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Abstract 
Semantic smoothing, which incorporates synonym and sense 
information into the language models, is effective and potentially 
significant to improve retrieval performance. The implemented 
semantic smoothing models, such as the translation model which 
statistically maps document terms to query terms, and a number of 
works that have followed have shown good experimental results. 
However, these models are unable to incorporate contextual 
information. Thus, the resulting translation might be mixed and 
fairly general. To overcome this limitation, we propose a novel 
context-sensitive semantic smoothing method that decomposes a 
document or a query into a set of weighted context-sensitive topic 
signatures and then translate those topic signatures into query 
terms. In detail, we solve this problem through (1) choosing 
concept pairs as topic signatures and adopting an ontology-based 
approach to extract concept pairs; (2) estimating the translation 
model for each topic signature using the EM algorithm; and (3) 
expanding document and query models based on topic signature 
translations. The new smoothing method is evaluated on TREC 
2004/05 Genomics Track collections and significant improvements 
are obtained. The MAP (mean average precision) achieves a 
33.6% maximal gain over the simple language model, as well as a 
7.8% gain over the language model with context-insensitive 
semantic smoothing. 
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H.3.3 [Information Search and Retrieval]: Retrieval Models—
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1. Introduction 
The language modeling approach to information retrieval 

(IR), initially proposed by Ponte and Croft [14], has been popular 
with the IR community in recent years due to its solid theoretical 
foundation and promising empirical retrieval performance. In 
essence, this approach centers on the document model estimation 
and the query generative likelihood calculation for ranking 
according to the estimated model. However, it is challenging to 
estimate an accurate document model. On one hand, because the 
query terms may not appear in the document, we need to assign a 
reasonable non-zero probability to the unseen terms. On the other 
hand, we need to adjust the probability of the seen terms to remove 
the effect of the background model or even irrelevant noise. Thus, 
the core of the language modeling approach to IR is to “smooth” 
the models. Zhai and Lafferty [16, 18] propose several effective 
smoothing techniques that interpolate the document model with 
the background collection model.  

A potentially more significant and effective method is 
semantic smoothing that incorporates synonym and sense 
information into the language model [10]. Berger and Lafferty [2] 
incorporate a kind of semantic smoothing into the language model 
by statistically mapping document terms onto query terms using a 
translation model trained from synthetic document-query pairs. 
The translation model is context-insensitive (i.e., it cannot 
incorporate sense and other contextual information into the 
language model), however, and therefore the resulting translation 
may be mixed and fairly general. For example, the term “mouse” 
without context may be translated to both “computer” and “cat” 
with high probabilities. Jin [9] and Cao [3] present two other ways 
to train the translation models, but they still have the same context-
insensitivity problem as [2].  

Lafferty and Zhai [10] introduce another more generic and 
flexible language model called KL-divergence retrieval model as a 
special case of their risk minimization retrieval framework. KL-
divergence retrieval estimates the query model as well as the 
document model. Like the document model estimation, a typical 
method for query model estimation is to statistically translate the 
terms in the original query into other terms [1, 10]. In this paper, 
we also refer to the translation-based query model estimation as 
semantic smoothing. Similarly, if the translation model is context-
insensitive, the resulting query model may be very general. Thus, 
it is urgent to develop a framework to semantically smooth query 
and document models in the language modeling (LM) retrieval 
framework.  
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In this paper, we propose a novel context-sensitive semantic 
smoothing method based on topic decomposition. A query or a 
document is decomposed into a set of weighted topic signatures 
and those topic signatures are translated into individual concepts 
for the purpose of query or document expansions. We define a 
topic signature as a pair of two topic concepts that are related to 
each other syntactically and semantically. Because two related 
concepts help to determine context for each other, the signature- 



based translation should have higher accuracy and result in better 
retrieval performance. For example, “mouse” in conjunction with 
“computer” could be a topic signature and the signature might be 
translated to “keyboard” with a high probability, but to “cat” with 
a low probability due to additional contextual constraints.  

We incorporate the context-sensitive semantic smoothing into 
language models through (1) adopting an ontology-based approach 
to extract concepts and signatures from queries and documents; (2) 
developing an EM-based method to train the signature translation 
model; and (3) expanding document and query language models 
based on topic signature translations. The new smoothing method 
is tested on TREC04/05 Genomic collections. The experimental 
results show that significant improvements are obtained over the 
simple language model as well as the model with context-
insensitive semantic smoothing. The contribution of this paper is 
three-fold. First, it proposes a new document representation using 
a set of weighted concepts and topic signatures. Second, it expands 
document and query language models through context-sensitive 
semantic smoothing. Third, it empirically proves the effectiveness 
of context-sensitive semantic smoothing for language modeling IR. 

