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Czech Technical University, Faculty of Electrical Engineering, Dept. of Cybernetics

Technická 2, 166 27 Prague 6, Czech Republic
E-mail: posik@labe.felk.cvut.cz, phone: +420-2-24357228

1 Introduction

Evolutionary algorithms (EAs) are known in many areas as a powerful and robust optimization and
searching tool. Classical EAs rely on the well-known two phases: selection and variation. Variation is
usually carried out by means of perturbation of promissing individuals (searching local neigbourhoods), or
by means of combining two promising individuals together (creating offsprings which embody some char-
acteristics of both parents). However, classical EAs suffer from several problems. The linkage problem
belongs among the most severe ones. It arises in situations when the individual components of chromo-
somes are not statistically independent of each other with respect to the fitness function. There exists no
general way of EA modification that would enable the modified EA to account for the dependencies at
hand. Usually, this problem is solved by constructing special crossover and mutation types of operators
and by incorporating some problem-specific knowledge in them. The classical EA then looses its flavor
of general problem solver and quickly becomes an algorithm highly specialized to the given problem.

2 Estimation of Distribution Algorithms

Recently, a new type of EAs emerged — Estimation of Distribution Algorithms (EDAs) [1]. Some re-
searchers use names as Probabilistic Model Building Genetic Algorithms (PMBGAs), or Iterated Density

Estimation Algorithms (IDEAs), but all these names describe basically the same concept. These algo-
rithms don’t rely on the ‘genetic’ principles anymore; instead, in each generation, they build an explicit
probabilistic model of distribution of ‘good’ individuals in the search space. New individuals are created
by sampling from this distribution. The model-sample step of EDA can be thought of as a generalized
type of multiparent crossover operator. The strengths and weaknesses of a particular EDA are mainly
determined by the used probabilistic model.

2.1 Probabilistic Models for Discrete Variables

The probabilistic models differ for EDAs in discrete and continuous spaces. The first EDAs were developed
for the discrete spaces. They range from simple Univariate Marginal Density Algorithm (UMDA), which
is comparable to simple genetic algorithm, to Bayesian Optimization Algorithm (BOA) [2] which uses
Bayesian net as the underlying probabilistic model. Bayesian nets are able to encode general type of
discrete probabilistic distribution, however, their learning from data involves either sophisticated methods
for statistical dependency detection, or they are learnt by searching the space of possible Bayesian nets
(usually by a greedy algorithm).

2.2 Probabilistic Models for Continuous Variables

In continuous spaces, the situation is even more complicated. The simplest continuous EDAs (continuous
UMDAs) use models in which the joint probability density function (PDF) is factorized into a product
of marginal univariate PDFs which take various forms: empirical histograms, normal (or any other well-
known) distribution, finite mixtures of univariate Gaussians, etc. To take into account the dependencies
between variables, we have to employ more complex models like Gaussian nets (GN), which results in
Estimation of Gaussian Networks Algorithm (EGNA) [1]. GN has the power to encode general multi-
dimensional Gaussian distribution, however, very often this type of probabilistic model is not sufficient.
Then we should use even more flexible models which are empowered by (hard- or soft-) clustering, e.g.
finite mixture of multidimensional Gaussians. To be objective, one must say that these models are ca-
pable in covering various types of interactions, however, learning them is not a trivial task. It is usually
very time consuming and it must be performed using a kind of iterative learning scheme (usually by a
variant of the expectation-maximization algorithm).



3 Marginal Models in EAs

My research is aimed at the EDAs in continuous spaces. I have examined the UMDA in continuous
domain. The individual components of promising solutions are supposed to be statistically independent
of each other. This means that the global distribution of promising solutions in the search space can be
modeled by a set of univariate marginal distributions, i.e. the global model can be factorized as

p(x) =
D
∏

d=1

pd(xd), (1)

where the p(x) is the global multivariate density and the pd(xd)’s are the univariate marginal densities. I
compared the suitability of four different marginal probability models, namely the equi-width histogram
(HEW), equi-height histogram (HEH), max-diff histogram (HMD), and univariate mixture of Gaussians
(MOG) (for the differences of individual models, see fig. 1). For the suite of test functions, see [3].
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Figure 1: Equi-width, equi-height, and max-diff histograms with 10 bins, and mixture of gaussians

with 3 components

In the experiments, I varried the population size (200, 400, 600, 800 individuals), the number of bins
for histogram models (120 and 60 bins), or the number of components for the case of MOG model (6 and
3 components). Furthermore, all models were compared to the line search heuristic [4], which is very
efficient for high-dimensional separable problems.

In each generation, new PopSize individuals were created, joined with the old population, and using
truncation selection, the population was reduced to its original size. For each of possible factor com-
bination I run the algorithm 20 times. Each run continued until the number of 50,000 evaluations was
reached. Let’s say the algorithm found the global optimum if for each variable xd the following relation
holds:

∣

∣xbest
d − x

opt

d

∣

∣ < 0.1 (if the difference of the best found solution xbest from the optimal solution
xopt is lower then 0.1 in each of coordinates). In all experiments, we track three statistics:

• The number of runs in which the algorithm succeeded in finding the global optimum (NoFoundOpts).

• The average number of evaluations needed to find the global optimum computed from those runs
in which the algorithm really found the optimum (AveNoEvals).

• The average fitness of the best solution the algorithm was able to find in all 20 runs (AveBest).

