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ABSTRACT

In a large sensor network, in-network data aggregation, i.e., com-
bining partial results at intermediate nodes during message routing,
significantly reduces the amount of communication and hence the
energy consumed. Recently several researchers have proposed ro-
bust aggregation frameworks, which combine multi-path routing
schemes with duplicate-insensitive algorithms, to accurately com-
pute aggregates (e.g., Sum, Count, Average) in spite of message
losses resulting from node and transmission failures. However,
these aggregation frameworks have been designed without security
in mind. Given the lack of hardware support for tamper-resistance
and the unattended nature of sensor nodes, sensor networks are
highly vulnerable to node compromises. We show that even if a
few compromised nodes contribute false sub-aggregate values, this
results in large errors in the aggregate computed at the root of the
hierarchy. We present modifications to the aggregation algorithms
that guard against such attacks, i.e., we present algorithms for re-
silient hierarchical data aggregation despite the presence of com-
promised nodes in the aggregation hierarchy. We evaluate the per-
formance and costs of our approach via both analysis and simula-
tion. Our results show that our approach is scalable and efficient.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Secu-

rity and protection; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Wireless communication; D.4.6
[Operating Systems]: Security and Protection—Cryptographic con-

trols; K.6.5 [Management of Computing and Information Sys-

tems]: Security and Protection

General Terms

Algorithms, Design, Security
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1. INTRODUCTION
In large sensor networks, computing aggregates in-network, i.e.,

combining partial results at intermediate nodes during message rout-
ing, significantly reduces the amount of communication and hence
the energy consumed [11, 23]. An approach used by several data
acquisition systems for sensor networks is to construct a spanning
tree rooted at the querying node, and then perform in-network ag-
gregation along the tree. Partial results propagate level-by-level up
the tree, with each node awaiting messages from all its children
before sending a new partial result to its parent.

Tree-based aggregation approaches, however, are not resilient to
communication losses resulting from node and transmission fail-
ures, which are relatively common in sensor networks [11, 22,
23]. Because each communication failure loses an entire subtree
of readings, a large fraction of sensor readings are potentially un-
accounted for at the querying node, leading to a significant error
in the query answer. To address this problem, researchers have
proposed the use of multi-path routing techniques for forwarding
sub-aggregates [11]. For aggregates such as Min and Max which
are duplicate-insensitive, this approach provides a fault-tolerant so-
lution. For duplicate-sensitive aggregates such as Count and Sum,
however, multi-path routing leads to double-counting of sensor read-
ings, resulting in an incorrect aggregate being computed.

Recently researchers [3, 12, 14] have presented clever algorithms
to solve the double-counting problem associated with multi-path
approaches. A robust and scalable aggregation framework called
Synopsis Diffusion has been proposed for computing duplicate- sen-
sitive aggregates such as Count and Sum. There are two primary
elements of this approach - the use of a ring-based topology instead
of a tree-based topology for organizing the nodes in the aggrega-
tion hierarchy, and the use of duplicate-insensitive algorithms for
computing aggregates based on Flajolet and Martin’s algorithm for
counting distinct elements in a multi-set [5].

As presented, the Synopsis Diffusion aggregation framework does
not include any provisions for security. Although we can easily pre-
vent unauthorized nodes from launching attacks by augmenting the
aggregation framework with authentication and encryption proto-
cols [15, 24], compromised nodes present an entirely new set of se-
curity challenges. The lack of tamper-resistance and the unattended
nature of many networks renders sensor nodes highly vulnerable to
compromise. Standard authentication mechanisms cannot prevent
a compromised node from launching attacks since all its keys are
also compromised. In this paper, we present novel mechanisms for
making the synopsis diffusion aggregation framework resilient to
attacks launched by compromised nodes.

We present counter-measures against attacks in which a compro-
mised node attempts to change the aggregate value computed at the
root of the hierarchy. In particular, we focus on an attack in which
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a sensor node that is not a leaf node in the aggregation hierarchy
relays a false sub-aggregate value to its parents. We refer to this
attack as the falsified sub-aggregate attack.

We show that if the synopsis diffusion approach is used to com-
pute aggregates such as Count and Sum, an adversary can use the
falsified sub-aggregate attack to cause the answer computed at the
base station in response to a query to differ from the true value by
an arbitrary amount. Moreover, we show that this attack can be
launched with a high rate of success, even if only one or a small
number of nodes are compromised.

We present an approach in which the synopsis diffusion aggre-
gation frameork is augmented with a set of countermeasures that
mitigate the effect of the falsified sub-aggregate attack. In our ap-
proach, a subset of the total number of nodes in the network include
an authentication code (MAC) along with their response to a query.
These MACs are propagated to the base station along with the par-
tial results that are computed at each level in the hierarchy. By ver-
ifying these MACs, the base station can estimate the accuracy of
the final aggregate value it computes, and can filter out the effect of
any false sub-aggregates contributed by compromised nodes. Thus,
our approach can be used in conjunction with synopsis diffusion to
compute basic aggregates such as Count and Sum despite the pres-
ence of compromised nodes in the aggregation hierarchy.

The communication overhead of our approach depends upon the
number of contributing nodes which send a MAC to the base sta-
tion. We evaluate the performance and costs of our approach via
both analysis and simulation. We show that our approach is scal-
able since the number of contributing nodes (and hence the average
communication overhead) do not increase with network size. To
further reduce the communication overhead, we describe a vari-
ation of our basic approach that trades communication costs for
latency.

2. BACKGROUND: SYNOPSIS DIFFUSION

FOR ROBUST AGGREGATION
In this section, we provide a brief overview of the synopsis dif-

fusion approach for robust aggregation [3, 14]. Figure 1 illustrates
how the synopsis diffusion approach uses a rings topology for ag-
gregation.
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Figure 1: Synopsis Diffusion over a rings topology

In the query distribution phase, nodes form a set of rings around
the querying node q based on their distance in hops from q. During
the subsequent query aggregation period, starting in the outermost
ring each node generates a local synopsis s = SG(v) where v is the
sensor reading relevant to the query, and broadcasts it. (SG() is
the synopsis generation function.) A node in ring Ri will receive
broadcasts from all the nodes in its range in ring Ri+1. It will then

combine its own local synopsis with the synopses received from its
children using a synopsis fusion function SF(), and then broadcast
the updated synopsis. Thus, the fused synopses propagate level-
by-level until they reach the querying node, who first combines the
received synopses with its local synopsis using SF() and then uses
the synopsis evaluation function SE() to translate the final synopsis
to the answer to the query.

The functions SG(), SF(), and SE() depend upon the target ag-
gregation function, e.g. Count, Sum, etc. We now describe the
duplicate-insensitive synopsis diffusion algorithms for the Count
aggregate, i.e., the total number of nodes in the sensor network,
and the Sum aggregate, i.e., the sum of the sensor readings of the
nodes in the network. These algorithms are based on Flajolet and
Martin’s well-known probablistic algorithm for counting the num-
ber of distinct elements in a multi-set[5].

2.1 COUNT
In this algorithm, each node generates a local synopsis which is

a bit vector ls of length k > logn, where n is an upper bound on
the nodes in the network. To generate its local synopsis, each node
executes the function CT (X ,k) given below, where X is the node’s
identifier and k is the length of ls in bits. CT () can be interpreted
as a coin-tossing experiment (with a cryptographic hash function
h(), modeled as a random oracle whose output is 0 or 1, simulating
a fair coin-toss), which returns the number of coin tosses until the
first heads occurs or k + 1 if k tosses have occurred with no heads
occurring. In the local synopsis ls of node X , a single bit i is set to
1, where i is the output of CT (X ,k). Thus ls is a bitmap of the form
0i−11 · · · with probability 2−i.

