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Abstract: This paper aims to further improve previously developedgiefor Acrobot walking based
on partial exact feedback linearization of order 3. Namgl¢h an exact system transformation leads
to an almost linear system where error dynamics along t@jgdo be tracked is a 4-dimensional
linear time-varying system having 3 time-varying entriedypthe remaining entries being either zero
or one. In such a way, exponentially stable tracking can hailodd by quadratically stabilizing a linear
system with polytopic uncertainty. The current improvetisibased on applying LMI methods to solve
this problem numerically. This careful analysis signifitarimproves previously known approaches.
Numerical simulations of Acrobot walking based on the abmesmtioned LMI design are demonstrated
as well.
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1. INTRODUCTION lem than stabilization since the corresponding error dyoam
has a more complex structure than the Acrobot model itself.

Efficient control of underactuated mechanical systemstgonsin particular, designed tracking feedback could handletdich
tutes one of the most challenging problems of recent decadé#stial tracking error only and its performance was limitedhe
see Zikmund and Moog (2005), Fantoni and Lozano (2002) aigése when the Acrobot walking-like movement was very slow.
references therein. Reliable and economic walking is actfpi This was caused by a specific and analytic method to stabilize
example of studies involving both control and robotic commutracking error dynamics. In the present paper, a numetical t
nities. One of the simplest underactuated mechanical mgsteing of such a stabilization using an LMI approach will be used
is the Acrobot. Despite being a seemingly simple system, the significantly improve the limited results @felikovsk et al.
Acrobot comprises many important features of underactuat¢2008).

walking robots having degree of underactuation equal to OmIehe rest of the paper is organized as follows. The next sectio

As a matter of fact, one can show that amjink havingn — 1 ; . )
actuators between its links can be decomposed into a fuly ac PHefly presents the model of the Acrobot together with théima
t[georetlcal pre-requisites necessary for further nurakaicaly-

ated system and an acrobot “disturbed” by some influence fro ! . .
that fully actuated (and therefore fully exact feedbackdiriz- >'>: S€Ction 3 describes the essence of the LMI approacie whil
able) subsystem, see Spong (1998); Grizzle et al. (20053 Adumerical optimization results and subsequent simulatifn
consequence, effective control of the Acrobot is an imparta’ coPot walking are presented in Section 4. The final section
step on the route to underactuated walking. Recently, numdf@Ws briefly some conclusions and discusses some opee futur
ous papers have addressed stabilization of its inverteitigros research outlooks toward efficient underactuated walking.
extending its domain of attraction (Bortoff and Spong (1992 2. ACROBOT

Murray (1990), Furuta and Yamakita (1991), Wiklund et al

(1993)), or even stable walking-like movemenefikovsk/  The Acrobot depicted on Figure 1 is a special case of.an
and Zikmund (2007), Zikmund et al. (200Qelikovsky et al.  link chain withn — 1 actuators attached by one of its ends to
(2008)). a pivot point through an unactuated rotary joint. Such aegyst

This paper aims to further extend the results obtained fFan be modelled by the gsual Lagrangian approach, see Greine
003). The corresponding Lagrangian is as follows

Celikovsk et al. (2008). In that paper, asymptotical tracking o 1
a suitable target trajectory generated by an open-looparede L(q,§) =K -V =—¢"D(¢)¢ — V(q) (1)
control was obtained. As might have been expected, asymptot 2

ical tracking constitutes a principally more complicatedip  whereq denotes am-dimensional vector on the configuration
* Supported by the Grant Agency of the Czech Republic throbghgrant Manifold @ _andD(Q) IS t_he inertia matrix & is the kinetic en-
no. 102/08/0186 and by Ministry of Education and Sports ef@R through €rgy andV’ is the potential energy of the system. The resulting
the grant no. LA09026. Euler-Lagrange equation is




m, shown that if the generalized momentum conjugate to théaycl
variable is not conserved (as it is the case of the Acrobet) th
there exists a set of outputs that defines one-dimensiopal ex
nentially stable zero dynamics. This means that it is péssib
find a functiony(q, ¢) with relative degree 3 that transforms the
original system (3) by a local coordinate transformation