The remainder of this paper is organized as follows. In 
Section 2, we review previous work on context-sensitive semantic 
smoothing, finalize the representation for topic signatures, and 
implement the topic signature extraction. In Section 3, we present 
the expanded language models with context-sensitive semantic 
smoothing. In Section 4, we test the new model on TREC04/05 
Genomics Track collections. Section 5 concludes our paper. 

2. Context-Sensitive Topic Signatures 

2.1 Previous Work 
Liu and Croft [12] propose a cluster language model and achieve 
great empirical improvement over the baseline model. Unlike our 
method, which decomposes a document or a query into a set of 
small topic signatures, their method aggregates similar documents 
into clusters and then treats each cluster as a big document for 
ranking purposes. All documents in the relevant clusters are 
returned to the users. The two models are similar in the sense that 
both want to obtain a set of documents with similar context rather 
than a single document in order to estimate a more accurate and 
smoothed model. The major difference is that a document only 
belongs to a cluster in the cluster model whereas a document can 
have multiple topic signatures in our model. Furthermore, many  
decisions need to be made empirically for clustering, based on the 
domain knowledge and the collection (e.g. the number of clusters, 
clustering algorithm, static clustering or query-specific clustering), 
while the topic signature model does not have this problem. 

Song and Bruza introduce an information flow (IF) based 
query expansion technique in [15]. A HAL vector is used as the 
context of a concept. The degree of one concept inferring another 
can then be heuristically computed. They also invent a heuristic 
approach to combine multiple concepts, which enables information 
inference from a group of concepts (premises) to one individual 
concept (conclusion). Therefore, their query expansion technique 
is somehow context-sensitive. Bai et al. [1] slightly adapt the 
above approach to the KL-divergence retrieval framework. Both of 
them achieve significant improvement over the simple language 
model. IF can be computed simply from term co-occurrence data 
without any external knowledge and is thus of value in practice. 
The major drawback of this approach is that it is unable to trace 
the information flow back to the documents or queries. Therefore, 

it is difficult to estimate an IF document model or query model 
(i.e., computing the generative probability of the premise of an IF 
from a query or a document). For a short query, the uniform 
distribution assumption, as made in [1], may not be a problem. But 
for a document, it is obviously not reasonable. In other words, it 
can not be used to expand document models. Besides, the degree 
to which one individual concept could be inferred from another 
combined concept is not theoretically motivated; its robustness 
needs to be further validated.  

2.2 Topic Signature Representation 
The choice of topic signature representation plays a crucial role in 
our context-sensitive semantic smoothing method. First, the topic 
signature must be context-sensitive and thus the signature should 
contain at least two terms, unless word sense is adopted. Second, 
terms within a signature should have syntactic relation. Otherwise, 
we cannot count their frequency in documents or queries and it 
becomes difficult to estimate signature document models and 
query models. Third, it should be easy to extract topic signatures 
from the text. Last, we hope all terms within a signature have 
semantic relations inspired by the idea of [3], where WordNet 
semantic relationships are considered. 

Harabagiu and Lacatusu proposed in [6] that topics could be 
represented by a set of weighted binary relations between topic 
concepts; a relation could be either syntax-based or entity-event 
paired without syntactic constraint. However, for the convenience 
of model estimations, only syntax-based relation is allowed in this 
paper. In addition, we impose semantic constraints on two 
concepts in order to reduce the noise. Thus, we end up with the 
definitions of topic signature below. 

Definition 1 A topic signature (t) is defined with two order-
free components as in t(wi, wj), where wi and wj are two concepts 
related to each other syntactically and semantically. For simplicity, 
t(wi, wj) is also denoted as tij. The implementation of the syntactic 
and semantic relationships between two concepts is determined by 
specific applications. 

Definition 2 A concept (w) is a unique meaning in a domain. 
It represents a set of synonymous terms in the domain. For 
example, C0020538 is a concept about the disease of hypertension 
in UMLS Metathesaurus (http://www.nlm.nih.gov/research/umls); 
it also represents a set of synonymous terms including high blood 
pressure, hypertension, and hypertensive disease. Therefore, 
concept-based indexing and searching helps to relieve the 
synonym and polysemy problems in IR, especially genomic IR, 
where a term (e.g., a gene or a protein) might have many 
synonyms while also representing different concepts in different 
context [20]. 