Algorithm 1 CT (X ,k)

i=1;
while i < k +1 AND h(X , i) = 0 do

i = i+1;
end while

return i;

The synopsis fusion function SF() is simply the bitwise Boolean
OR of the synopses being combined. Each node fuses its local
synopsis ls with the synopses it receives from its children by com-
puting the bit-wise OR of all the synopses. Let S denote the final
synopsis computed by the querying node by combining all the syn-
opses received from its children and its local synopsis. We observe
that S will be a bitmap of length k of the form 1r−10 · · · . The query-
ing node can estimate Count from S via the synopsis evaluation
function SE(): if r is the lowest-order bit in S that is 0, the count
of nodes in the network is 2r−1/0.7735. The synopsis evaluation
function SE() is based on Property 2 below. Intuitively, the number
of sensor nodes is proportional to 2r−1 since no node has set the rth
bit while computing CT (X ,k).

We now present a few important properties of the final synopsis S

computed at the querying node that have been derived in [5, 3], and
that we will find useful in the rest of this paper. Let S[i],1 ≤ i ≤ k

denote the ith bit of S, where bits are numbered starting at the left.
Property 1 For i < log2 n− 2log2 log2 n, S[i] = 1 with probability

≈ 1. For i ≥ 3
2 log2 n, S[i] = 0 with probability ≈ 1.

This result implies that for a network of n nodes, we expect that
S has an initial prefix of all ones and a suffix of all zeros, while
only the bits around S[log2 n] exhibit much variation. This provides
an estimate of the number of bits, k, required for a node’s local
synopsis. In practice, k = log2 n + 4 bits are sufficient to represent
S with high probability [5]. This result also indicates that the length
of the prefix of all ones in S can be used to estimate n. Let r =
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min {i|S[i] = 0}, i.e., r is the location of the leftmost zero in S.
Then R = r−1 is a random variable representing the length of the
prefix of all ones in the sketch. The following results hold for R.
Property 2 The expected value of R, E(R) ≈ log2 (φn) where the
constant φ is approximately 0.7735.

This result implies that R can be used for an unbiased estimator
of log2 (φn), and it is the basis for the synopsis evaluation function
SE() which estimates n as 2R/φ.
Property 3 The variance of R, denoted as σ2

Rn
, satisfies

σ2
Rn

= σ2
R∞

+Q(log2 n)+o(1),

where constant σR∞
is approximately 1.1213 and Q(x) is a periodic

function with mean value 0 and period 1.
This property implies that the standard deviation of R is approx-

imately 1.1213, i.e., the estimates of n derived from R will often
be off by a factor of two or more in either direction. To reduce
the standard deviation of R, Flajolet et al [5] proposed an algorithm
named PCSA, where m synopses are computed in parallel and the
new estimator (R̄) is the average of all individual R’s of these syn-
opses. For PCSA, the standard error in the estimate of n, i.e., σn/n,
is equal to 0.78/

√
m [5].

Property 4 In a network of n nodes, the expected number of nodes
that will have the ith bit of their local synopsis ls[i] = 1 is n/2i. This
result implies that the expected number of nodes that contribute a 1
to the ith bit of S and the bits to the right of the ith bit in S (i.e., bits
j, where i ≤ j ≤ k) is n/2i−1.

2.2 SUM
Considine et al. [3] extended the Count algorithm described above

for computing the Sum aggregate. The synopsis generation func-
tion SG() for Sum is a modification of that for Count while the
fusion function SF() and the evaluation function SE() for Sum are
identical to those for Count.

To generate its local synopsis for a sensor reading v, a node X

invokes the function CT () v times1 and ORs the results. As a result,
the local synopsis of a node is a bitmap of length k = log2 us + 4
where us is an upper bound on the value of Sum aggregate. Unlike
the local synopsis of a node for Count, more than one bit in the
local synopsis of a node for Sum will be equal to 1. Count can
be considered as a special case of Sum where each node’s sensor
reading is equal to one unit.

Considine et al. [3] proposed an optimized version of SG() for
Sum to make it suitable for a low-end sensor node, even if the
sensed value v is high. Moreover, they showed that Properties 1-
4 described above for Count also hold for Sum (with appropriate
modifications). Similarly, as in the case of Count, the PCSA algo-
rithm can be used to reduce the standard deviation of the estimate
for Sum.

3. ATTACKS ON SYNOPSIS DIFFUSION
The Synopsis Diffusion aggregation framework does not include

any provisions for security; as a result, it is vulnerable to many at-
tacks that can be launched by unauthorized or compromised nodes.
To prevent unauthorized nodes from eavesdropping on or partici-
pating in communications between legitimate nodes, we can aug-
ment the aggregation framework with any one of several recently
proposed authentication and encryption protocols [15, 24]. How-
ever, compromised nodes pose an entirely new set of security chal-
lenges.

Sensor nodes are often deployed in unattended environments, so
they are vulnerable to physical tampering. Current sensor nodes

1Each sensor reading is assumed to be an integer

lack hardware support for tamper-resistance. Consequently, it is
relatively easy for an adversary to compromise a node without be-
ing detected. The adversary can obtain confidential information
(e.g., cryptographic keys) from the compromised sensor and repro-
gram it with malicious code.

A compromised node can be used to launch multiple attacks
against the sensor application. These attacks include jamming at
physical or link layer, other denial of service attacks like flooding,
route disruption, message dropping, message modification, false
data injection and many others. Standard authentication mecha-
nisms cannot prevent these insider attacks since the adversary knows
all the keying material possessed by the compromised nodes.

In this paper, we focus on defending against an important sub-
class of these insider attacks which can potentially corrupt the final
result of the aggregation query. Below we describe these attacks in
the context of the Count and Sum aggregates.

A compromised node M can corrupt the aggregate value com-
puted at the root (i.e., the sink) of the hierarchical aggregation
framework in three ways. First, M can simply drop aggregation
messages that it is supposed to relay towards the sink. If M is lo-
cated at a relatively high position in the aggregation hierarchy, this
has the effect of omitting a large fraction of the set of sensor read-
ings being aggregated. Second, M can falsify its own sensor read-
ing with the goal of influencing the aggregate value. Third, M can
falsify the sub-aggregate which M is supposed to compute based
on the messages received from M’s child nodes.

The effect of the first attack in which a node intentionally drops
aggregation messages is no different from the effect of transmis-
sion and node failures, which are common in sensor networks [7].
The synopsis diffusion approach employs multi-path routing for ad-
dressing these failures, and thus it also addresses message losses
due to compromised nodes [3, 12, 14]. We refer to the second at-
tack in which a sensor intentionally falsifies its own reading as the

falsified local value attack. This attack is similar to the behavior of
nodes with faulty sensors and can be addressed by well-studied ap-
proaches for fault tolerance such as majority voting and reputation-
based frameworks [10, 6]. The third attack, however, in which a
node falsifies the aggregate value it is relaying to its parents in the
hierarchy is much more difficult to address, and is the main focus
of this paper. We refer to this attack as the falsified sub-aggregate

attack.
The Falsified Sub-Aggregate Attack Since the sink estimates the
aggregate based on the lowest-order bit r that is 0 in the final fused
synopsis, a compromised node would need to falsify its own fused
synopsis such that it would affect the value of r. It can accomplish
this quite easily by simply inserting ones in one or more bits in po-
sitions j, where r ≤ j ≤ k, in its own fused synopsis which it broad-
casts to its parents. Note that the compromised node does not need
to know the true value of r; it can simply set some higher-order bits
to 1 in the hope that this will affect the value of r computed by the
sink. Since the synopsis fusion function is a bitwise Boolean OR,
the resulting synopsis computed at the sink will reflect the contri-
butions of the compromised node.

