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ABSTRACT

We consider the problem of imaging a Rayleigh scat-

tering medium using an array of sensors. We study

the effect of noise on the estimation of Rayleigh scat-

terer reflection powers by setting up a sequential de-

sign of experiments. We derive an expression for the

mean squared error for estimating the scatterer reflec-

tion powers. We keep the transmitted spatial wave-

forms fixed and find the optimal energy allocation strat-

egy that minimizes this error under a fixed energy con-

straint. We show that this sequential design approach

performs better than a single step experiment. Closed-

form expressions for the optimal transmission scheme

and the minimum mean squared error are provided.

1. INTRODUCTION

In this paper, we address the problem of imaging a

medium of multiple scatterers using an array of sensors

by optimally designing a sequence of measurements.

The probing method uses an array of transducers, e.g.,

antennas that both illuminate and measure the backscat-

tered signal field. The method consists of the follow-

ing four signal processing steps at the transducer ar-

ray: (i) transmission of time varying signals into the

medium; (ii) recording of the backscattered field from

the medium; (iii) retransmission into the medium of

a spatially filtered version of the recorded backscatter

signals; (iv) measurement and spatial filtering of the

backscattered signals.

Over the past decade, the problem of imaging has

been widely studied in areas such as non-destructive

testing [1], land mine detection, active audio, under-

water acoustics [2] and ultrasonic medical imaging [3].

One recent approach to imaging which follows such a

four step method uses the concept of time reversal [4,5].

Time reversal works by exploiting the reciprocity of the

channel, i.e., a receiver can reflect back a time reversed

signal, thereby focusing the signal at the transmitter

source [6]. Furthermore, with suitable prefiltering and
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aperture, the signal energy can also be focused at an

arbitrary spatial location [7].

Iterative time reversal techniques [8] have also been

used to achieve selective focusing. In [9], the concept

of adaptive beamforming [10] and interference cancel-

lation is used to focus energy at a specified location.

Though time reversal imaging methods have been stud-

ied in detail for both deterministic and random scatter-

ing environments, the performance of these methods in

the presence of receiver noise has not been thoroughly

studied.

Design of experiments is another area which has

found wide range of applications in statistical deci-

sion making [11, 12]. Sequential design [13–15] uses

the knowledge of the past measurements to improve

upon the performance of an estimator. Applied to

the problem of imaging a scattered medium, a care-

fully designed sequence of measurements sounding the

channel could alter the statistics of the next measure-

ment to yield an overall reduction in mean squared er-

ror (MSE).

In [16], experimental design was performed for imag-

ing a scattering medium with a simple additive Gaus-

sian measurement noise. In this paper, we consider

the general problem of imaging a Rayleigh scattering

medium and systematically study the effect of receiver

noise on the imaging performance. We evaluate the

imaging performance through the MSE of the least

squared (LS) estimates of the scatterer reflection pow-

ers. In the single scatterer case, we obtain a closed-form

expression for the MSE under the optimal transmission

strategy. We assume that the spatial properties of the

transmitted signals are fixed and find the optimal en-

ergy allocation scheme between the two transmissions

involved in steps (i) and (iii) under the constraint that

the total transmitted energy is fixed. We then show

that we achieve a better performance than a single step

strategy using this two-step design. We then extend the

results to the case of constrained optimization.

In Section 2, we present the concept of imaging a

medium using an iterative process of array measure-

ments. In Section 3, we formulate the MSE criterion
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Fig. 1. Measurement setup

for LS estimation of the scatterer reflection powers. We

offer an optimal two-step design that minimizes the

MSE and show that this strategy outperforms the con-

ventional beamformer. Furthermore, we provide sim-

ulation results to verify the optimal solution obtained

analytically. We conclude this paper in Section 4.

