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Abstract

Internet-based distributed systems enable globally-
scattered resources to be collectively pooled and used in
a cooperative manner to achieve unprecedented petascale
supercomputing capabilities. Numerous resource discovery
approaches have been proposed to help achieve this goal.
To report or discover a multi-attribute resource, most ap-
proaches use multiple messages with each message for an
attribute, leading to high overhead. Anther approach can
reduce multi-attribute to one index, but it is not practically
effective in an environment with a large number of different
resource attributes. Furthermore, few approaches are able
to locate resources geographically close to the requesters,
which is critical to system performance. This paper presents
a P2P-based intelligent resource discovery (PIRD) mecha-
nism that weaves all attributes into a set of indices using
locality sensitive hashing, and then maps the indices to a
structured P2P. It further incorporates Lempel-Ziv-Welch
algorithm to compress attribute information for higher effi-
ciency. In addition, it helps to search resources geographi-
cally close to requesters by relying on a hierarchical P2P
structure. PIRD significantly reduces overhead and im-
proves the efficiency and effectiveness of resource discovery.
Theoretical analysis and simulation results demonstrate the
efficiency of PIRD in comparison with other approaches.
It dramatically reduces overhead and yields significant im-
provements on the efficiency of resource discovery.

1 Introduction
Advancements in technology over the past decade

are leading to a promising future for computing, where
globally-scattered resources such as computing resources
and data resources are collectively pooled and used in a
cooperative manner to achieve unprecedented petascale su-
percomputing capabilities. Internet-based distributed sys-
tems, such as grid and peer-to-peer (P2P) infrastructures,
interconnect computers, clusters, storage systems, instru-

ments and so on to make possible the sharing of resources.
Internet-based distributed applications, such as data shar-
ing, computational grids, navigation systems, multimedia
and telecommunications, have been widely used in scien-
tific, engineering and commercial areas. Multi-attribute re-
source discovery refers to the problem of locating resources
that are described by a set of attributes (e.g., OS version,
CPU speed, etc.). Efficient multi-attribute resource dis-
covery technology is indispensable for resource sharing in
Internet-based distributed systems.

A fundamental problem in these large, decentralized,
distributed resource sharing environments is efficient dis-
covery of resources in the absence of global knowledge
of naming conventions. Another challenge comes from
the complex environment characterized by large scale, ge-
ographically scattered, and dynamism. In such an envi-
ronment, millions of heterogeneous resources are scattered
across geographically distributed nodes, resource utilization
and availability are continuously changing, and nodes can
enter or leave the system unpredictably. The third challenge
is to offer guarantees and support flexible searches using
keywords, wildcards, and range queries.

Centralized resource discovery approaches [8, 6, 7]
are insufficient to deal with these characteristics due to
the problem of a single point of failure and bottleneck.
More and more approaches resort to structured peer-to-
peer (P2P) middleware [23, 17, 22] for resource discov-
ery [2, 4, 5, 19] due to its scalability, efficiency, reliabil-
ity, self-organization and dynamism-resilience features. A
basic function of a resource discovery technology is to mar-
shal resource information for searching. Current P2P-based
methods can be classified into three categories based on in-
formation marshalling. For a resource “CPU=2GHz and
Memory=512MB,” one group of methods [2, 4] use mul-
tiple P2Ps with each P2P responsible for one attribute name
such as CPU and memory, and use two messages using the
attribute values as keywords to store the information in two
P2Ps, respectively. However, multiple P2P structures re-
quire high maintenance overhead, especially in dynamism.



Another group [5] takes both attribute name and value as
keywords, and use four messages to store the resource infor-
mation in a single P2P. However, it will lead to imbalance of
information and load distribution. For a resource query, the
two groups of approaches use multiple queries and present
one query for each keyword and then concatenate the re-
sults in a database-like “join” operation. However, their
efficiency is significantly degraded due to separating a re-
source description into a number of keywords. They lead to
high overhead for information storing, reporting/searching
and subsequently merging operation. A resource with m
keywords in the description needs m messages for resource
marshaling and searching. They need to merge a tremen-
dously high volume of discovered information to derive
the information of desired resources. To avoid attribute
splitting, another class of approaches [18] searches multi-
attribute resource using one query by a dimension reducing
scheme that reduces multi-attribute to one index. However,
it assumes a small number of attributes, and is not effective
in a real environment with a tremendously large number of
resource attributes. In addition to inefficiency and ineffec-
tiveness, few approaches exploit proximity-aware search-
ing to discover geographically close resources to requesters
which are critical to system performance.