The benefit of using concept pairs as topic signatures is four-
fold. First, two-topic concepts help to determine the context for IR 
use while not producing too many concept combinations. Second, 
a number of existing approaches are available to extract binary 
relationships, which are similar to concept pairs. For example, in 
the area of NLP, especially in bioinformatics, pattern-based 
methods for binary relation extractions have been extensively 
studied in recent years [13]. Third, a concept pair itself is very 
similar to a short query. In TREC 2005 Genomics Track [8], 
structured concept pairs are directly used as ad hoc retrieval topics. 
In [19], concept pairs are treated as an index unit as well as a 
search unit. Last, documents are full of various concept pairs and it 
is possible to make a robust estimation of document models by 
linearly combining a set of topic signature models. 



2.3 Topic Signature Extraction 
In general, the extraction of topic signatures is done in two steps: 
the topic concept extraction and the concept pair extraction. The 
extraction of biological concepts and their binary relationships is a 
hot topic in bioinformatics and a survey of those methods can be 
found in [13]. However, on one hand, our extraction is for IR use 
and we are dealing with large corpora statistically; thus the 
extraction methods need not be perfect [5]. On the other hand, we 
are more interested in semantic correspondences between topic 
concepts than syntactic patterns. Thus, we use a generic ontology-
based approach to extract topic signatures.  

  
Figure 1. Illustration of document indexing. Vt, Vd and Vw are topic 
signature set, document set and concept set, respectively. 

We adopt MaxMatcher [20] for concept extractions. The 
concept extraction by MaxMatcher is equivalent to maximizing the 
weighted overlap between the word sequences in text and the 
concepts in an ontology, such as the UMLS Metathesaurus. It 
outputs concept names as well as unique IDs representing a set of 
synonymous concepts. The unique concept IDs are used as an 
index in our experiments. MaxMatcher distinguishes between 
major concepts and sub concepts in the manner defined below. 

Definition 3 A concept syntactically embedded in another 
concept is called a sub concept, otherwise it is called a major 
concept. However, the membership of a concept is context-
dependent; a sub concept in one text could be a major concept in 
another. For example, “blood pressure” is a sub concept for the 
text “high blood pressure,” but is a major concept for text “the 
blood pressure is…” We index both sub concepts and major 
concepts in the experiment. 

 We developed a coarse approach to extract topic signatures 
in order to show the robustness and effectiveness of the signature-
based semantic smoothing. A pair of two topic concepts will be 
treated as a topic signature if they meet the following three 
requirements: (1) both of them are major concepts; (2) they appear 
in the same clause of an English sentence; and (3) their semantic 
types are compatible according to the domain ontology. For 
example, two proteins could be semantically compatible in UMLS 
(e.g., protein-protein interaction). 

Example:  
A recent epidemiological study (C0002783, research activity) revealed that 
obesity (C0028754, disease) is an independent risk factor for periodontal 
disease (C0031090, disease). 
Concept Index: C0002783, C0028754, C0031090 
Topic Signature Index: (C0028754, C0031090) 

In the above example, the underlined phrases are extracted 
concept names followed by the corresponding concept ID and 
semantic type. The concept pair of obesity and periodontal disease 
is a topic signature while the concept epidemiological study has no 
relationships with other concepts because it is in a separate clause.  

3. Context-Sensitive Semantic Smoothing 

3.1 Signature Translation Model Estimates 
Suppose we have indexed all documents with concepts and topic 
signatures (see Figure 1). For each topic signature tk, we have a set 
of documents (Dk) containing that topic signature. Intuitively, we 
can use the document set Dk to approximate the translation model 
for tk, i.e., determining the probability of translating the signature 
to concepts in the vocabulary. If all concepts appearing in the 
document set center on the topic signature tk, we can simply use 
maximum likelihood estimates and the problem is as simple as 
frequency counting. However, some concepts address the issue of 
other topic signatures while some are background concepts of the 
collection. We use the generative model proposed in [17] to 
remove the noise. Assume the set of documents containing tk is 
generated by a mixture model (i.e., interpolating the translation 
model with the background collection model ),  )|( Cwp
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where α is a coefficient accounting for the background noise and 
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estimate the translation model using the EM algorithm [4]: 
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where  is the frequency count of concept w in D),( kDwc k. 

Our topic signature translation model is significantly different 
from previous translation models [2, 3, 9, 10] in two aspects. First, 
previous translation models take an individual term as the topic 
signature, and are unable to incorporate contextual information 
into the model. Our model uses a group of terms with syntactic and 
semantic relation to each other as the topic signatures. 
Consequently, the resulting translation will be more specific. 