2. MODEL AND MATHEMATICAL

DESCRIPTION

The block diagram in Fig. 1 provides a high level de-

scription of the system. The signal flow in the block

diagram is read clockwise from the upper left corner of

the diagram. The three blocks surrounded by the box

on the upper left of the diagram incorporate voxel selec-

tion (beam scheduling), spatio-temporal waveform se-

lection and beamsteering followed by transmission into

the medium, denoted as a dispersive spatio-temporal

channel function Hch. The block on the right of the di-

agram processes the received backscattered signal and

reinserts it into the medium Hch.

We have W transducers located at positions {ra

k
}W

k=1,

that transmit narrowband signals with center frequency

ω rad/sec. The channel denoted by hi, between any

candidate voxel i at location r
v

i
and the W transducers

is given by,

hi =

[(
exp(−jω/c‖ra

k
− r

v

i
‖)

‖ra

k
− r

v

i
‖

)

k=1...W

]
T

. (1)

This channel model is a narrowband near-field approx-

imation, which ignores the effect of multiple scatter-

ing and has been widely adopted in other scattering

studies [17]. In our problem, we assume that the imag-

ing area is divided into M voxels at locations {rv

i
}M

i=1.

Then the channel between the transmitted field and the

measured backscattered field at the transducer array is

Hch = HDH
T

H = [h1, · · · ,hM ]

D = diag(d); d = [d1, . . . , dM ]
T ,

where each voxel location is characterized by its scat-

ter coefficient {di}
M

i=1. Under the Rayleigh scattering

model, these scatter coefficients are circularly symmet-

ric complex normal random variables with E [di] =

0, E
[
|di|

2
]

= rd(i), E [didi1
] = 0, E

[
di (di1

)
∗
]

=

0; i1 6= i. This implies that each element of the channel

matrix Hch is a complex normal random variable and

hence Rayleigh in magnitude. Note that matrix H is

W × M , D is M × M , and Hch is W × W .

.
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Fig. 2. Scattering medium

The two-step probing mechanism for estimating the

power distribution of the scatter coefficients d involves

four signal processing steps and generates the following

sequence of noise contaminated signals.

Step 1(a): The transducer array transmits a complex

amplitude vector, x1.

Step 1(b): The transducer array receives the backscat-

tered signal Hchx1 plus noise n1,

y1 = Hch x1 + n1. (2)

Step 2(a): The transducer array transmits x2 = x2(y1)

which, in general, is a function of y1 allowing the sys-

tem to exploit information about Hch in the signal y1.

Step 2(b): The transducer array receives the second

backscattered signal,

y2 = Hch x2 + n2. (3)

The noises n1,n2 are i.i.d complex normal random vec-

tors with zero mean and covariance matrix σ2
I. For a

Rayleigh scattering medium, y1 is complex normal with

a mean of E [y1] = 0 and a covariance matrix given by

Ry1
= E

[
y1y

H

1

]

=

V∑

l=1

γlRl(x1) + σ2
I, (4)
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where

Rl(x1) =

∫
r
r̂l(r)hl(r)hl(r)

H |hT

l
(r)x1|

2dr
∫
r
r̂l(r)dr

γl =

∫

r

r̂l(r)dr, l = 1, . . . , V, (5)

and r̂l(r) are the autocorrelation coefficients of the scat-

terer distribution. Our goal is to estimate γ = [γ1, . . . ,
γV ]

T
, the non-negative, Rayleigh scattering reflection

powers that are determined through the statistics of

the scatter coefficients {di}. Figure 2 shows the trans-

ducer array and the scattering medium. The imaging

area is divided into V cells and {γi}
V

i=1 denotes the

average scatterer reflection power in the cells.

Step 2 (i.e., 2(a) and 2(b)) can be repeated to gen-

erate a sequential n-step procedure where the n trans-

mitted signals would be xj = xj(y1,y2, . . . ,yj−1), j =

1, 2, . . . , n. For the n-step procedure, the sequence of

received signals are distributed as

yj |xj ∼ CN (0,Ryj
), j = 1, 2, . . . , n,

Ryj
=

V∑

i=1

γiRi

(
xj({yk}

j−1
k=1)

)
+ σ2

I. (6)

Given the observations y1, . . . ,yj−1 at any step j, the

objective is to design the next transmitted signal

xj(y1, . . . ,yj−1) in order to improve the estimator per-

formance.