This paper proposes a P2P-based intelligent information
searching (PIRD) mechanism that weaves all attributes into
a set of indices and maps the indices to one P2P using lo-
cality sensitive hashing (LSH) [13, 12]. PIRD is object-
oriented in that it regards the description of a resource such
as a computer and a file as an whole entity. Rather than
splitting multiple attributes of a resource description, it con-
ducts resource information reporting and searching by tak-
ing the multiple attributes as an entire object. PIRD signif-
icantly reduces the overhead, and improves resource dis-
covery efficiency. PIRD further uses Lempel-Ziv-Welch
(LZW) algorithm to compress attribute information to re-
duce overhead and improve efficiency. In addition, by tak-
ing advantage of the hierarchical structure of a structured
P2P, it helps to find resources geographically close to re-
questers.

The rest of this paper is structured as follows. Section 2
presents a concise review of representative resource discov-
ery in Internet-based distributed systems. Section 3 presents
the PIRD mechanism including P2P introduction, LSH and
LZW algorithms. Section 4 shows the performance of PIRD
using a variety of metrics. Section 5 concludes this paper.

2 Related Work
There have been numerous resource discovery ap-

proaches to discover resources in Internet-based distributed
systems. Systems such as Condor-G [9] uses the Globus
toolkit [8] to integrate with a grid computing environment
for resource management. A number of projects, includ-

ing Condor [14], XtremWeb [11], Entropia [6], AppLes [7],
and Javelin++ [15], have investigated resource searching for
computations on grid systems. However, relying on cen-
tralized or hierarchical based policies, these systems have
limitation to explore in a dynamic multi-domain environ-
ment with variation of resource availability and the pres-
ence of large-scale heterogeneity. To cope with these prob-
lems, more and more distributed systems resort to structured
P2P middleware overlays for resource discovery due to their
scalability, reliability and dynamism-resilience.

To achieve multi-attribute resource discovery, some sys-
tems adopt one structured P2P for each attribute, and pro-
cess multi-attribute queries in parallel in corresponding
P2Ps [2, 4]. Depending on multiple P2Ps for multi-attribute
resource discovery leads to high maintenance overhead for
P2P structures. Another group of approaches [5, 19] or-
ganizes all resource information into one structured P2P
overlay and lets a node be responsible for all information
of resources with the same attribute. This approach results
in load imbalance among nodes, and leads to high cost for
searching resource information among a huge volume of in-
formation in a single node. In all of these works, attributes
of a resource are separated and the resource information is
reported and stored in a P2P node indexed by each attribute.
When a requester searches a resource, it searches each at-
tribute of the resource and then merges the information. For
a m-attribute resource, these approaches need m reporting
messages, memory size for storing m pieces of information,
and m queries for a query, leading to a high number of mes-
sages and routing nodes involved and high cost for storage
and information merging. Schmidt and Parashar [18] pro-
posed a dimension reducing indexing scheme that maps the
multidimensional information space to P2P nodes. Though
it guarantees that all existing data elements that match a
query are found with bounded costs in terms of the num-
ber of messages and nodes involved, it is not effective when
there are a large number of attributes because of the de-
grading performance of dimension reduction algorithm in
a high-dimensional space. More importantly, most current
P2P-based methods are unable to discover resources geo-
graphically close to requester, which is very important for
resource sharing performance.

Unlike the three groups of approaches, the PIRD mech-
anism achieves balanced load distribution with low P2P
structure maintenance overhead. Furthermore, it can search
geographically close resources to requesters for high system
performance.