Second, the method for model estimation is different. Berger 
and Lafferty [2] use document-query pairs to train translation 
probabilities. However, it is unlikely to obtain a large amount of 
real data. For this reason, they use synthetic data for model 
estimation. The title language model, proposed in [9], uses title-
document pairs to train translation probabilities. The major 
drawback of the title model is that only a small portion of terms in 
the vocabulary would appear in the title. The Markov chain model 
[10] deals with translations in a different fashion. However, the 
resulting query model is fairly general and the computation of the 
inverse matrix will be prohibitive to large collections. Cao [3] 
takes into account word semantics when computing term 
associations, but he ignores the sense of the words; this model is 
roughly equivalent to our context-insensitive version of semantic 
smoothing introduced in Section 4.6.  

3.2 Document Model Smoothing 
Lafferty and Zhai introduced the KL-Divergence retrieval model 
as a special case of their risk minimization retrieval framework 
[10]. This retrieval model estimates query models as well as 
document models; the relevance of a document to a query is 



equivalent to measuring the KL-divergence distance between the 
query model and the document model: 
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The introduction of query models makes the language modeling 
approach more flexible. Almost all previous language models for 
IR are the special cases of this new retrieval model. The context-
sensitive semantic smoothing technique proposed in this paper 
works with the KL-divergence retrieval model. 

A simple unigram document model can be easily obtained 
using the maximum likelihood estimate. To avoid assigning zero 
probability to unseen terms and to reduce the noise, it could be 
simply interpolated with a background collection model : )|( Cwp
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where α is a coefficient accounting for the background model. We 
use this simple mixture language model as the baseline in the 
comparative study and refer to it as DM0.  

With the availability of context-sensitive topic signatures, a 
document model can be expanded by statistically mapping the 
topic signatures in the document to query terms. That is,  
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The topic signature document model (i.e., the generative 
probability of topic signatures in a document) can be computed 
using a maximum likelihood estimate: 
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Where is the frequency of signature t),( dtc i i in document d. We 
refer to this translation-based document model as DM1. The form 
of DM1 is same as the translation model described in [2]. 
However, the topic signature in DM1 is more generic. It could be 
individual terms, as used in [2], or context-sensitive concept pairs 
as used in this paper, or any other objects that can express a topic. 

A potential problem of Model DM1 is that the extracted topic 
signatures may not be very representative when the document is 
too short or the criterion of being a topic signature is too strict. 
Thus, the accuracy of the document model will be compromised. 
To overcome this limitation, we interpolate DM1 with DM0.  

)8.3(                     )|()|()1()|( dwpdwpdwp tbbt λλ +−=  
This mixture model is referred to as DM2. The translation 
coefficient (λ) controls the influence of the translation component 
in the mixture model. The mixture model becomes DM0 when λ is 
zero and becomes DM1 when λ is one. In the experiment, we tune 
the translation coefficient to optimize the retrieval performance. 

3.3 Query Model Smoothing 
Like the expansion mechanism for document models, a query 
model can be expanded through the signature-concept translation 
if the query could be decomposed into a set of representative topic 
signatures. That is,  
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However, query descriptions are often very short; therefore, it is 
difficult to extract representative topic signatures, let alone 

compute the generative probability (i.e. the importance to the 
query). For this reason, we do not smooth query models during the 
initial search. Instead, we update the query model according to the 
top-ranked documents of the initial search, which is referred to as 
blind feedback or pseudo-relevance feedback. We expect that the 
feedback documents will give us a more precise sense of what the 
query is about.  

Zhai and Lafferty formalized the blind feedback as a process 
of re-estimating the query model according to the feedback 
documents within the KL-divergence retrieval framework [17]. By 
interpolating the feedback model with the initial query model, we 
obtain the final query model for the feedback search. The tunable 
feedback coefficient γ controls the influence of the feedback model 
in the mixture query model.  
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Though top-ranked documents have a high probability of 
being relevant to the initial query, it does not mean all topic 
signatures in those documents are relevant to the query. 
Intuitively, topic signatures containing one or more query terms 
are probably more relevant to the initial query than those 
containing no query terms. Counting topic signatures containing at 
least one query term, we derive a feedback model below: 
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where  is the frequency of the topic signature t),( Ftc k k in the 
feedback document set F. The resulting feedback model, however, 
might be fairly general because the topic signature translation 
probability is simply trained from a set of documents containing 
that signature. To overcome this problem, only self-translation 
(i.e., translating a topic signature to its own concepts) is allowed. 
Then we obtain a heuristic feedback model called FM0: 
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Model FM0 will filter out some irrelevant topic signatures 
using term associations, but it will still keep the effect of the 
background topic signatures. In other words, high-frequency topic 
signatures in F might be also frequent in the collection. For this 
reason, we use the approach introduced in [17] to remove the 
effect of the background collection model. This approach assumes 
that the topic signatures in feedback documents are generated by a 
mixture model (interpolating the signature feedback model with 
the signature collection model): 
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Thus, we get our second feedback model called FM1: 
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The signature feedback model could be estimated 
using the EM algorithm [4] with the following update formulas. 