3. MEAN SQUARED ERROR

CALCULATION

We divide the analysis of the MSE into two parts: The

one-stage estimator and two-stage estimator. In the

general setup, our goal is to design a sequence of exper-

iments to improve upon the performance of a one-step

estimator under the constraint that the total transmit-

ted energy, E0 is fixed.

3.1. One-step estimator

Given N sample observations of y1 (W × 1), an esti-

mator γ̂1({y1k
}N

k=1) can be obtained by least squares

fitting of γ1, . . . , γV to the set of W 2
equations,

R̂y1
=

1

N

N∑

k=1

y1k
y1

H

k
=

V∑

i=1

γiRi(x1) + σ2
I (7)

Equation (7) can be rewritten as

Mγ̂1 = vec

(
R̂y1

− σ2
I

)
,

where M = [vec (R1(x1)) , . . . ,vec (RV (x1))] and vec(X)

returns a vector obtained by stacking the columns of

the matrix X. Given (7), the LS estimate of γ is given

by,

γ̂1 =
(
M

H

M
)−1

M
H

vec

(
R̂y1

− σ2
I

)
. (8)

The MSE for the one-step estimator can be written as

MSE1 = E

[
(γ̂1 − γ) (γ̂1 − γ)

H

]

=
1

N

(
M

H

M
)
−1

Π
(
M

H

M
)
−1

, (9)

where

Π = N M
H

E

[
vec(R̂y1

− Ry1
)vec(R̂y1

− Ry1
)
H

]
M.

Using the fourth-order moment property for complex

Gaussian vectors,

Πi,j = tr [Ri(x1)Ry1
Rj(x1)Ry1

] . (10)

Furthermore,

(
M

H

M
)
i,j

= vec (Ri(x1))
H

vec (Rj(x1))

= tr [Ri(x1)Rj(x1)] . (11)

For a single unknown scatterer reflector power (γ), the

LS one-step estimator from (8) and the corresponding

MSE1 from (9) become

γ̂1(y1) =

tr

(
R1(x1)(R̂y1

− σ2
I)

)

tr (R2
1(x1))

,

MSE1(x1) =
1

N

(
γ2

tr
(
R

4
1(x1)

)

tr
2
(R2

1(x1))
+

σ4

tr (R2
1(x1))

+
2σ2γtr

(
R

3
1(x1)

)

tr
2
(R2

1(x1))

)

. (12)

Note that though the received signals are corrupted by

complex normal noise, the estimate γ̂1 is real as both

matrices R1(x1) and Ry1
are Hermitian symmetric.

3.2. Two-step sequential design

For a two-step sequential design, we search for a wave-

form x2(y1) which yields a lower MSE than that achiev-

able using x1 under the constraint that E [E1 + E2] ≤
E0 where E1 and E2 are the average energies used in

the first and second transmissions respectively. We as-

sume here that the spatial properties of x1 and x2 are

fixed, and go after the energy allocation between the

two steps that minimizes the MSE. The transmitted

signal at the second step x2(y1) can be written as

x2(y1) =

√
E2(y1)

x1

‖x1‖
=

√
E2(y1)x̃1, (13)
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where E2 = E
[
‖x2(y1)‖

2
]

= E [E2(y1)], E1 = ‖x1‖
2

and x̃1 is the normalized version of x1. We first look

at the two-step design for a single scatterer case. Let

γ̂1(y1) and γ̂1(y2) be the LS estimates of γ obtained

from the two steps by transmitting signals x1 and x2(y1)

respectively. The overall two-step estimate of γ is

γ̂2 =
w1γ̂1(y1) + w2γ̂1(y2)

w1 + w2
, (14)

where the weights w1 and w2 are chosen to minimize

the MSE. The MSE of the two-step estimate is

MSE2 = E

[
(γ̂2 − γ)

2
]

= Ey1

[
Ey2|y1

[
(γ̂2 − γ)

2
]]

= Ey1
[MSE2|y1] , (15)

where

MSE2|y1 =
w2

1(γ̂1(y1) − γ)
2
+ w2

2(MSE1(x2(y1)))

(w1 + w2)
2

.