3 PIRD: P2P-based Intelligent Resource Dis-
covery

PIRD is built on top of a single hierarchical structured
P2P overlay network to achieve multi-attribute resource dis-
covery. Before we begin more detailed discussion of PIRD,
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Figure 1. High level architecture of PIRD.

we briefly describe a hierarchical structured P2P overlay
network called Cycloid followed by a high-level view of
PIRD architecture and its components. Cycloid [22] is a
lookup efficient constant-degree overlay. It has n=d · 2d

nodes and d is its dimension. Each Cycloid node is repre-
sented by a pair of indices (k, ad−1ad−2 . . . a0), where k is
a cyclic index and ad−1ad−2......a0 is a cubical index. The
cyclic index is an integer, ranging from 0 to d − 1 and the
cubical index is a binary number between 0 and 2d − 1.
The nodes with the same cubical index are ordered by their
cyclic index mod d on a small cycle, which we call cluster.
All clusters are ordered by their cubical index mod 2d on a
large cycle. The right part of Figure 4 shows the partial rout-
ing links of a 11-dimensional Cycloid, where x indicates all
possible cyclic index. Cycloid provides two mains func-
tions: Insert(key,object), Lookup(key) to store
an object to a node responsible for the key, and to retrieve
the object. For more information about Cycloid, please re-
fer to [22].

Figure 1 shows a high level architecture of PIRD. It relies
on a single Cycloid with low maintenance overhead. PIRD
includes two characteristic components to effectively and
effectively search resources for high performance Internet-
based distributed systems.

Locality-preserving ID determination. The fundamen-
tal functionality of this component is to represent each re-
source and query by a set of P2P IDs that preserve locality.
Typically, a resource/query is described by a vector where
each dimension is associated with a distinct keyword that
represents a resource attribute. The vector is then used to
produce a small set of IDs through LSH as the P2P IDs for
the resource. Consequently, resources/queries with similar
vectors will have similar IDs.

Resource information marshalling and searching. This
component provides resource registering and retrieval capa-
bilities. The functionality of reporting is to store the infor-
mation of each resource automatically to a structured P2P
according to resource keyword vector. The functionality of
resource searching is to locate desired resources for a given
query. P2P lookup function facilitates requesters to discover
resources efficiently, and hierarchical Cycloid P2P further
enables requesters to locate geographically close resources
for high performance.
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Figure 2. Resource vector generation.

3.1 Locality-preserving ID Determination

A key component of a resource discovery system is
defining an key space and deterministically mapping re-
sources to this key space. To support complex resource
searches in a resource discovery system, we associate each
resource with a sequence of keywords and define a mapping
that preserves keyword similarity.

The keywords are common words to describe resource
attributes such as bandwidth and memory, and values of
globally defined resource attributes such as 10Mbps and
512MB. As a result, each resource is represented by a key-
word vector. All keywords form a multidimensional key-
word space where resources are points in the space and the
keywords are the coordinates. Two resources are consid-
ered “local” if they are close together in this keyword space.
For example, “Memory 512MB CPU 2GHz” and “Mem-
ory 1GB CPU 2GHz” are local as they have many common
keywords. Figure 2 demonstrates how a resource’s vector is
determined, and Figure 3 shows an example of a keyword
space.

The problem of resource discovery can be regarded as
finding the nearest neighbor of a query point in a high di-
mensional keyword space focusing mainly on the Euclidean
space: given n points in a m dimensional space, find the
nearest neighbor of a query point. The next question is
how to transform resource vectors to IDs in an index space.
Hilbert space-filling curve (SFC) [3] and locality sensitive
hashing (LSH) [12] are two main technologies for dimen-
sion reduction while still preserving the relative distances
among points in a multi-dimensional space.
Hilbert space-filling curve. SFC maps points in a m-
dimension Cartesian space into a domain of real numbers;
That is, Rm �−→ R1, such that the closeness relationship
among the points is preserved. This mapping can be re-
garded as filling a curve within the m-dimensional space
until it completely fills the space. The space is partitioned
into 2mx grids of equal size (where m refers to the num-
ber of landmarks and x controls the number of grids used to
partition the landmark space), and each node is numbered
according to the grid into which it falls. We call this number
the Hilbert number of a node. The Hilbert number indicates
physical closeness of nodes on the Internet.
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Locality Sensitive Hashing. LSH is an algorithm for
solving approximate and exact near neighbor search in high
dimensional spaces. The intuition of LSH is: if two points
are close (less than distance r1), they hash to same bucket
with probability of at least p1; if they are far away between
each other (more than distance r2 > r1), they hash to same
bucket with probability of no more than p2 < p1. Specifi-
cally, for a domain S of the points set and distance measure
D, the LSH family is defined as follows, where B(q, r) rep-
resents the scope with range r around point q, and Pr de-
notes probability.