)|( Fktp θ
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The approach proposed in [17] uses the generative model 
directly to estimate the feedback model, whereas we use the same 
approach to estimate the signature feedback model first, and then 
translate context-sensitive topic signatures to its own concepts. 
This difference may result in two advantages. First, a term in a 
different context will be treated the same and counted together in 
[17]. However, the context of topic signatures will be accounted 
for in our approach. Second, our approach will favor terms that 
frequently interact with other terms. We think it is better than 
simply accounting for the frequency of terms (even after removing 
the effect of the background model), as was done in [17], when 
estimating a query model. Roughly, a term with high occurrence 
frequency will also interact with other terms frequently, but in a 
fine sense, these two concepts are different.  

4. Experimental Results 

4.1 Test Collection and Evaluation 
Our current implementation of topic signature extraction relies on 
a domain ontology. For this reason, we validate our context-
sensitive semantic smoothing method on genomic collections 
because UMLS could be used as the domain ontology for this area. 

The testing collections are TREC Genomic Track 2004 [7] 
and 2005 [8]. The original collection is a ten-year subset of 
Medline abstracts and contains about 4.6 million abstracts. We 
only used the sub-collection (i.e., the human relevance-judged 
document pool, 48,753 documents for 2004 and 41,018 documents 
for 2005) for our experiment. The ad hoc retrieval tasks of the two 
tracks include 50 topics (queries), respectively. We use the simple 
language model introduced in [12] (i.e., DM0) as the baseline. To 
give readers the sense of how good the baseline language model is, 
we also report the performance of the Okapi retrieval model in 
Table 1. Roughly, the performance of the baseline language model 
is comparable to that of the Okapi model. Following the 
convention of TREC, we use the mean average precision (MAP) as 
the major performance measure and the overall recall at 1000 
documents as a supplemental measure. 
Table 1. Comparison of the baseline language model to the Okapi 
model. The Okapi formula is the same as the one in [10]. The number 
of relevant documents for TREC04 and TREC05 are 8266 and 4585, 
respectively. The asterisk indicates the initial query is weighted as 
described in Section 4.2. 

Recall MAP Collection SLM Okapi Change SLM Okapi Change 
TREC04 6411 6662 +3.9% 0.345 0.363 +5.2% 
TREC04* 6527 6704 +2.7% 0.364 0.364 +0.0% 
TREC05 4084 4124 +1.0% 0.255 0.250 -2.0% 
TREC05* 4135 4134 -0.0% 0.260 0.254 -2.3% 

4.2 Indexing Schema and Query Processing 
We index all documents with UMLS-based concepts and topic 
signatures as shown in Figure 1. For each document, we record the 
frequency count of each concept and signature and the basic 

statistics. For each concept and topic signature, we record their 
frequency count in each document and the basic statistics. For 
concept indexing, we do not use any stop list. For topic signatures 
appearing in more than one document, we estimate their 
translation models using the EM algorithms detailed in Section 
3.1. 

The query formulation is fully automated. The extraction of 
query terms from topic descriptions is the same as the process of 
document indexing. In TREC04 Genomics Track, a topic was 
described in three sections: title, information need, and context. 
The “context” section provided the background information of the 
topic. Assuming the background information could be learned 
from blind feedback, we intentionally ignore this section during 
query formulation. The final formulated query contains 4.3 terms 
on average. TREC05 Genomics Track provided more structured 
queries that look like a binary relation between two topic concepts. 
Because the queries are too short, we also include sub-concepts in 
the query. The final formulated query contains 5.1 terms on 
average (Query #135 was removed because it contains no relevant 
document). 