Let r′ be the lowest-order bit that is 0 in the corrupted synopsis,
whereas r is the lowest-order bit that is 0 in the correct synopsis.
Then the sink’s estimate of the aggregate will be larger than the
correct estimate by a factor of 2r′−r. It is easy to see that, with the
above technique, the compromised node can inject a large amount
of error in the final estimate of the sink.

We also observe that even a single node can launch this attack
with a high rate of success because the use of multi-path routing
in the synopsis diffusion approach makes it highly likely that the
falsified synopsis will be propagated to the base station. If p is the
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packet loss rate and if each node has κ parents in the aggregation

hierarchy then the probability of success for this attack is (1− pκ)h,
where the compromised node is h hops away from the sink. As an
example, if p = 0.2, κ = 3, and h = 5 then the probability that the
attack will succeed is 96%.

On the other hand, it is very hard to launch an attack which re-
sults in the aggregate estimated at the sink being lower than the true
estimate. This is because setting a bit in the falsified synopsis to 0
has no effect if there is another node X that contributes a 1 to the
same position in the fused synopsis. To make this attack a success
the attacker has to compromise all the possible paths from node X

to the sink so that X’s 1 cannot reach the sink, which is hard to
achieve. If there is more than one node which contributes to the
same bit then it is even harder. As an example, in Count algorithm,
half of the nodes are likely to contribute to the leftmost bit of the
synopsis, one-fourth nodes of contribute to the second bit, and so
on. There are bits in the synopsis to which only one or two nodes
contribute but it is very hard to predict in advance which nodes will
be contributing to these particular bits if the sink broadcasts along
the query request a random seed to be used with the hash function
in the synopsis generation phase. Hence, we can safely assume that
this attack is extremely difficult to launch. In the rest of this paper,
we restrict our discussion to the previous attack where the goal of
the attacker is only to increase the estimate.

4. PROBLEM DESCRIPTION &

ASSUMPTIONS

4.1 Problem Description
In a sensor network where some fraction of the nodes are poten-

tially compromised, there are three sources that contribute to the
error in the sink’s estimate of the aggregate being computed: (i)
error due to packet losses, (ii) error due to the approximation algo-
rithm used, e.g., Flajolet and Martin’s probabilistic algorithm [5],
and (iii) error injected by compromised nodes.

The first two types of error are already addressed by the syn-
posis diffusion aggregation framework. Our paper is complemen-
tary to this previous work; our objective is to filter out the third
type of error. In particular, we aim to make the synopsis diffusion
approach resilient to the falsified local value attack and the falsi-

fied sub-aggregate attack, i.e., to enable the sink to get the “true”
estimate of the aggregate being computed despite the presence of
compromised nodes in the aggregation hierarchy. By “true” esti-
mate we mean the estimate of the aggregate which the sink would
compute if there were no compromised nodes.

4.2 Assumptions
We now discuss our assumptions with respect to the sensor net-

work and the adversary.
System Assumptions We assume that the base station is located at
the center of the sensor network, and nodes are deployed around
the base station. However, our approach for attack-resilient ag-
gregation does not depend upon this assumption. We assume that
sensor nodes are similar to the current generation of sensor nodes,
e.g., Mica2 motes [13], in their computational and communication
capabilities and power resources, while the sink is a laptop class
device supplied with long-lasting power.

We assume that the sink has an estimate of the upper bound on
the value of the Count aggregate. If the sink does not have any
further knowledge, the upper bound of Count can be set to the total
number of nodes deployed. We also assume that there exists an
upper bound on the value of a sensor reading. The upper bound of

Sum can be conservatively set to be equal to product of the upper
bound of Count and the upper bound of a sensor reading. Previous
works on the synopsis diffusion approach [3, 14] have made the
same assumptions regarding the upper bounds for Count and Sum;
these bounds provide an estimate of the length of the synopsis.
Security Assumptions We assume that the sink cannot be compro-
mised and it uses a protocol such as µTesla [15]) to authenticate its
broadcast messages. We also assume that each node shares a pair-
wise key with the sink, which is used to authenticate the messages
it sends to the sink.

We assume that the adversary can compromise sensor nodes with-
out being detected. If a node is compromised, all the information it
holds will also be compromised. We use a Byzantine fault model,
where the adversary can inject malicious messages into the network
through the compromised nodes. We conservatively assume that all
compromised nodes can collude, or are under the control of a single
attacker.
Notations The following notations are used in the description of
our attack-resilient aggregation algorithms.

• BS refers to the base station, i.e., the sink. X is the identifier
of a the sensor node whereas M represents a compromised
node.

• KX is the pair-wise key X shares with the sink.

• m1|m2 denotes the concatenation of two message fields m1
and m2.

• MAC(K,m) is the message authentication code (MAC) of the
message m generated using the key K.

• X → Y : m denotes a one-hop delivery of message m from X

to Y , while X → ∗ : m denotes that X broadcasts message m

to all of its one-hop neighbors, and X →→∗ : m denotes that
X broadcasts message m to all nodes in the network.

5. ATTACK­RESILIENT AGGREGATION:

THE BASIC APPROACH
In this section, we present an attack-resilient approach for com-

puting the Count and Sum aggregates. In this approach we assume
that the BS has an estimate of the lower bound and the upper bound
of the aggregates. We will see that this approach is scalable only if
the ratio of the upper bound to the lower bound is small. Despite
this limitation, we discuss this approach in detail because it pro-
vides the background and motivation for our extended approach,
which is discussed in Section 6. We first present the main idea un-
derlying the basic approach and then present the detailed protocol
for securing Count and Sum.

5.1 The Main Idea
In our approach, nodes execute the synopsis diffusion aggrega-

tion algorithm as specified in [3, 14]. However, a subset of the
nodes include along with their synopses a message authentication
code (MAC) that can be used by the sink to verify the validity of
their contribution to the aggregate function.

The key observations behind the design of our approach are that

• In order to derive the correct estimate from the final synopsis
(say S) computed at the sink, we need only to figure out the
correct lowest order bit (say r) in S that is 0.

• The number of nodes contributing a 1 to bit j decreases ex-
ponentially as we move from the lowest order bit ( j = 1) to
higher order bits of the synopsis. For example, in the case
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of Count, on average, half the nodes in the network will con-
tribute 2 to the leftmost bit of the synopsis, one-fourth of the
nodes contribute to the second bit of the synposis, and so on.

Thus, we expect that only a small number of nodes will contribute
to the bits around the expected value of r. Each such node includes
along with its response to an aggregation query a MAC computed
using a pairwise key shared exclusively with sink. We demonstrate
that these MACs enable the sink to filter out the contributions of
the falsified sub-aggregates injected by the compromised nodes to
the final aggregate.