Definition A family H = {h : S → U} is called
(r1, r2, p1, p2)-sensitive for distance function D if for any
two points v,q ∈ S
– if v ∈ B(q, r1) then PrH[h(q) = h(v)] ≥ p1,
– if v �∈ B(q, r2) then PrH[h(q) = h(v)] ≤ p2,
–r1 < r2, p1 > p2.

Schmidt and Parashar [18] used SFC to construct a key
space, and proved the effectiveness of the SFC adoption for
resource discovery in 3-dimensional space. They indicated
that SFC’s effectiveness will be degraded with increasing
dimension. In real practice, there are tremendously differ-
ent resources including data resources such as files, videos
and audios, computing resources such as CPU time, storage,
and other resources such as expertise and devices. There-
fore, the number of keywords used to describe millions of
various resources is enormously high. Therefore, SFC can-
not be practically applied to resource discovery where there
are significantly large number of keywords. Based on this
observation, we chose LSH for resource discovery in a high-
dimensional space.

LSH-based resource ID determination. In the follow-
ing, we discuss how resource information and queries are
mapped into the underlying structured P2P according to
their keywords using LSH. The goal of mapping is to clus-
ter the information of similar resources to the same nodes
with high probability.

Different LSH families can be used for different distance
functions. PIRD relies on the LSH technique in Euclidean
spaces proposed by Datar et al. [10] that uses p-stable dis-
tributions.

Based on the distribution, a family H of hash functions
is derived. That is, ha,b(v) = [av̇+b

w ], where a and b are ran-
domly generated value by g(x), and w is a specified value.
PIRD defines a function family G = g : S → Uk such that
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Figure 4. Process of ID mapping in PIRD.

g(v) = (h1(v), ..., hk(v)), where hi belongs to H, and k is
a specified integer value that represents a tradeoff between
the time spent in computing hash values and time spent in
pruning false positives. False positives are returned results
but are not actually close to a query point.

The hashed value of each resource vector v, hi(v)(1 �
i � k), is stored in bucket gj(v)(1 � j � L), where L is
determined by k. Then PIRD uses the hash function

h1(a1, a2, ..., ak) = ((
k∑

i=1

r
′
iai)mod prime)mod IDp2p,

to compute the index of each bucket. In the hash function,
IDp2p represents the P2P ID space size, r

′
i is a random

number, and prime denotes a prime number. The indices
of a record v are their final IDs for mapping to a P2P. Fig-
ure 4 illustrates ID mapping to P2P in PIRD. In conclusion,
given a vector v, PIRD hashes v to L × k hash values, and
gets the final L hash values of each bucket. Finally, simi-
lar resources/vectors have similar IDs, and their information
are stored in the same node or close nodes in P2P.

To search near neighbors, a distance is initially set to
a specified value r. To process a query q, PIRD also
makes buckets g1(q), ..., gL(q) first; then searches neigh-
bors based on the hashed values of g1(q), ..., gL(q) in the
P2P. Let v1, ..., vt be the resource vectors found for q, PIRD
then computes the Euclidean space distance between q and
v1, ..., vt using d(x, y) = ||x − y|| =

√∑n
i=1(xi − yi)2.

For each vi if vi belongs to B(q, r), which means d(x, y) ≤
r, then vi is a similar point in range r. Otherwise, vi is not
the point satisfying to query q. This refinement is to prune
false positive results.

3.2 Resource Information Marshalling and Searching

After the IDs of a resource in P2P ID space are
determined, the next question is how to map informa-
tion resource information to a structured P2P for effi-
cient searching. Recall that a P2P overlay network pro-
vides two main functions: Insert(key,object) and
Lookup(key). By having IDs as the P2P keys, a re-
source is indexed into the structured P2P in the form of
< ID, (v, ip addr) >. For instance, a resource of “Mem-
ory 512MB CPU 2GHz Bandwidth 10Mbps” gets L IDs,

ID1, ID2, ..., IDL



using the LSH-based locality-sensitive ID generation
method. It then uses

< ID1, (v, ip addr) >, ..., < IDL, (v, ip addr) >
to insert its resource information to the structured P2P. Con-
sequently, its information is stored in L nodes in the P2P.
Note that for two vectors v1 and v2, their similarity is

Prh∈H[h(v1) = h(v2)] = sim(v1, v2).
Such resource information collection can have the IDs of
similar resources hashed to the same nodes with p ≥ 1 −
(1 − pm)n. The resource information marshalling may in-
cur load imbalance. Load balancing algorithm [21] can be
adopted into PIRD for load balance.