As stated in [12], the concepts in the “title” section are clearly 
more important than those in the remaining sections. For this 
reason, we weight query terms according to the sections from 
which they are extracted. Following the method proposed in [12],   
we optimize the weight of different sections by maximizing the 
MAP of the baseline retrieval model. The weights for the “title” 
section and the “information need” section are 1.0 and 0.6, 
respectively. In TREC 2005 Genomic Track, the topic description 
is presented in one section, but we found that the major concepts 
are more important than those sub-concepts. Similarly, we weight 
the query terms according to whether they are sub-concepts or not. 
The method for weight optimization is the same as that for query 
section weighting. The weights for major concepts and the sub 
concepts are 1.0 and 0.2, respectively. In Table 1-6, the asterisk (*) 
indicates the initial query is weighted. 

4.3 Effect of Document Smoothing 
We evaluate the document model with context-sensitive semantic 
smoothing (i.e., DM2). The coefficient (α) controlling the 
influence of the background collection model in all document 
models, DM0-DM2, is set to 0.05 in this paper.  The translation 
coefficient (λ) in DM2 is optimized by maximizing MAP.  The 
coefficient accounting for background noise is set to 0.3 when 
using an EM algorithm to train signature translation models. The 
result is shown in Table 2. The IR performance is significantly 
improved for both TREC04 and TREC05 after adopting semantic 
smoothing on document models. 

Table 2. The comparison of the baseline language model (DM0) to 
document smoothing model (DM2) and query smoothing model 
(FM1).  

λ=0.3 γ =0.6 Collection DM0 DM2 Change FM1 Change 
MAP 0.345 0.395 +14.5% 0.451 +30.9% TREC04 Recall 6411 6749 +5.3% 6929 +8.0% 
MAP 0.364 0.414 +13.7% 0.460 +26.9% TREC04* Recall 6527 6905 +5.8% 7039 +7.8% 
MAP 0.255 0.277 +8.6% 0.279 +9.4% TREC05 Recall 4084 4167 +2.0% 4227 +3.5% 
MAP 0.260 0.288 +10.8% 0.287 +10.4% TREC05* Recall 4135 4214 +1.9% 4235 +2.4% 
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Figure 2. The variance of MAP with the translation coefficient (λ), 
which controls the influence of the translation model in DM2. 

The variance of MAP with the translation coefficient λ is 
shown in Figure 2. For all four curves, the best performance is 
achieved at λ=0.3; after that point, the performance is downward. 
A possible explanation is that the extracted topic signatures do not 
capture all points of the document, but the basic language model 
captures those missing points. For this reason, when the influence 
of the translation model is too high in the mixture model, the 
performance is downward and even worse than that of the 
baseline. Therefore, if we can find a better topic signature 
representation for documents and queries, or we can refine the 
extraction of topic signatures, the IR performance might be further 
improved. 

4.4 Effect of Query Smoothing 
The blind feedback gives the chance to estimate an accurate query 
model and is thus expected to perform better than the baseline 
language model. We select the top 50 documents for feedback 
using Model FM1; the coefficient accounting for background noise 
is set to 0.3 when using the EM algorithm to train signature 
feedback models. For the efficiency of retrieval, we only expand 
10 top-ranked terms and then renormalize their probability. 
Expanding more terms will only slightly improve the results but 
will seriously affect the retrieval efficiency. The feedback query 
model is further interpolated with the initial query model (QM0); 
the feedback coefficient (γ) is optimized by maximizing MAP. 
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Figure 3. The variance of MAP with the feedback coefficient (γ), 
which controls the influence of the feedback model in blind feedback 
(i.e. DM0+FM1). 

The comparison to the baseline language model is shown in 
Table 1. The feedback significantly raises the IR performance. The 
effect of feedback is also robust.  As shown in Figure 3, the 
feedback model is always superior to the baseline when the 
feedback coefficient γ is changed from 0 to 1 for TREC04, and is 
better than the baseline except at γ=1.0 for TREC05. 

 The document smoothing and query smoothing are effective 
for both TREC04 and TREC05. However, the effect on TREC04 is 
clearly much more significant than on TREC05. A possible 
explanation is that TREC04 is “easier” than TREC05. 

4.5 Interaction Effect of Document Smoothing 
and Query Smoothing 
The document semantic smoothing maps related document terms 
to query terms while the query semantic smoothing (feedback) 
expands query terms to match document terms. Their effects will 
overlap to some degree when used together and therefore it is not 
expected to achieve the overall effect equal to the summation of 
both. Actually, the overall effect could be worse than each 
individual effect without careful parameter tuning.  For example, 
“hypertension” and “obesity” can translate to each other with high 
probabilities; the initial query contains “obesity” and the feedback 
expands the term “hypertension.” In this case, if we still use 
document semantic smoothing in the feedback search, we may 
overestimate the importance of “obesity” to the original query and 
thus degrade the performance. 