For our scheme to work, two issues need to be addressed. First,
since the the value of r is not known before the execution of the
query, we need to specify a criterion whereby a node can determine
if it needs to include a MAC along with its synopsis. Second, this
criterion should be designed so that the number of such nodes who
include a MAC is minimized.

In our basic approach, we assume that the BS has an estimate
of the lower bound and the upper bound of Count which are de-
noted by lc and uc respectively. Based upon these bounds, the BS
knows that bit r will lie between a and b, which are the bit po-
sitions in the synopsis S corresponding to lc and uc respectively,
i.e., a = ⌈log2 (φlc)⌉ and b = ⌊log2 (φuc)⌋ (by Property 2 in Sec-
tion 2). Thus, there is no need for the BS to verify the bits to the
left of a; only nodes contributing to bits in the range a to b need
to prove to the BS that their contribution to the synopsis S is valid.
We refer to the collection of bits in the range a to b in synopsis S

as the synopsis-edge as shown in Figure 2. It is easy to see that the
length of the synopsis-edge is (⌊log2(

uc

lc
)⌋+ 1) bits. If we denote

the number of nodes contributing to the synopsis-edge by η, then,

by Property 4 in Section 2, η ≤ ( uc

2a + . . .+ uc

2b ) ≈ 1
φ · ( 2uc

lc
−1).

The upper bound for Count (uc) can be set to the total number
of nodes deployed. The lower bound for Count (lc) can be guessed
depending on the the energy reserve of the sensor nodes and rate
of energy expenditure. As an example, if 2000 nodes are deployed
then uc = 2000 and lc = 1000 may be a safe estimate at the time
of the Count query’s execution. For this example, the length of the
synopsis-edge is uc

lc
= 2 and the expected number of nodes con-

tributing to synopsis-edge is less than 3.87.

synopsis−edge

corresponds to

Lower Bound

corresponds to

Upper Bound

Figure 2: Securing Count synopsis. To securely compute

Count synopsis, the base station needs to verify only bits in the

synopsis-edge.

For the ease of presentation, we present the basic approach as-
suming that only one synopsis is computed. We can easily extend
this approach to compute m synopses in parallel as in algorithm
PCSA.

5.2 Securing Count
To compute the Count aggregate securely, we extend the original

Count algorithm discussed in Section 2 as follows. For the sake

2For convenience, henceforth, we say that a node “contributes” to
a position j in the synopsis S if bit j in its local synopsis is 1.

of completeness, we first briefly describe the query dissemination
phase, and then we present the aggregation procedure in detail.

In the query dissemination phase, the BS broadcasts the name
of the aggregation function, a random number (Seed) and the bit
positions of the start and the end of the synopsis-edge, which are
specified by a and b respectively. Each node will use the random
number, Seed, as an input to the hash function in the synopsis gen-
eration procedure. In more concrete terms, a query packet that the
BS broadcasts is as follows:

BS →→∗ : Fagg,Seed,a,b,s, t,h

where Fagg is the name of the aggregation function (i.e. ‘Count’), s

denotes the time when the aggregation phase will start, t represents
the duration of one round i.e. t = T

h , where h is the total number
of hops and T is the duration of the aggregation phase (also called
epoch). Note that, as in the original Count algorithm discussed in
Section 2, the epoch is sub-divided into a series of rounds, one for
each hop, starting from the farthest hop. µTesla [15] can be used
for authenticating the broadcast packet.

In the aggregation phase, each node executes the synopsis gen-
eration function SG() and the synopsis fusion function SF() for
Count as discussed in Section 2. In addition, each node checks
whether it contributes to the synopsis-edge, and if so, it generates a
MAC and forwards the MAC along with its fused synopsis. Specif-
ically, if node X contributes to bit i in the synopsis-edge, it gener-
ates a MAC, M = MAC(KX ,m) over the message m whose format
is [X |i|Seed], where Seed is the random number which was dissem-
inated in the query distribution phase. Each node X forwards to
its parents its fused synopsis along with the set of MACs (M ) it
received from its child nodes and its own MAC if it generated one.
The format of the message a node X forwards to its parents is as
follows:

X →∗ : Sl |M ,

where Sl is the fused synopsis computed by X . If the message does
not fit into one packet, node X breaks it into several packets and
forwards them. In Appendix A, we formally describe the algorithm
(SecureCount) executed by each node in response to an aggregation
query.

After the BS receives the MACs, it checks their validity. In par-
ticular, for each message and MAC pair [m|MAC(KX ,m)] where
m is [X |i|Seed], the BS executes the synopsis generation function
SG() of X and verifies whether node X really contributes to bit i

in the synopsis-edge, and then checks whether the attached MAC
is valid. If any of these tests fail, the corresponding MAC is dis-
carded.

After this verification step, the BS checks whether it has received
at least one valid MAC for each bit in the synopsis-edge. The bits in
the synopsis-edge for which the BS has not received a valid MAC
are reset to 0. The bits at positions to the left of the synopsis-edge
are set to 1. Finally, the BS computes the Count using the synopsis
evaluation function SE().
Security Analysis The security of our approach follows from two
facts:

• The sink can independently verify the output of SG() for a
particular node X . This is because the output of SG() de-
pends only upon the node id X , and the random seed included
in the query message.

• Each bit that is set to 1 in the synopsis edge has an associated
MAC that can be verified by the sink. This MAC is computed
using a pairwise key that is known only to the contributing
node and the sink, thus the MAC cannot be fabricated by an
attacker (as long as it is reasonably long.)
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Although a compromised node can falsely set some bits in its
fused synopsis and forward false MACs corresponding to those
bits, the sink will be able to discard any false MACs. This implies
that the attacker cannot falsely increase the Count. On the other
hand, the attacker may attempt to decrease the Count by dropping
a genuine MAC (or by corrupting a genuine MAC) sent by a con-
tributing node, but the genuine MAC is likely to reach BS via an
alternate path. If BS receives at least one valid MAC for each 1 bit
in the synopsis-edge, then BS obtains the true estimate of Count as
discussed below.

As discussed in Section 2, the synopsis diffusion approach uses
a multi-path routing scheme to reduce the aggregation error due to
packet losses resulting from node and link failures. The effect of
packets being dropped by compromised nodes is simply to increase
the overall packet loss rate, and this can be countered by an appro-
priate choice of κ, the number of parents of a node in the synop-
sis diffusion ring-based aggregation hierarchy. Specifically, if each
node has more than κ parents, the total number of rings in the rings
topology is h, and if the probability of a node being compromised
is p then, on average, a contributing node’s MAC will reach the BS
with probability q, where

q ≥ 1

h
·

h

∑
j=1

(1− pκ)
j

Here we have assumed that the contributing nodes are uniformly
distributed over the rings in the hierarchy. As an example, if p =
0.05, κ = 3, and h = 10 then q is greater than 0.999, i.e., the impact
of the compromised nodes on the communication error is negligi-
ble.

We also note that while deriving q we assumed that there is only
one node which contributes to a particular bit in the synopsis. In
reality, the expected number of nodes contributing to a bit increases
exponentially as we move from the Rth bit, where R is the the
length of the prefix of all ones in the synopsis S, to the lower-order
bits, thereby increasing the probability that at least one MAC cor-
responding to a bit position reaches the sink.
Computation and Communication Overhead Each contributing
node computes one MAC. The expected number of contributing

nodes is η = 1
φ · ( 2uc

lc
− 1), which is independent of network size.

