP is isotropic inAx andAy, i.e. corresponding
to a central potential allowing for circular orbits. Varying the parameterbs from 0 to 1
allows for a transition from the anti-parallel to linear force-free configurations.

DISCUSSION AND CONCLUSIONS

A general theory of 1D Vlasov-Maxwell equilibria has been presented. It has been
shown that the general properties of the equilibria can be deduced from the pressure
functionP(Ax,Ay), which can be regarded as the potential for the motion of a pseudo-
particle in two dimensions. For the future it is planned to carry out 2D Particle-in-
Cell simulations of magnetic reconnection in these equilibria and to study how the
characteristics of magnetic reconnection change during the transition from anti–parallel
to force-free configurations.
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