We now discuss the issue of how to locate resources that
satisfy a query, given the fact that all resources in the system
are automatically indexed according to their vectors of their
keywords. Processing a query consists of two steps: trans-
lating the keyword query to relevant P2P IDs, and querying
the appropriate nodes in the overlay network for resource
information. After the P2P IDs associated with a query
are identified, straightforward query processing consists of
sending a query message for each P2P ID. A query message
targeting each ID is routed to the appropriate node based
on structured P2P lookup algorithm. No matter whether a
query consists of all keywords or partial keywords, it will
be mapped to at most L points in the ID space. Finally, the
nodes containing the information of the queried resource are
located.

For example, let v be a query Q’s keyword vector. Sup-
pose Q wants to locate those resources whose vectors are
similar to v (within a certain distance). PIRD produces L
IDs from v for Q using the same set of hash functions in
the LSH. Therefore, if a resource satisfies query Q, it will
be retrieved by Q with very high probability. Note that the
vectors of resources and query Q could be hashed to the
same IDs with high probability (i.e., 1− (1− pm)n). Thus,
by having these IDs as the P2P keys in Lookup(key),
Q is able to retrieve desired resources from the nodes re-
sponsible for these IDs. L is very small (e.g., 5) in our
system, which implies that a query can be answered by con-
sulting only a small number of nodes ≤ L. Upon receiving
a request, each destination node locally checks the list of
tuples < ID, (v, ip addr) > and returns the ip addrs of
nodes that have resources similar to the query’s v with cer-
tain similarity threshold r. Then, the requester merges the
replies from all destination nodes, and asks resources from
resource owners with ip addrs.

The following theorems show the performance of PIRD
compared with other resource discovery methods. Please
see [20] for details of proofs.
Theorem 3.1 For a resource with m attributes each of
which has k keywords, MAAN [5] and Mercury [4] store
the information of the resource to m × k P2P nodes and
m ≤ x ≤ m × k nodes, respectively. PIRD stores the loca-
tion of the computer resource to ≤ L nodes.

Theorem 3.2 For a resource with m attributes each of
which has k keywords, MAAN and Mercury need m × k
and m ≤ x ≤ m × k messages to report/query the re-
source to/from destination nodes, respectively, while PIRD
only needs ≤ L messages.
3.3 Proximity-aware Resource Location

Locating geographically close resources is important to
the performance of Internet-based distributed applications,
especially time-critical applications. We improve PIRD by
letting it take into account resource geographical locality.

First, let us introduce a landmarking method to represent
node closeness on the Internet by indices. Landmark clus-
tering has been widely adopted to generate proximity infor-
mation [16, 25]. It is based on the intuition that nodes close
to each other are likely to have similar distances to a few
selected landmark nodes, although details may vary from
system to system. We assume m landmark nodes that are
randomly scattered in the Internet. Each node measures its
physical distances to the m landmarks, and use the vector of
distances < d1, d2, . . . , dm > as its coordinate in Cartesian
space. Two physically close nodes will have similar land-
mark vectors. We use SFC to map m-dimensional landmark
vectors to Hilbert numbers, such that the closeness relation-
ship among the points is preserved. We use H to denote the
Hilbert number of a node.

Recall that Cycloid consists of a number of clusters,
which constitute a large cycle. We let each cluster be re-
sponsible for the information of similar resources, and di-
vide the information to nodes within the cluster based on
resource geographically closeness. In a Cycloid ID, the
cubical indices differentiate clusters, while the cyclic in-
dices indicate different node positions in a cluster. We
use cubical indices to represent different resources, and
use cyclic indices to represent the location of nodes. We
let nodes report their load information to the system by
Insert((H, ID), (v, ip addr)). Based on key assignment
algorithm, the information of similar resources will be in a
same cluster. Within each cluster, the information of re-
sources in close proximity will gather together in a node.
When a node queries for different resources, it only needs
to send out different requests using Lookup (H, ID) for
each resource ID. Each request for a resource will be for-
warded to the node responsible for the information of the
resource in geographically close proximity. For a flat struc-
tured P2P, when a node reports the information of its re-
sources, it also reports its Hilbert number H. Each destina-
tion node organizes its own tuples in such a way that these
tuples are clustered locally based on their owner’s Hilbert
number. When a node i queries for a resource, it also sends
its Hilbert number Hi along with the request. When a des-
tination node receives the query, it only needs to check the
cluster whose H≈ Hi. Consequently, node i receives the
information of resources that locate geographically close to
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Table 1. Simulated environment and parame-
ters.