Z:T(QaQ)v leyv ZQZjv 23:§7 Z4:f(q7(j)7 (8)

into a new input/output linear system with unobservable-non
linear dynamics of dimensioh
21 = 2o, 22 = 23, %3 .:O‘(an)vfi_B(Q»(j) = w, (9)
2y =P1(q,4) + ¥2(q, @) 72

/7 In the case of the Acrobot there are two independent fungtion
_ with relative degree 3 transforming the system into therddsi
Fig. 1. Acrobot. form! (9), namely

doc oL 0 o
dtdq  Oq . 0= g5 = (01 4 02 + 203 cos q2)¢1 + (10)

: —u=| ], @) n .

: (02 + 05 cos q2) o,
d oL oL
dt 9a,  Oq,, Tn p:ql—l—q—z—i— 20, — 6, — 0> arctan

n an 2 (91 + 92)2 — 49%

whereu stands for the vector of external controlled forces. Sys- 0 0. _20

tem (2) is a so-callednderactuatedmechanical system having [01 102 = 203 tan 2] (11)
degree of underactuation equal to one, see Spong (1998-Mor 01+ 02 +205 2

over, the underactuated angle is at the pivot point. Equd#p

leads to a dynamic equation of the form The zero dynamics is used to investigate internal stabilitgn

the corresponding output is forced to zero. For the mostlseimp
D(q)i+C(q,4)q+ G(q) =u () casesy = Cp ory = Co the resulting zero dynamics is
) ] ] ) ) ) o only critically stable. However, considering the outputdtion
whereD(q) is the inertia matrix(’(q, ¢) contains Coriolis and 7 — ¢, p(¢) + C»0(q, §) one gets the following zero dynamics
centrifugal terms(7(¢) contains gravity terms andstands for ; 1 ¢,[Cyd;,(¢2)]"'p = 0 which is asymptotically stable
the vector of external forces. wheneverC, /C, is positive,d;: (g2) being the corresponding

For the Acrobot, these computations lead to a second-ordgt Of the inertia matrixD in (3). Unfortunately, the corre-
nonholonomic constraint and a kinetic symmetry, i.e. tieetin  SPOnding transformations have a complex set of singugatiti

matrix depends only on the second variaple unlessCy is very small, which is not suitable for practical
purposes.
D(q) = [91 + 02 4 203 cos gz 02 + 03 cos ‘D} . (4 InCelikovsky et al. (2008), it was shown that using the set of
02 + 03 cos g 02 functions with maximal relative degree, the following tséor-
mation
C(q,q) = {_QZBSiSrilan::;liz —(¢2 + 4(1))93 sin (J2} ’ 5) S1=p&=0,8§=0,8=0 (12)
can be defined. Notice, that by (10)-(11) and some straightfo
—91gsingy — Osgsin (q1 + g2) ward but laborious computations the following relationdsol
Gla) = { —05gsin (q1 + ¢2) } ’ © p=du(g) "o, (13)

where the2-dimensional configuration vectdg, , g2) consists

of angles defined on Figure 1 and whered;1(g2) = (61 + 02 + 203 cos ¢2) is the corresponding

element of the inertia matri® in (3). Applying (12), (13) to (3)
01 = (my +mo)l} + I, 02 = mal3 + Iy, 7) e obtain Acrobot dynamics in partial exact linearized form
03 = malila, 04 = (M1 +ma)l1, 05 = mals.

. . . .
The partial exact feedback linearization method is based &= d“,(qz) 2, L2 =8, =8,

on a system transformation into a new system of coordinates &=a(q, )2+ 0(¢,§) =w (14)
that display linear dependence between an output and a n
input, see Isidori (1996). From a theoretical point of vige
mechanical system dynamics is described by-atimensional
state-space equation. Static state-feedback lineanzati a d oL

suitable output_functi_on of relative degreeyields_a linear ¢ D(¢) = D(gs) by (‘Zt).aﬁ; other wordsg has relative degree Z?C’i{&
subsystem of dimension In other words, the maximal feed- has relative degree 3. Moreover, by straightforward dffiation it holds
back linearization prOblem consists in |ineari2ing a fimct p= du(qz)_la, i.e.p has relative degree 2, i.e should have relative degree
with maximal relative degree. In Grizzle et al. (2005) it was as well.

fh new coordinateg and inputw being well defined when-
evera(q, )t # 0.