Thus, only a subset of nodes will incur any computational over-
head. With respect to communication overhead, the maximum num-
ber of MACs that any node will need to forward is η. Thus this ap-
proach is scalable, and can be used in large-scale sensor networks
as long as the ratio uc/lc is reasonably small.

5.3 Securing SUM
We can extend the approach used for making the Count aggre-

gate resilient to compromised nodes to the Sum aggregate. To de-
rive the synopsis-edge for Sum we need to assume upper and lower
bounds for the value of a sensor reading in addition to the upper
and lower bounds for the number of sensor nodes.

A node X sends to the BS a MAC, M = MAC(KX ,m), only if it
contributes to the synopsis-edge as in SecureCount. The format of
the message m sent by a node is [X |A|Seed|v], where X is the node
id, Seed is the random seed included in the broadcast query, A rep-
resents the collection of bits in the synopsis to which X contributes,
and v is X’s sensed value.
Security Analysis In the case of the Sum aggregate, the attacker
could falsely set some bits in its synopsis not only by using a false
node id but also using a false sensor reading. Although MACs from
the contributing nodes enable the BS to verify the node Ids, the BS
cannot verify the sensed value of a node. A compromised node can

claim to have a large sensed value close to the upper bound uv to
increase its chance of being able to contribute to the synopsis-edge.

The following theorem (whose proof can be found in Appendix
B) shows that this attack’s impact is limited.
Theorem 1. Let ρ be the number of compromised nodes in a net-
work of n nodes. Let uv and av denote the upper bound and the
average value of the sensor reading respectively. Let S be the final
synopsis computed at the sink and let R be the length of the prefix
of all ones in S. Let s denote the value of the Sum aggregate. If each
compromised node claims that its sensed value is equal to the upper
bound uv, and if (ρ · uv) < s, then the probability Pr[S[R + 1] = 1]
is proportional to the product of the fraction of compromised nodes
in the network, ρ/n.

Note that if the compromised node contributes to the (R + 1)th
bit BS’s estimate of Sum doubles. Thus, the theorem shows that for
a large network, as long the fraction of compromised nodes ρ grows
sub-linearly, the probability of this attack succeeding is small. For
smaller networks, the probability of this attack succeeding depends
upon the ratio ρ/n and on the ratio uv/av. As an example, if n =
1000, ρ = 25, and uv/av = 4, then Pr[S[R+1] = 1] = 0.064.

The impact of the attack is further reduced if we employ the
PCSA algorithm in which m independent synopses are computed
and the final estimator R̄ is calculated by averaging these m esti-
mators. As an example, to add an error of 40% to the final Sum,
the attacker needs to set the R + 1-th bit in at least m

2 synopses. In
the example above where Pr[S[R + 1] = 1] is 0.064, this probabil-
ity is close to zero when m is 20. This example illustrates that this
attack’s impact is limited when ( ρ·uv

n·av
) is small.

On the other hand, when ( ρ·uv

n·av
) is large, we cannot neglect the

possibility that the attacker will succeed in injecting a significant
error to the Sum computed at the sink. To address this scenario, we
can use a scheme in which a node that contributes to the synopsis-
edge needs an endorsement from at least ν neighbors attesting to
the validity of its sensed value. We assume that the sensed values
of one-hop neighbors are correlated so that one node can verify
the reading of its neighbors. We assume that there are fewer than
ν compromised nodes among the one hop neighbors of any node.
Each contributing node X collects at least ν endorsements from its
one-hop neighbors in the form of a MAC computed over the sensor
reading using the pairwise key that the neighbor shares with the
sink. Then X computes an XMAC [1] by XORing the collected
MACs and X’s own MAC, and sends the XMAC to the BS. (Zhu
et al. [25] use an identical scheme to reduce the total size of the
MACs.) We also assume that BS has the knowledge to verify if a
set of nodes are one-hop neighbors, which prevents the collusion
attack. (We refer to this scheme as the XMAC-based scheme.)
Computation and Communication Overhead The number of
contributing nodes η is less than 1

φ · ( 2us

ls
− 1), where us and ls are

the upper bound and lower bound of Sum. As in the case of Count,
η is independent of the network size and thus this approach is scal-
able. With respect to worst case communication overhead, a node
will need to forward at most η MACs.

6. THE EXTENDED APPROACH: TRADING

LATENCY FOR

COMMUNICATION OVERHEAD
When the ratio (τ) of the upper bound of the aggregate to the

lower bound is high, the basic approach described in the previous
section is not scalable because the worst case communication cost
incurred by a node is proportional to τ. In this section, we describe
an approach which has lower communication costs in comparison
to the basic approach at the expense of greater latency.
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6.1 Protocol Overview
Our extended approach is based on the observation that the ex-

pected number of nodes that contribute to bits i, where R < i ≤ k in
the synopsis (k is the length of the synopsis) is very small. In fact,
using Property 2 and Property 4 from Section 2, we can show that
expected number of nodes contributing to the Rth and higher-order
bits of S is less than 2/φ ≈ 2.58.

We use a sliding-window based approach in which the aggre-
gation phase is divided into multiple epochs3. Starting at the right-
most bit k, we proceed from right to left within the synopsis S using
a bit window of w bits. In each epoch, only the nodes that con-
tribute a 1 to the bits in S corresponding to the current position of
the window, send MACs to the sink that can be used to verify their
contribution to S. In other words, in the first epoch, only nodes that
contribute a 1 to bits k to k−w + 1 respond to the query. In epoch
two, nodes that contribute to bits between k −w and k − 2w + 1
respond, and so on.

The algorithm terminates when the querying node has determined
that the remaining bits of S to the left of the current window are
likely to be 1 with high probability. The design of this termination
criterion is the main challenge in using this approach; we discuss
the termination criterion and its analytical underpinnings in detail.

Once the querying node determines that the algorithm can termi-
nate it broadcasts a STOP message to the network to announce the
end of the iterative aggregation procedure.

6.2 Protocol Operation
The operation of the protocol is similar to that of the protocol

used in the basic approach with some minor differences as follows.
The query message broadcast to the network includes the window
size w in addition to the other parameters. As in the original syn-
opsis diffusion algorithm [3, 14], we assume that the time is syn-
chronized among BS and the sensor nodes. Each node computes
the start and end time of the current epoch, based on the window w.

Further, although the MACs generated by nodes are sent to the
BS over the course of multiple epochs, the fused synopsis com-
puted by each node is forwarded to its parent in the first epoch.
Thus, the BS can compute the aggregate at the end of the first epoch
itself, although this aggregate may be erroneous in the presence of
compromised nodes.

6.3 Termination Criterion
The goal of our algorithm is to find r, the lowest-order bit in S

that is 0. Further, recall that S is of the form 1r−10 · · · , where the
bits at positions i > r are highly likely to be 0. Thus, the intuition
behind our termination criterion is simple: as we examine the bits
of S moving from right to left, if we observe two consecutive 1’s,
i.e., if we observe the string “110”, it is highly likely that the 0
is at the rth position. In fact, we can show analytically that the
probability of this event is greater than 90% which follows from
the following theorem.

Theorem 2. Let F denote the event that the string “0sl11” where
sl represents any string of length l, l ≥ 0 appears in a synopsis S.
The probability of the event F is less than 10%. (The proof is given
in the appendix.)