Parameter Default value
Object arrival location Uniform over ID space
Number of nodes 2048
Number of keywords 20,591
Number of resources 10,000
Number of queries 100
L 5
k 2
Distance threshold r 3

it. Communicating with geographically close nodes, and
using geographically close resources improves the perfor-
mance of applications significantly.

3.4 Optimized PIRD

In an Internet-based distributed systems with enormous
number of keywords, each resource will have a long vector
even though it has only a few keywords. Tremendously long
vectors with sparse keywords lead to inefficiency of vector
processing by LSH. For instance, a Q only wants memory
and CPU in a 10,000-dimensional keyword space, then its
vector will have two 1 bits with all other bits equal to 0.
LSH needs to be complemented by a compress algorithm
to make it more efficient. This is confirmed by Lemma 3.1.
Due to the space limit, please see [20] for proofs of the Lem-
mas.

Lemma 3.1 LSH has higher efficiency on shorter vectors
than on longer vectors.

To optimize LSH in processing long but sparse vec-
tors, we adopt LZW dynamic compression algorithm [24]
to reduce the dimension of vectors and remove insignif-
icant strings, i.e. 0s. LZW is a universal lossless data
compression algorithm. It replaces strings of characters
with single codes. After compression, the new string still
keeps the old string’s information. For example, for a string
ABCCAABCDDAACCDB, if LZW uses 4 to denote AB,
and 5 to denote CC, after compression, the string becomes
45A4CDDAA5DB. Figure 5 shows a model of the integra-
tion of LZW algorithm to the LSH process.

4 Performance Evaluation
We designed and implemented a simulator in Java for

evaluation of PIRD and optimized PIRD (OPIRD) based
on Cycloid hierarchical P2P [22] and E2LSH 0.1 [1]. We
compared the performance of PIRD with MAAN [5] and

Mercury [4] on Chord [23], in terms of storage requirement
for resource information marshaling, load balance, resource
search time, and proximity-aware performance. We con-
ducted an experiment on SFC [18], and found that SFC is
not effective in a large dimension space. All records are
hashed to the same value. This is consistent to the state-
ment in [18] that the SFC’s performance degrades when the
number of dimensions increases to a large number.

We used two transit-stub topologies generated by GT-
ITM [26]: “ts5k-large” and “ts5k-small”. “ts5k-large” is
used to represent a situation in which a P2P system con-
sists of nodes from several big stub domains, while “ts5k-
small” represents a situation in which a P2P system consists
of nodes scattered in the entire Internet and only few nodes
from the same edge network join in the overlay. Table 1
lists the parameters of the simulation and their default val-
ues, unless otherwise specified.

4.1 Efficiency of Resource Discovery Methods

Figure 6(a) shows the total number of information pieces
stored in the system for all available resources. We can see
that PIRD and OPIRD generate the same number of infor-
mation pieces, and their results are much lower than Mer-
cury. In addition, Mercury generates lower number than
MAAN. Recall that PIRD and OPIRD change each record
to L hash values regardless of record length. Therefore,
each record needs L messages for resource reporting, and
there will be L pieces of information of the resource in the
system. Rather than regarding a whole record as an en-
tity, for a m keywords record, MAAN needs m messages
to store m pieces of information. Mercury groups attribute
name and corresponding value and takes attribute name as
keyword to report resource. Therefore, it leads to fewer in-
formation pieces than MAAN. Since the average number of
attribute names is greater than L in the experiment, Mercury
needs more storage space for the resource information. The
results are in agreement with Theorem 3.1 and Theorem 3.2.

Figure 6(b) plots the average and the 1st and 99th per-
centiles of pieces of information in per node versus the total
piece number of resource information. Two observations
can be made from the figure. First, the average size of
MAAN is much higher than others due to the same rea-
son observed in Figure 6(a). Second, MAAN exhibits sig-
nificantly larger variance than Mercury and PIRD/OPIRD.
MAAN maps resource information to a flat structured P2P
overlay. Some attribute names appear very frequently
such as CPU and Memory, while others are infrequently
used such as file name, leading to varied load imbalance.
On the other hand, Mercury uses one structured P2P for
each resource attribute, and classifies resource information
based on value in each structured P2P. The widespread
value ranges helps to distribute resource information evenly.
Taking advantage of the hierarchical structure of Cycloid,
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Figure 6. Efficiency of different resource discovery methods.