Table 3. The interaction effect of document smoothing (DM2) and 
query smoothing (FM1). “Max” is the maximum effect achieved by 
DM2 or FM1. “Both” is the result of DM2+FM1. “Change[1]” is the 
improvement of DM2+FM1 over DM0. “Change[2]” is the 
improvement of DM2+FM1 over “Max”.  

Collection DM0 Max Both Change[1] Change[2]

MAP 0.345 0.451 0.461  +33.6%  +2.2% TREC04 
Recall 6411 6929 7026  +9.6%  +1.4% 
MAP 0.364 0.460 0.470  +29.1%  +2.2% TREC04* 
Recall 6527 7039 7079  +8.5%  +0.6% 
MAP 0.255 0.279 0.295  +15.7% +5.7% TREC05 
Recall 4084 4227 4273  +4.7% +1.1% 
MAP 0.260 0.288 0.313  +20.4% +8.7% TREC05* 
Recall 4135 4235 4317   +4.4% +1.9% 

For the above considerations, we take the advantage of 
document semantic smoothing during the initial search and hope 
the top-ranked documents will be more relevant to the query and 



result in a more accurate feedback model. In the feedback search, 
we still use document smoothing, but set its influence to a small 
degree to avoid overestimation. The feedback coefficient γ is set to 
0.6 and the translation coefficient λ for the initial search is set to 
0.3 according to the performance curves shown in Figure 2 and 3. 
The λ for feedback search is optimized by maximizing MAP. As 
expected, the optimal value ranges from 0.01 to 0.05. The final 
result is reported in Table 3. The interaction of document 
smoothing and query smoothing consistently achieves positive 
effect on the retrieval of TREC04 and TREC05. 

However, the interaction effect on TREC05 is much more 
significant than on TREC04. It is most likely because the top-
ranked documents returned by the basic language model (i.e., 
without document semantic smoothing) on TREC04 are good 
enough to estimate an accurate feedback model. In general, the 
worse the performance of the basic language model, the more 
significant the interaction effect will be. 

4.6 Comparison of Feedback Models 
The feedback model FM0 heuristically selects the topic signatures 
relevant to the query using term associations. FM1 uses a formal 
generative model to estimate the importance of each signature to 
the query and thus is expected to perform better than FM0 in terms 
of predicting the query.  The comparison of these two feedback 
models is shown in Table 4. Though both are effective, FM1 
performs consistently better than FM0, as expected. 

Table 4. Comparison of blind feedback model FM1 to FM0  

Recall MAP Collection FM0 FM1 Change FM0 FM1 Change
TREC04 6808 6929 +1.7% 0.442 0.451 +2.0% 
TREC04* 6811 7039 +3.3% 0.449 0.460 +2.4% 
TREC05 4192 4227 +0.8% 0.270 0.279 +3.3% 
TREC05* 4215 4235 +0.5% 0.279 0.288 +3.2% 

4.7 Context-Sensitive vs. Context-Insensitive 
Following the method proposed in [1] and [3], we can simply use 
the extracted topic signatures to estimate a context-insensitive 
translation model, i.e., mapping one concept to another: 
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where is the frequency count of signature  
in the whole collection. Then we get a context-insensitive version 
of DM2 denoted as DM2’. 
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The results of the comparative experiment on DM2 and DM2’ 
are presented in Table 5. The translation coefficient (λ) is 
optimized by maximizing the MAP. The optimal λ is 0.3 for DM2 
and 0.01 for DM2’. The optimal λ for DM2’ is extremely small, 
most likely due to two reasons. First, the context-insensitive 
smoothing does not capture the semantics of the query well, and 
thus the influence in the mixture model is downward. Second, a 
topic signature in DM2’ translates to a relatively small number of 
concepts and thus the average translation probability is much 
higher than in DM2. 

The context-sensitive semantic smoothing approach performs 
significantly better than context-insensitive semantic smoothing 
approaches. The gain of DM2’ over the baseline language model is 

consistent with the conclusions of previous work, such as [1] and 
[3]. [1] achieved 3-4% gain using HAL relationships and [3] 
achieved 5-6% gain using WordNet relationship and cooccurrence 
relationship. 

Table 5. Comparison of the context-sensitive semantic smoothing 
(DM2) to the context-insensitive semantic smoothing (DM2’) on 
MAP. The rightmost column is the change of DM2 over DM2’. 