Further, we can take advantage of the fact that most applications
will use the PCSA algorithm to reduce the approximation error in
estimating R = r−1. Recall that in the PCSA algorithm m synopses
are computed in parallel. Let Ri denote the value of R estimated
from the ith synopsis. Then, according to the PCSA algorithm,

3The original synopsis diffusion algorithm [3, 14] takes one epoch
to complete.

the the expected value of the random variable R is estimated by
averaging the individual values of R for each synopsis, i.e., E[R] =
R̄ = ∑i=m

i=1 Ri.
Although there is likely to be some variation among the Ri, we

know from Property 3 in Section 2 that the variation is expected
to correspond to two bit position both to the left and the right of
the true value of R. This suggests that there is a high degree of
correlation between the Ri for different synopses. Thus, in our
window-based approach, we can increase our confidence that we
have found the correct position of R, if we observe the bit pattern
“11” in multiple synopses among the m that are being computed in
parallel. Based on this intuition, our termination criterion consists
of checking whether we have observed the string “11” in at least m′

out of the m synopses.

1 1

1

1 1

1

0

0

1st Synopsis

2nd Synopsis

m−th Synopsis

3rd Synopsis

1st position of

   the window

the aggregation

after this window

process stops

the termination−test

passes in this

   window

11

1 1

1

1 1

0

Figure 3: Each synopsis is divided into several windows of

width w = 2 bits. After the termination criterion is satisfied,

the base station broadcasts a STOP message and the aggrega-

tion phase stops after the next epoch. In each epoch, nodes

which contribute to the corresponding window send a MAC to

the base station. The MACs which correspond to the crossed

bits are never sent.

Our goal in selecting the threshold m′ is to reduce the likelihood
of both a false positive, which means that the algorithm was ter-
minated too early, and a false negative, which means that the al-
gorithm terminated too late, i.e., after the sliding window had al-
ready crossed the true position of R. A false positive results in an
over-estimate of R, whereas a false negative results in additional
communication overhead. We now show that it is possible to find a
suitable value for m′ such that the probability of false positive and
the probability of false negative are both low.

Theorem 3. Let Gi denote the event that both bit i and (i+1) in
a synopsis S are 1. Let λ denote the expected value of the estimator
R̄. Then, Pr[Gλ] = 0.3454, Pr[Gλ+1] = 0.1315, and Pr[Gλ+2] =
0.0412.

Because of space limitations, the proof of this theorem can be
found in the appendix.

If the sliding window in our algorithm is two bits wide, i.e, w = 2,
from the definition of the false positive (FP), we get that the prob-
ability Pr[FP] is the probability that the event Gλ+2 occurs in m′

or more synopses. Similarly, the probability of a false negative,
Pr[FN] is the probability that the event Gλ occurs in fewer than m′

synopses. For m = 20 (which is the typical value used in previous
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work [3, 14], we find that the best value of m′ is 4 in which case
Pr[FP] = 0.0082 and Pr[FN] = 0.0484. The same approach illus-
trated here can be used to derive the appropriate threshold m′ for
other window sizes.

Figure 3 illustrates the operation of our algorithm for w = 2. As-
sume that the termination criterion is satisfied in epoch e. The BS
broadcasts a STOP message which directs all nodes to terminate
the aggregation phase. Note that by the time each node in the net-
work receives the broadcast STOP message, many of the nodes will
have already sent MACs corresponding to their contributions to the
next epoch e + 1 of the algorithm. Thus, the effect of the termina-
tion criterion being satisfied in epoch e message is to terminate the
aggregation after epoch e+1.

We can take advantage of this extra epoch to further increase our
level of confidence in the estimated value of R. Let the bit position
of the sliding window in epoch e correspond to bits α and α + 1.
Instead of estimating R = α +1 because m′ out of m synopses had
both bits α and α+1 equal to 1, we can now estimate R based on the
observed value of Ri for all m synopses. Our simulations show that
estimate of the aggregate computed using our extended approach is
close to the estimate computed using the original synopsis diffusion
[3, 14] algorithm.
Latency The number of epochs taken by our sliding window ap-
proach depends on the ratio (χ) of the upper bound of the aggregate
to the actual value. If the upper bound is u and the actual value is
γ, for a window of width w the number of epochs is equal to

(⌊ log2
φu
m − log2

φγ
m

w
⌋+2) = (⌊ log2 χ

w
⌋+2)

Communication Overhead Theorem 3 implies that it is highly
likely that the sliding window contains the position R̄ when the ter-
mination criterion is satisfied. As discussed above, if the termina-
tion criterion is satisfied in epoch e, the aggregation completes after
epoch e + 1. Thus, by property 2 and property 4 in Section 2, if m

synopses are computed in parallel, the expected number of nodes
which send a MAC varies in the range of (2.58×m) to (5.16×m).
Even if a sensor node contributes to more than one bits, it sends
just one MAC validating all the bits. Note that the number of con-
tributing nodes does not exceed this range even if the network size
is increased. Our simulation results show that 85 MACs are sent on
average when m = 20.

We observe that the width of the window w determines a tradeoff
between the communication overhead and the latency. If we divide
the synopses into wider windows, the number of MACs sent and
hence the communication overhead will increase while the latency
of the aggregation process will decrease, and vice versa.

6.4 Discussion
An alternative approach to the sliding window-based approach

described above is one in which the base station computes the ag-
gregate of interest in the first epoch using the original Synopsis
Diffusion algorithm. It then broadcasts a message requesting only
the nodes that contribute to the bit window that contains R to send
the MACs authenticating their local synopses. If the BS success-
fully verifies all the MACs it receives, then the protocol terminates
at the end of the second epoch. However, if it does not receive the
requested MACs or if one or more MACs are invalid, the BS exe-
cutes the sliding-window protocol described above to compute the
correct value of R. If the probability of compromised nodes be-
ing present in the network is low, then this alternative approach is
preferable to the extended approach since it will have much lower
latency on average.

7. SIMULATION RESULTS
In this section, we report on a detailed simulation study that ex-

amined the performance of our attack-resilient aggregation algo-
rithms discussed in Sections 5 and 6. Our simulations were writ-
ten using the TAG simulator developed by Madden et al. [11]. We
added the attack-resilient functionality to the source code provided
by Considine et al. [3] which simulates their multipath aggregation
algorithms in the TAG simulator environment.

7.1 Simulation Environment
For our basic experimental network topology, we used a regular

30× 30 grid with 900 sensor nodes, where one sensor is placed at
each grid point and the base station is at the center of the grid, as in
[3]. The communication radius of each node is

√
2 unit allowing

the nearest eight grid neighbors to be reached.
The goal of our simulation experiments is to examine the com-

munication overhead and accuracy of our scheme in the presence
of packet losses, which are relatively frequent in sensor networks.
We use a simple packet loss model in which packets are dropped
with a fixed probability; this packet loss rate is assumed to include
packets that are lost due to being dropped by compromised nodes.

We do not model any additional attacks by compromised nodes,
specifically the falsified subaggregate and the falsified local value
attacks, in our simulation. This is because we have already shown
that these attacks cannot affect the estimate of the aggregate com-
puted at the sink. Consequently, these attacks simply have the effect
of increasing the communication and computation overhead; in ef-
fect, they become a form of DOS or resource consumption attacks.