Minimizing MSE2|y1 with respect to w1 and w2, we

get w1 (γ̂1(y1) − γ)
2

= w2MSE1(x2(y1)). Substituting

for the optimal weights in equation (15), the two-stage

MSE is

MSE2 = Ey1



 1
(

1
(γ̂1−γ)2 +

1
MSE1(x2(y1))

)



 .(16)

In [16], the design and the improvement in MSE using

a sequential procedure for an additive gaussian channel

model was studied and the optimal solution was found

to be a thresholding strategy. A thresholding solution

to energy at the second stage can be written as,

E2(y1) = A I

([
γ̂1(y1) − γ
√

MSE1(x1)

]2
> ρ

)

, (17)

where I(·) is the indicator function and A is chosen

to satisfy the energy constraint. This solution implies

that if the particular realization of γ̂1 was closer than

average to the true value, then it is fairly accurate and

thus there is no need to retransmit energy.

We first look at the solution to this problem at low

SNR (SNR =
E0

σ
2 ). At low SNR, the MSE for the two

stages can be approximated as

MSE1(x1) ≈
H

NE2
1

, (18)

MSE1(x2(y1)) ≈
H

NE2
2(y1)

, (19)

where

H =
σ4

tr (R2
1(x̃1))

.

When N is large, the averaging associated with first es-

timate of γ drives the standardized MSE

(
γ̂1(y1)−γ√
MSE1(x1)

)

to asymptotically zero mean unit variance normal ran-

dom variable, n1. Substituting for n1 and MSE1(x1),

MSE1(x2(y1)) from equations (18), (19) into equation

(16), the MSE for the two-step design is

MSE2 =
H

N
En1

[
n

2
1I(n

2
1 > ρ)

E2
1 + n2

1E
2
2(y1)

]

=
H

N
En1

[
n

2
1I(n

2
1 > ρ)

E2
1 + n2

1A
2

+
n

2
1I(n

2
1 ≤ ρ)

E2
1

]

(20)

So our goal now is to minimize this two-step MSE for

the optimal energy allocation between the two steps

subject to the energy constraint which can be written

as

Ey1
[E1 + E2(x2(y1))] ≤ E0 (21)

Substituting the suboptimal energy solution from equa-

tion (17) into (21), we obtain

E1 + A E
[
I(|n1|

2 > ρ)
]

≤ E0

A ≤ E0
(1 − α)

2Q(
√

ρ)
, (22)

where α =
E1

E0

is the fraction of energy allocated to the

first step. Putting back the constraint into the MSE2

expression in equation (20) we get

MSE2 =
H

NE2
0

En1






n
2
1I(n

2
1 > ρ)

α2 +

(
n1(1−α)
2Q(

√

ρ)

)2 +
n

2
1I(n

2
1 ≤ ρ)

α2






=
H

NE2
0

(

2

∫
∞

√

ρ

n
2
1

α2 + n2
1

(
(1−α)

2Q(
√

ρ)

)2 f(n1)dn1

+
1

α2

[

−

√
2ρ

π
e

ρ

2 + 1 − 2Q(
√

ρ)

])

, (23)

where the integral is evaluated numerically. Minimizing

MSE2 in the above expression, the optimal solution to

ρ and α and the corresponding MSE at low SNR is

found to be

ρopt ≈ 0.8885, αopt =
E1opt

E0
≈ 0.66, (24)