PIRD/OPIRD lets different clusters be responsible for re-
source information in the cluster and allocates information
to nodes based on geographically closeness. Therefore,
Mercury and PIRD/OPIRD can achieve more balanced dis-
tribution of load due to resource information maintenance
and resource discovery operation.

Figure 6(c) depicts the query time of different resource
discovery methods versus the number of queries. The fig-
ure shows that MAAN leads to the highest query latency,
followed by Mercury, PIRD and then OPIRD. For a query
consisting of m keywords, MAAN generates m queries for
all keywords. Hence, it needs a very long time to prune use-
less information in the information merging phase. Mercury
takes both of attribute name and value to request for infor-
mation. Therefore, the discovered resources have requested
attribute name and values. As a result, Mercury does not
need long time for final pruning. PIRD sends L requests
regardless of the number of keywords in a query. In ad-
dition, its refinement further removes the information for
resources not satisfying to the requesters. PIRD improves
the efficiency of query significantly. Incorporating LZW
compression algorithm, OPIRD has much shorter IDs and
hence shorter time for LSH processing, leading to dramati-
cally query latency reduction.

Experiment results show that all discovery methods can
return right results. An effective method should return
fewer false positive records. Figure 7(a) shows the number
of returned results. We can see that MAAN generates the
highest number of turned results, and Mercury incurs more
results than PIRD. MAAN splits attributes of a resource for
resource information collection and query. Due to its man-
ner of information collection and query as explained above,
MAAN returned tremendously high volume of information.
On the other hand, Mercury combines resource attribute
name and value, so it returned relatively less results. PIRD
clusters resource information based on their similarity and
maps each cluster to a node in a P2P node, such that it has
much fewer false positive results, which means most of its
returned results are the information of requested resource.

OPIRD reduces the number of returned records of PIRD
significantly due to its compressed IDs feature. Because
of large dimension and record ID sparsity, Euclidean Space

Distance computation may not be able to avoid false posi-
tives. Hence, PIRD generates a large number of false pos-
itives. With appropriate locality-preserving compression,
OPIRD with compression greatly improves the effective-
ness of PIRD by reducing the false positives in its returned
record set.

4.2 Proximity-aware Resource Discovery

This experiment shows the effectiveness of
PIRD/OPIRD in proximity-aware resource discovery,
in which resources geographically close to requesters nodes
are located. In the experiment, we randomly generated 5000
resource requests. Figure 8(b) and (c) show the CDF of the
percentage of resources requests versus distances between
resource requesters and providers. In the figure, PIRD also
represents OPIRD due to their similar performance. We can
see that in “ts5k-large,” PIRD is able to locate 97% of total
resource requested within 11 hops, while others locate only
about 15% within 10 hops. Almost all allocated resources
are located within 15 hops from requesters in PIRD, while
19 hops in others. The results show that PIRD can locate
most resources within short distances from requesters
while others allocate most resource in long distances. From
Figure 8(c), we can make the same observations as in
“ts5k-large,” although the performance difference between
approaches is not so significant. The more resources are
located in shorter distances, the higher proximity-aware
performance of a resource discovery method. The results
indicate that the performance of PIRD mechanism is better
than Mercury/MAAN in terms of discovering resources
physically close to resource requesters.

5 Conclusions
In spite of the efforts to develop resource discovery

methods in Internet-based distributed systems, most of them
lead to low efficiency and high overhead due to splitting re-
source attributes, while others are not effectiveness in an en-
vironment with tremendously different resources. In addi-
tion, there have been very little research devoted to tackling
the challenge of locating resources geographically close to
requesters. This paper presents P2P-based Intelligent Re-
source Discovery mechanism (PIRD). PIRD regards the de-
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Figure 8. Proximity-aware performance.

scription as an entire entity. It relies on locality-preserving
LSH hash function and LZW compression function to clus-
ter information of resources with similar attributes together
to facilitate efficient resource discovery. In addition, de-
pending on a hierarchical P2P structure, it further supports
geographically proximity-aware resource discovery. It dra-
matically reduces overhead and yields significant improve-
ments in efficiency. Its object-oriented feature, low over-
head and high efficiency are particularly attractive to the
deployment of Internet-based distributed systems.