We assign a unique id to each sensor, and we assume that the sen-
sor reading is a random integer uniformly distributed in the range
of 0 to 250 units. We compute 20 synopses in parallel using the
PCSA algorithm as in the experiments reported in [3, 14]. We use
the method of independent replications as our simulation method-
ology. Each simulation experiment was repeated 200 times with a
different seed. The plots below show the 95% confidence intervals
of the reported metric.

7.2 Results and Discussion
Due to space constraints, we will only present the results of our

extended approach for computing the Sum aggregate.
Accuracy of our estimate In the first set of experiments, we val-
idate our claim that our attack-resilient approach has the same ac-
curacy in computing the true value of the aggregate as the original
synopsis diffusion approach. Figure 4a plots the estimates of our
approach and the synopsis diffusion approach as a function of the
packet loss rate. We observe that the two estimates are indeed very
close in all loss rate conditions. We observe that the average value
of the sensor reading is approximately 125, i.e., the accurate Sum
is 900×125 = 11250.
Communication overhead We now compare the communication
overhead of our approach to that of the original synopsis diffusion
approach. Figure 4(b) plots the total number of bytes transmitted
for computing the Sum aggregate. As discussed in Section 5.3,
for preventing a node from using a false reading to generate its
own local synopsis, we can adopt two approaches. In the first ap-
proach, we ignore the impact of the falsified local value attack; in
the figure, this approach is labeled as ARSD (attack-resilient syn-
opsis diffusion). The second approach requires the contributing
node to include a XMAC, which corresponds to an endorsement
from its neighbors, in the message; in the figure, this approach is
labeled ARSD+XMAC.

For ARSD+XMAC, each contributing node sends an authentica-
tion message which has two parts: the first part contains the ID (2
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Figure 4: Experimental Results

bytes) of the contributing node and its sensed value (3 bytes), and
the second part includes the IDs of the k neighbors and a XMAC
(4 bytes). If the value of k is not more than 4 then a node needs
8 bytes to specify the identity of the neighbors whose MACs are
used to generate the XMAC. Thus, the size of one authentication
message is 17 bytes. For ARSD, the contributing node just needs
to send its own MAC; no neighbor endorsement is needed, which
reduces the authentication message size to 9 bytes.

Figure 4(b) shows that the byte overhead of the ARSD+XMAC
scheme is roughly 5 times larger than the original approach, whereas
ARSD is 2.5 times larger than the original approach. One might ex-
pect that if loss rate is high our extended approach may take more
time to stop because some MACs could be lost en-route, and, as a
result, the communication overhead could increase. But Figure 4(b)
demonstrates that the overhead of the extended approach does not
increase with the loss rate.
Latency As discussed in Section 6, the latency of the extended
approach depends on the looseness of the base station’s estimate of
the upper bound of Sum. Figure 4(c) plots the number of epochs
taken by our extended approach as a function of the ratio of the
upper bound to the actual value of the aggregate. The figure shows
that the number of epochs increases at logarithmic scale with the
ratio of the upper bound to the actual Sum. We note, however, that
the byte overhead of our scheme is independent of this ratio.
Effect of network size In this experiment, we study the impact of
the network size on the communication overhead of the extended
approach. The communication overhead depends upon the number
of contributing nodes that send a MAC to the base station, authen-
ticating their synopsis. Recall from Section 6 that the expected
number of contributing nodes is independent of the network size.
Figure 4(d) confirms our analysis; we observe that the number of
contributing nodes is more or less constant as the network size in-

creases4. This figure thus illustrates the scalability of our approach
for attack-resilient aggregation.

8. RELATED WORK
Several data aggregation protocols [11, 19, 23] have been pro-

posed in the literature which efficiently fuse the sensed information
en-route to the base station to reduce the communication overhead.
Since packet losses and node failures are relatively common in sen-
sor networks, several studies have investigated the design of robust
aggregation algorithms. Considine et al. [3] and Nath et al. [14,
12] have presented robust aggregation approaches that combine the
use of multi-path routing with clever algorithms that avoid double-
counting of sensor readings. Jelasity et al. [9] proposed a robust
gossip-based protocol for computing aggregates over network com-
ponents in a fully decentralized fashion. They assume that nodes
form an overlay network where any pair of nodes are considered to
be neighbors, which makes this protocol impractical for sensor net-
works. We note that none of the above algorithms were designed
with security in mind.

Recently several researchers have examined security issues in
aggregation. Wagner [17] examined the problem of resilient data
aggregation in presence of malicious nodes, and provided guide-
lines for selecting aggregation functions in a sensor network. Buttyan
et al. [2] proposed a model of resilient aggregation and analyzed
the maximum deviation from the true value of the aggregate that an
adversary could introduce while remaining undetected. The mod-
els used by by both Buttyan et al and Wagner assume that there is
no in-network aggregation, that is, the aggregation is performed at
the sink. Przydatek et al [16] present protocols that can be used by
a trusted remote user to query a sensor network in which the base

4The link loss rate is held at 20% in this set of experiments.
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station may be compromised and the base station is the only aggre-
gator. One of the protocols described by Przydatek et al is a robust
approach for counting distinct elements in a data stream that can
be used for estimating the size of the network, i.e., the Count ag-
gregate. Their approach for counting distinct elements is similar to
our scheme for Count in the sense that in both cases only a subset
of elements need to be verified.

The first secure in-network data aggregation protocol was de-
signed by Hu and Evans [8]. Their protocol is effective only if no
more than one node is compromised. Recently, Yang et al. [18] pro-
posed SDAP, a secure hop-by-hop data aggregation protocol which
can tolerate more than one compromised node. SDAP is a tree-
based aggregation protocol with communication cost comparable
with that of the ordinary aggregation protocols while it provides
certain level of assurance on the trustworthiness of the aggregation
result. As SDAP is a tree-based protocol, it is vulnerable to link
loss and node failures which are relatively common in sensor net-
works, whereas our protocol is robust to this communication loss
and, at the same time, secure against compromised nodes.

We note that our work is related to the general problem of pre-
venting false data injection. Du et al. [4] proposed a mechanism
that allows the base station to check the aggregated values submit-
ted by several designated aggregators, based on the endorsements
provided by a certain number of witness nodes around the aggrega-
tors. Their scheme does not provide per-hop aggregation. Several
other works [20, 21, 25] have also proposed solutions to prevent
false data injection attacks in sensor networks, but they do not in-
volve data aggregation.

9. CONCLUSION
In this paper, we investigated the security issues of synopsis dif-

fusion framework in presence of compromised nodes. We showed
that a compromised node can launch several simple attacks on the
existing aggregation algorithms, which could significantly deviate
the estimate of the aggregate. We also proposed modifications to
the aggregation algorithms that guard against these attacks. Our
analytical results and simulation results show that our approach is
effective and it incurs minimal computation and communication
overhead.

In this paper, we assume that a sensor node has a security associ-
ation only with the base station, and, as a result, the authentication
messages cannot be processed in-network in our approach. To fur-
ther reduce the communication overhead, we plan to exploit other
security settings, e.g., local pairwise keys among nodes, as a part
of our future work.
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Appendix

A.

Below we describe the algorithm (SecureCount) executed by each
node in response to a Count query. X represents the node Id.