The results can be found in table 1. From the experiments the following conclusion can be made:
the HEW model is the least flexible one and the behaviour of EDAs with this model is unsatisfactory
in comparison with the other models. The performance of HEH and HMD histograms was comparable.
The MOG model showed a bit worse performance, however, it used considerably less components than
the histogram models and offers other advantages over the histogram models (easy extension to mixture



200 400 600 800 200 400 600 800 Statistics

NoFoundOpts
AveNoEvals

AveBest

0 1 0 1 1 17 19 20 NoFoundOpts
13200 47200 5600 10306 15189 19600 AveNoEvals

5,00560 4,82110 5,05280 4,95510 3,48040 2,51180 2,50030 2,52340 AveBest
20 20 20 20 20 20 20 20 NoFoundOpts

6530 11080 16050 20760 7720 10620 15570 20400 AveNoEvals
0,10710 0,02070 0,01040 0,07490 0,03740 0,00690 0,00430 0,03520 AveBest

20 20 20 20 20 20 20 20 NoFoundOpts
6270 14920 27960 47080 6770 10980 17490 25280 AveNoEvals

0,00003 0,00008 0,04990 2,20380 0,00260 0,00001 0,00230 0,05740 AveBest
7 20 20 19 16 20 20 20 NoFoundOpts

6571 11860 17130 23032 5613 10480 15780 20720 AveNoEvals
0,87390 0,00011 0,00930 0,13970 0,19650 0,00008 0,00660 0,06370 AveBest

NoFoundOpts
AveNoEvals

AveBest

13 17 16 14 1 15 18 19 NoFoundOpts
15954 20353 25763 27886 5800 12320 18867 24926 AveNoEvals

0,00370 0,00210 0,00230 0,00320 0,00500 0,00081 0,00095 0,00083 AveBest
18 18 18 20 16 18 20 20 NoFoundOpts

6667 12867 18967 25000 6650 12711 18270 23920 AveNoEvals
0,00074 0,00074 0,00074 0,00000 0,00150 0,00074 0,00000 0,00000 AveBest

17 17 18 16 18 17 19 20 NoFoundOpts
6482 12376 19200 25850 6456 12235 18221 23720 AveNoEvals

0,00110 0,00110 0,00074 0,00140 0,00074 0,00110 0,00037 0,00000 AveBest
15 15 18 19 19 19 17 18 NoFoundOpts

5693 10613 16100 21726 5894 12084 17682 23644 AveNoEvals
0,00190 0,00180 0,00074 0,00037 0,00037 0,00037 0,00110 0,00074 AveBest
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Table 1: Results of carried out experiments

of multidimensional Gaussians). Typical tracks of evolution of bin boundaries for histogram models and
component centers of MOG for one of the test functions is shown in figure 2.
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Figure 2: Two Peaks function — Evolution of bin boundaries for equi-height and max-diff his-

togram models and evolution of component centers for mixture of Gaussians model.

4 Vestibulo-Ocular Reflex Analysis

The above described algorithm was succesfully applied to vestibulo-ocular reflex (VOR) signal processing.
By analyzing the VOR signal, physicians can recognize some pathologies of the vestibular organ of a
patient in a non-invasive way. The principle is simple: the patient is situated in a chair which is then
rotated in a defined way (following some reference signal – sine wave or sum of sine waves). The patient is
said to visually track some points on surrounding walls and the movements of his eyes are monitored. The
resulting eye signal must be first processed (it is distorted by the fast eye movements) to get ‘eye-filtered’
response to the reference signal. The differences in amplitudes and phases of the sine waves are the
indicators of the vestibular organ pathologies. EDA was applied in the signal processing phase in a co-
evolutionary manner, i.e. the following two parts were iteratively alternated: (1) one population searched
for the best biases of individual signal segments (when fitted to the best representant of estimated signal
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Figure 3: VOR signals and their evolution.

parameters), while (2) the other population searched for the best signal parameters (when fitted to the
best set of biases).

I compared two of the above mentioned UMDAs (HEH and HMD models) with an ordinary EA
(truncation selection, 2-point crossover, mutation with probability 0.05 by means of adding a random
value from distribution N (0, 0.1)). The results are presented in fig. 3. On the left-hand side of the
picture, we can see the original signal (dotted line, not known to the EA), the signal segments before EA
started (dashed line), and the same signal segments after EA processing (solid line). We can see, that
all the segments are very precisely arranged so that they follow the original signal very closely. Both
UMDAs were much faster than the EA in the initial phase of evolution. The EA is able to discover more
accurate solution, however, the final differences are not very large – measured in residual sum of squares
(RSS), the EA reached the score of 0.44 on average, the UMDA/HMD reached 0.75, and the UMDA/HEH
reached 2.36 (solutions of these scores are almost identical when compared by human eye). In spite of
these differences, all these EAs reach much more accurate results (in terms of RSS) than conventionally
used methods based on some form of interpolation.

5 Future Work

In the near future, I would like to implement an EDA using mixture of principal component analysers
(MPCA) and test it on several artificial and practical problems (e.g. on Hough’s transformation used in
image processing, or for hidden Markov models training). The aim of these comparative studies is to find
out if it is worth to use such complex models (e.g. MPCA), in other words, if the time spent on learning
the model each generation is lower than the time the simple EA needs to find a solution of comparable
quality.
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