Acknowledgments

This research was supported in part by U.S. Acxiom Cor-
poration.

References
[1] LSH Algorithm and Implementation (E2LSH). web-

site:http://web.mit.edu/andoni/www/LSH/index.html.
[2] A. Andrzejak and Z. Xu. Scalable, Efficient Range Queries

for Grid Information Services. In Proc. of P2P, pages 33–
40, 2002.

[3] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier.
Space filling curves and their use in geometric data structure.
Theoretical Computer Science, 181(1):3–15, 1997.

[4] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Sup-
porting Scalable Multi-Attribute Range Queries. In Proc. of
ACM SIGCOMM, pages 353–366, 2004.

[5] M. Cai, M. Frank, and P. Szekely. MAAN: A Multi-
Attribute Addressable Network for Grid Information Ser-
vices. Grid Computing, 2(1):3–14, 2004.

[6] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia:
Architecture and Performance of an Enterprise Eesktop Grid
System. JPDC, 63(5), May 2003.

[7] F. B. et. al. Adaptive Computing on the Grid Using AppLeS.
TPDS, 14(4), Apr. 2003.

[8] I. Foster and C. Kesselman. Globus: a Metacomputing In-
frastructure Toolkit. Int. J. High Performance Computing
Applications, 2:115–128, 1997.

[9] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: a Computation Management Agent for Multiin-
stitutional Grids. In Proc. IEEE HPDC, 2001.

[10] A. Fu, P. M. S. Chan, Y. L.Cheung, and Y. S. Moon. Dy-
namic VP-Tree Indexing for N-Nearest Neighbor Search
Given Pair-Wise Distances. VLDB Journal, (2):154–173,
2000.

[11] C. Germain, V. Neri, G. Fedak, and F. Cappello. XtremWeb:
Building an Experimental Platform for Global Computing.
In Proc. of IEEE/ACM Grid, Dec. 2000.

[12] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in
High Dimensions via Hashing. The VLDB Journal, pages
518–529, 1999.

[13] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In Proc. of
ACM STOC, pages 604–613, 1998.

[14] M. Mutka and M. Livny. Scheduling Remote Processing
Capacity in a Workstation-Processing Bank Computing Sys-
tem. In Proc. of ICDCS, September 1987.

[15] M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, and
P. Capello. Javelin++: Scalability Issues in Global Comput-
ing. Future Generation Computing Systems Journal, 15(5-
6):659–674, 1999.

[16] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-aware overlay construction and server selec-
tion. In Proc. of INFOCOM, 2002.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location and routing for large-scale peer-to-peer
systems. In Proc. of Middleware, pages 329–350, 2001.

[18] C. Schmidt and M. Parashar. Flexible Information Dis-
covery in Decentralized Distributed Systems. In Proc. of
HPDC, pages 226–235, 2003.

[19] H. Shen, A. Apon, and C. Xu. LORM: Supporting Low-
Overhead P2P-based Range-Query and Multi-Attribute Re-
source Management in Grids. In Proc. of ICPADS, 2007.

[20] H. Shen, Z. Li, and T. Li. PIRD: P2P-based Intelligent Re-
source Discovery in Internet-based Distributed. Technical
Report TR-08-062, University of Arkansas, 2008.

[21] H. Shen and C. Xu. Locality-Aware and Churn-Resilient
Load Balancing Algorithms in Structured Peer-to-Peer Net-
works. TPDS, 2007.

[22] H. Shen, C. Xu, and G. Chen. Cycloid: A Scalable Constant-
Degree P2P Overlay Network. Performance Evaluation,
63(3):195–216, 2006.

[23] I. Stoica, R. Morris, D. Liben-Nowell, and et al. Chord: A
Scalable Peer-to-Peer Lookup Protocol for Internet Applica-
tions. TON, 1(1):17–32, 2003.

[24] T. A. Welch. A Technique for High Performance Data Com-
pression. IEEE Computer, (6):8–19, 1984.

[25] Z. Xu and et al. Turning Heterogeneity into an Advantage
in Overlay Routing. In Proc. of INFOCOM, 2003.

[26] E. Zegura, K. Calvert, and S. Bhattacharjee. How to Model
an Internetwork. In Proc. of INFOCOM, 1996.