MSE2(γ) ≈ 0.6821
H

NE2
0

= 0.6821 MSE1(γ)(25)

corresponding to a reduction in MSE by 68%. In [16],

we fixed E2 to be a constant for every y1 received rather

than constraining the average energy used over all pos-

sible y1 and obtained a reduction in MSE of 92%. Fig-

ures 3 and 4 show the analytical (solid line) and sim-

ulation (dashed line) plots of the gain =
MSE2

MSE1

as a
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function of ρ for αopt and as a function of α for ρopt

at SNR = −10dB. Since
MSE2

MSE1

< 1, we obtain a reduc-

tion in MSE using our sequential design approach. The

plot of gain in MSE vs. SNR corresponding to αopt and

ρopt at low SNR is shown in Fig. 5 through simulation

(dashed line) and analytically (solid line).

Our design procedure is more critical at a lower

SNR for the following reason. It is important to note

that the solution to x2(y1) and the weights depend

on the value of γ which is unknown. However, if we

are given information of the form γ ∈ [γa, γb] for any

−∞ < γa, γb < ∞, then it is possible to incorporate

this knowledge in making the optimal decision for x2

by replacing γ with γg in (17) :

E2(y1) = A I

([
γ̂1(y1) − γ
√

MSE1(x1)
+

√
NE1(γ − γg)√

H

]2
> ρ

)

,

(26)

where γg is a guess of γ. Since γ is bounded, the guess

term
∣
∣
√

NE1(γ−γg)
√

H

∣
∣ is also bounded. For a typical low

SNR scenario, the energy transmitted tends to zero

thereby making this term negligibly small. As a result,

there is no loss of optimality due to the guess factor γg

in the solution in (26). To demonstrate this concept,

we plot the gain in MSE versus the error in the guess

of γ for varying SNR in Fig. 6. The figure validates the

fact that as SNR decreases, the error in the guess of γ
plays a negligible role in the gain in MSE.

The LS solution (γ̂1) allows for negative estimates

of γ. In practice, quadratic programming should be

used to solve for γ when γ ≥ 0. In the single scatterer

case, the constrained solution (γ ≥ 0) can be written

as

γ̃1 = γ̂1 I(γ̂1 ≥ 0). (27)

Then the MSE of the constrained one-step estimator

MSE1c can be computed as

γ̃1 − γ = (γ̂1 − γ) I(γ̂1 ≥ 0) − γI(γ̂1 < 0)

MSE1c = E
[
(γ̃1 − γ)

2
]

= E
[
(γ̂1 − γ)

2
I(γ̂1 ≥ 0)

]
+ γ2

E [I(γ̂1 < 0)] .

When the number of sample observations N is large

enough, we get

MSE1c = MSE1E

[

n
2
1I

(

n1 >
−γ

√
MSE1

)]

+ γ2
E

[

I

(

n1 ≤
γ

√
MSE1

)]

= MSE1

{

Q(−
√

s) −

√
s

√
2π

e−
s

2 + s Q(
√

s)

}

,

where s =
γ
2

MSE1

. Using the same type of two-step

design applied for the unconstrained case, we can show

that the gain in this constrained case for low SNR is

MSE2c(γ̃1)

MSE1c(γ̃1)
≈ 0.1263 (28)

and all the above discussions regarding the optimal so-

lution and the guess of γ approach can be directly ex-

tended to this constrained optimization.

4. CONCLUSIONS AND FUTURE WORK

The problem of imaging a Rayleigh scattering medium

using an array of sensors rises in many applications. We

obtained the MSE for the LS solution to the scatterer

reflection powers. For a two-step sequential design, we

found the optimal transmission scheme that minimizes

the MSE and proved that we can gain over conventional

one-step strategies. The gains in MSE obtained ana-

lytically are verified through simulations. We also ex-

tended the results to the constrained optimization case.

Future work involves extending these results to multi-

ple scatterers. We also intend to solve the problem

of optimizing the transmitted spatial waveform rather

than just looking at the energy allocation. In addition,

we need to generalize this approach from a two-step

method to an iterative sequence of measurements.
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