L Actually, by (2),6 = 4 2£ — g—‘i and therefore by (1)7 = —2Y(@




System (14) is almost linear, but there is a nonlinearityhat the stabilizer works even for walking speeds signifigan
d11(q2)~1 in the first row that depends o only. Instead higher than those necessary for the theoretical proof.

of expressing this nonlinearity in coordinatésand trying to
study its exact influence, one can use some favorable giiadita
properties. Namely, one can easily see that

Therefore, a natural idea is to try to stabilize the erroraigits
using more sophisticated numerical methods, like linearirma
inequalities (LMI). To be more specific, let us repeat that in

min < d11(¢2) 7" < maa (15)  Celikovsk et al. (2008) it was shown that subtracting (21) from
1 (16) (14) with (22) one obtains
Amin = . _ — re re re
ma(ln + 12)? +malf + L + I ér = di] (d2(61,6))ée — diy (D21, ))&
P 1 (17) €y = €3,63 = €4,64 = @3K161+@3K262+@2K363+@K464.
T e (= )2+ + L+ Iy Straightforward computations based on Taylor expansies g
Notice, that the quantity é1 = po(t)es + pi(t)er + ps(t)es + ofe) (25)
Umax — Qmin = . .
2 2 1 €2 = €3, €3 = €4, (26)
4141 l l l L+ 1)~

1 2m2(m2(1+ 2) + my 1+ 1+ 2) (18) é4=@3K1€1+@3K2€2—|—@2K3€3+@K4, (27)

(mg(ll —12)2+m1l2+ll —1—12) B
' Oldy;'] 92

_ eref ref
is quite small and therefore the nonlineardty (¢2) ~* is actu- () =& (1) O0q2 0& (22" (1)), (28)
ally varying in a quite narrow range. Therefore, its defxat 1, ref
also evolves in a favorable way, namely pa(t) = dyy (fQ ), (29)
- Oldr'] 06,
Oldi1 (g ! . _ _ eref () \Z1%11 1 Y92 ref
[116(q§)] = (205 sin q2)d11(g2) 2, (19) p3(t) 5 (1) 9gs O (a2 (1)), (30)
Oldry] (1) = oo (0,67 1), welo2m). @D
‘T1| < 2030’7271,(1.%' (20) .
42 In Celikovsk et al. (2008) it was shown that
The above favorable properties of Acrobot partial linegtian 2 R
will be used in the sequel for a feedback design ensuring-expo |1 (B)] < 20303, (04 + 05) B (32)
nentially tracking of a given walking-like trajectory. Wesume , R
that an open-loop control generating a suitable referengect 3 ()] < 20300075 0 < amin < p2(t) < dmas. (33)
tory is given in partial exact linearized coordinates (b)] our
task is to track the following reference system It turns out that the above bounds can be quite easily evaluat
‘ref =1, refyeref Jref _ gref numerica”y.
1 =diy (g277)E o =&,
ref — grelgrel — e, (21) 3. LMI BASED STABILIZATION OF THE ERROR
DYNAMICS

The following theorem gives a constructive and analytic veay
asymptotically track reference system (21). It was shown at the end of the previous section that for refere

Theorem 1.Consider system (14) with the following feedbacktrajectory tracking one has to solve the following stakilian

ref problem. Consider the open-loop continuous time-varying |
w=w "7+

O o1 1+ 0% Koer + O Kuen + OK 22) ear system

eoig e, D TR ¢ = Alt)e + Bu, (34
Further, letK; < 0 and K3 34 be such that the polynomial where ; ; N0 0
A+ K A2 + K3\ + Ko is Hurwitz. Then there exis® > “10( ) “20( ) ”31( ) 0 0
0,R > 0,8 > 0 such that for all reference trajectories given  A(t) = 0 0 0 1| B = 0
by (21) and satisfying 0 0 0 0 1