DM0 DM2’ DM2 Collection
MAP MAP Change Map Change 

Change 

TREC04 0.346 0.367 +6.1% 0.395 +14.5% +7.6% 
TREC04* 0.364 0.384 +5.5% 0.414 +13.7% +7.8% 
TREC05 0.255 0.260 +2.0% 0.277 +8.6% +6.5% 
TREC05* 0.260 0.269 +3.5% 0.288 +10.8% +7.1% 

4.8 Comparison to Other Approaches 
We compared our method with two state-of-the-art approaches: the 
query expansion using information flow [15] and the model-based 
feedback [17].Both of them work within the LM framework. The 
former is also a context-sensitive semantic smoothing approach. 
The latter proves empirically to be effective on other TREC 
collections [17]. Because the information flow can not take the 
advantage of weighted initial queries, we used unweighted queries 
for comparisons. The information flow approach did not support 
concept-based indexing; thus, the result from only word-based 
indexing was obtained for it. For each approach, we tried different 
parameter combinations and reported the best result in Table 6. 

Our approach achieved the best result for both 2004 and 
2005. It performed significantly better than the local information 
flow approach, possibly because we imposed semantic constraint 
on topic signatures and used biological concepts rather than single 
words as building blocks, which made the information inference 
more meaningful on the genomic collections. Interestingly, the 
incorporation of domain knowledge did not help much when using 
the simple language model for retrieval; the result for TREC 2005 
was even slightly worse. This showed that the context-sensitive 
semantic smoothing using topic signatures provided an effective 
mechanism to incorporate domain knowledge. The result of the 
model-based feedback was also improved by using the concept-
based indexing, but less effective than our approach, especially for 
TREC 2004. 

Table 6. Comparison of the retrieval performance of six approaches on 
TREC genomic track 2004 and 2005. “Word” or “Concept” means the 
indexing unit used. The concept-based indexing is based on the UMLS 
Metathesaurus. All approaches are implemented by us. 

TREC 2004 TREC 2005 IR Approaches MAP Recall MAP Recall
 Simple Language Model (Word)  0.324 6328 0.258 4101 
 Simple Language Model (Concept)  0.345 6411 0.255 4084 
 Local Information Flow (Word) 0.378 6793 0.272 4220 
 Model-based Feedback (Word) 0.372 6742 0.279 4260 
 Model-based Feedback (Concept) 0.424 6896 0.290 4213 
 Topic Signature (Concept) 0.461 7026 0.295 4273 

5. Conclusions and Future Work 
In this paper, we propose a novel context-sensitive semantic 
smoothing approach that decomposes a document and a query into 
a set of weighted context-sensitive topic signatures and then 
translate those topic signatures into query terms. We validated the 



approach on two genomics collections: TREC Genomic Track 
2004 and 2005.  The document smoothing, the query smoothing, 
and the interaction of both all proved to be effective and robust on 
the testing collections in comparison to the baseline language 
model. We also implemented a context-insensitive version of 
semantic smoothing using extracted topic signatures. As expected, 
it is significantly less effective than the context-sensitive semantic 
smoothing, though it does achieve a slight improvement over the 
baseline language model. Our approach was also compared to two 
other IR approaches, a context-sensitive smoothing approach using 
information flow and an effective model-based feedback approach. 
Our approach performed significantly better than the former and 
slightly better than the latter. All experiments altogether concluded 
that the context-sensitive smoothing using topic signatures was 
effective to incorporate domain knowledge for genomic IR. 

This paper made the following contributions. First, we 
presented a new document representation, i.e., representing a 
document as a set of weighted topic signatures and concepts.  In 
particular, we chose concept pairs as topic signatures and adopted 
a generic ontology-based approach to extract concepts and concept 
pairs. The new representation could be applied to other retrieval, 
summarization, and text classification techniques. Second, we 
proposed an EM-based method to train the context-sensitive 
translation model for each signature and then formalized the query 
and document expansions based on signature translations. Third, 
we empirically proved the superiority of the context-sensitive 
semantic smoothing over context-insensitive semantic smoothing 
as well as non-semantic smoothing. 

Our current implementation of topic signature extraction 
relies on a domain ontology. For this reason, we only tested our 
method on two genomic collections because UMLS can be used as 
the domain ontology for this area. However, the proposed method 
could be applicable to any application domain. For future work, 
we will adopt other existing concept and relation extraction 
approaches (i.e., those without ontologies) and apply context-
sensitive semantic smoothing to more IR collections in general 
domains.  
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