Algorithm 2 SecureCount(X ,Seed,a,b)

1: M = {}; // M is initialized as an empty set
2: i = SG(X ,Seed); // X contributes to bit i

3: if (a ≤ i ≤ b) then

4: m = [X |i|Seed];
5: M = MAC(KX ,m);
6: M =M ∪M;
7: end if

8: Sl = SF(); // Sl is the fused synopsis at X

9: M =M ∪C ; // C represents the set of MACs X received from
// its child nodes

10: X →∗ : Sl |M ;

B. Proofs of Theorems

We provide the proofs for the theorems present in the paper.
Theorem 1. Let there be n nodes in the sensor network among

which ρ nodes are compromised. Let uv and av denote the upper
bound and the average value of the sensor reading respectively. Let
S be the final synposis computed at the sink and let R be the length
of the prefix of all ones in S. Let s denote the value of the Sum
aggregate. If each compromised node claims that its sensed value is
equal to the upper bound uv, and if (ρ ·uv) < s, then the probability
Pr[S[R + 1] = 1] is proportional to the product of the fraction of
compromised nodes in the network, ρ/n, and the ratio uv/av.

PROOF. By property 2 in Section 2, the expected value of the
estimator R, for the Sum synopsis S, is log2 (φs), where s denotes
the Sum. As a node X with sensed value v invokes the function
CT() v times (in the synopsis generation phase), the probability that
X does not contribute to bit i in S is (1− 1

2i )
uv . So, the probability

(p) that a node with sensed value uv will contribute to the (R+1)th
bit is (1− (1− 1

2R+1 )uv ). After simplifying, we get

p = 1− (1− 1

2φs
)uv ≈ 1− (1− uv

2φs
) =

uv

2φs

The above approximation is valid as uv is smaller than s. If there
are ρ compromised nodes, then Pr (S[R+1] = 1) is

q = 1− (1− p)ρ ≈ ρ · p =
ρuv

2φs
= (

1

2φ
) · (ρ

n
) · (uv

av
)

To prove Theorem 2, we first prove the following results.
Lemma 1. Let Ei, 1 ≤ i ≤ k − 2 denote the event that the string
“011” appears in a synopsis S from bit i to bit (i+2) (i.e., S[i] = 0,
S[i + 1] = 1, and S[i + 2] = 1), where k is the length of S. The
maximum value of the probability (pi) of the event Ei is 0.037 for
any value of i and for any value of Count (or Sum) shared by S.

PROOF. If function CT () is invoked once (ref. Section 2), then
Pr[S[ j] = 1] = q j = 1

2 j ,1 ≤ j ≤ k. This probability increases if it is

given that bit j′, 1 ≤ j′ ≤ k will remain 0. Specifically,

Pr[S[ j] = 1|S[ j′] = 0] =
q j

1−q j′
=

1

(2 j) · (1− 1
2 j′ )

.

If ψ is the total Count (or Sum) shared by synopsis S, then Pr[S[i] =
0] = (1−qi)

ψ, and

Pr[S[i+1] = 1,S[i+2] = 1]
= 1−Pr[S[i+1] = 0]−Pr[S[i+2] = 0]
+Pr[S[i+1] = 0,S[i+2] = 0] (1)

= 1− (1−qi+1)
ψ − (1−qi+2)

ψ

+(1−qi+1 −qi+2)
ψ

= 1− (1− 1
2i+1 )

ψ − (1− 1
2i+2 )

ψ

+(1− 1
2i+1 − 1

2i+2 )
ψ

So, the probability of the event Ei is

pi = Pr[S[i] = 0]×
Pr[S[i+1] = 1,S[i+2] = 1 | S[i] = 0]

= (1− 1
2i )

ψ×
[1− (1− 1

(2i+1)·(1− 1

2i )
)
ψ − (1− 1

(2i+2)·(1− 1

2i )
)
ψ

+(1− 1
(2i+1)·(1− 1

2i )
− 1

(2i+2)·(1− 1

2i )
)
ψ
] (2)

Note that if i << log2(ψ), the 1st factor is close to 0 and second
factor is close to 1, making pi close to 0. On the other hand, if
i >> log2(ψ), the 1st factor is close to 1, but the 2nd factor are
close to 0, again making pi close to 0. pi attains the highest value
when i is close to log2(ψ). We have numerically found that the
maximum value of pi is 0.037, for any value of i or ψ.

Lemma 2. Let E denote the event that the string “011” appears in
a synopsis S at any position. The probability of the event E is less
than 0.099.

PROOF. Ei denotes the event that “011” appears in a synopsis
S where 0 is at the ith bit. We observe that the events Ei, Ei+1,
Ei+2 are mutually exclusive, for any value of i. Following the
same direction of Lemma 1, we can show that the probability that
“ 011sl011” appears in synopsis S is close to zero, where sl rep-
resents any string of length l, l ≥ 0. So, the probability that two
events Ei and E j where j ≥ (i+3) can occur together is negligible,
for any value of i. As a result, we can approximate that events Eis
are mutually exclusive and hence the probability of event E is

p =
k

∑
i=1

pi,

where pi is given by expression (2) and k is the length of S. We
have numerically found that maximum value of p is 0.099.

Lemma 3. Let Fi denote the event that a string “0si11” appears
in a synopsis S, and let F denote the general event that a string
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“0sl11”, l ≥ 0 appears in S, where sl represents any string of length
l. Pr[F] = Pr[F0]

PROOF. As the string “011” is a special case of string “0sl11”
where l = 0, Pr[F] ≥ Pr[F0]. On the other hand, if string s′ =
“0sl11”, l ≥ 0 appears in S, string “011” must also appear as a
substring of s′. As an example, if s′ = “01011” where sl = “10”,
we can see “011” as a substring of s′. Hence, Pr[F] ≤ Pr[F0]. So,
we get that Pr[F] = Pr[F0].

Theorem 2.Let F denote the event that the string “0sl11” where
sl represents any string of length l, l ≥ 0 appears in a synopsis S.
The probability of the event F is less than 10%.

PROOF. As the event F0 in Lemma 3 is same as the event E

in Lemma 2, we get that the probability of event F is less than
10%.

Theorem 3. Let Gi denote the event that both bit i and (i+1) in
a synopsis S are 1. Let λ denote the expected value of the estimator
R̄. Then, Pr[Gλ] = 0.3454, Pr[Gλ+1] = 0.1315, and Pr[Gλ+2] =
0.0412.

PROOF. The expected value of R̄ is log2 (φ · γ
m ), which we de-

note by λ, where γ is the total Count (or Sum) shared by m synopses
following the algorithm PCSA. If function CT () is invoked once
(ref. Section 2),

Pr[S[i] = 1] = qi =
1

m
· 1

2i
, 1 ≤ i ≤ k

because synopsis S is selected with probability 1
m among m syn-

opses. As γ is the total Count (or Sum) shared by all synopses, we
get by using similar expression as (1) in Lemma 1 that

Pr[Gi] = 1− (1− 1
m·2i )

γ − (1− 1
m·2i+1 )

γ

+(1− 1
m·2i − 1

m·2i+1 )
γ

So,

Pr[Gλ] = 1− (1− 1
m·φ· γ

m

)
γ − (1− 1

m·φ·2· γ
m

)
γ

+(1− 1
m·φ· γ

m

− 1
m·φ·2· γ

m

)
γ

≈ 1− e
− 1

φ − e
− 1

2·φ + e
− 3

2·φ = 0.3454

Similarly, we find Pr[Gλ+1] = 0.1315, and Pr[Gλ+2] = 0.0412.

82