¥t >0 [s(d2(67)(t) = B >0, (23)
\§T€f(t)| <R ViSO (24) The tracking problem consists in finding the state-feedback
2 SR, V20, controller

where ¢, and s(q) are certain functions given iGelikovsk u=Ke, K=(Ki K K; Ky), (35)

et al. (2008), it follows that(t) — 0, t — oo. locally

exponentially fore given by (22). producing the following closed-loop system

_ _ 3 _ pi(t) pa(t) ps(t) 0
The above theorem is based on a certain specific adaptation of . At BE)e — 0 1
high-gain technique, enabling to produce an exact matieatat ¢ — A+t BK)e=| o o ¢ 1 [¢©
proof of stability. The drawback is rather high stabiliziggins K, Ky K3 Ky
leading to an unreasonable high torque at the actuated Acrob
joint. Moreover the convergence is slow and proved only fowhere bounds fop(t) = (u1(¢), pa(t), us(t)) are given by
slow walking speed. As a matter of fact, simulations sho32)-(33).

(36)



Despite entries ofi(¢) areknown functions, the appealing idea 20%. Because the initial torque is unrealistic for the actual
is to treat them aanknown disturbancessatisfying the above model of Acrobot, we set the saturation limit to the range
mentioned given constraints. If constraints are tight giou +25 Nm, see Fig. 5. The effect of the saturation limit is clearly
one can think about solving quadratic stability conditiamsl  visible on Fig. 3 and Fig. 4. Experimentally, the saturationit
design a unique feedback stabilizing such an “uncertais® sycould not be further lowered, yet it is still almost unretidis

tem. Obviously, such a feedback would be at the same ti

solving our tracking problem ngeummarizing, using the rectangular box to estimate theegalu

of u(t) produces highly conservative and practically unaccept-
To pursue such an idea, let us obtain LMI conditions foable design. Fortunately, tighter bounding sets can be tgsed
quadratic stability. Let us recall here that quadratic ifitgb estimate the values @f(¢), as shown in the next subsection.

is a particular case of robust stability, valid for arbitiafast
time-variation of the uncertain parameters, and certifigchb
unique quadratic-in-the-state parameter-independeaytluyov
function. Consider the well-known Lyapunov inequality te b
solved for all values of(¢) by finding a suitable symmetric
positive definite matrixsS and a vector’:

(A(p)+ BE)" S+ S (A(p) + BK) =0, (37)
S=5T 0. (38)

bounds

trajectory of Ky By by

g 0

-0.05

Such a problem is in fact bilinear with respect to the unkrewn
Denoting

Q=8S1Y=KS"! (39)

we derive the following LMI condition for quadratically tia
lizing feedback design:

QAT (1) +A(w)Q+YTBT + BY =<0. (40)

Notice that the paifA(u), B) is controllable if and only if
paps + p2 # 0. (41)  Fig. 2. Trajectoryu(t) and rectangular bounds.

Obviously, if the set of possible values pfcontains, or stays
close to, the singular set given by (41), LMI (40) become: ¢
infeasible, or almost infeasible.

4. NUMERICAL ANALYSIS AND SIMULATIONS

As already indicated, bounds Qr(g) during a single step of 25
the so-called passive walking, dEelikovsks et al. (2008),
can be obtained numerically, see Figs. 2 and 6. Two cas
of LMI solving will be considered: when the(¢) trajectory
is estimated by box-like (rectangular) set and secondly by

k=
s
o

prism-like (non-rectangular) set. 1L
4.1 Convex rectangular parameter set 05F
q, with/without sat -
] R
In the first case the convex set is defined as a rectangular bc ~ °| ="
see Fig. 2. Each vertex of the box is defined by a combinatic . ‘ ‘ ‘ ‘ ‘ ‘ ‘
of upper- and lower-bounds on entries;ofSummarizing, we 0 o1 02 % ety 05 06 o7
have 8 constraints
QAT + A,Q+YTBY + BY <0,i=1,...,8, Fig. 3. Angular positiong;, g with and without saturation and
Ay =AY (7,1, 153) , Ao = AT (w72, 153) 5 -, (42) references (dotted line) for rectangular boundg.on

Az = (p1, p2,7i3) 5 As = (1, pa, ) -

4.2 Convex prismatic parameter set
These LMIs are solved using the YALMIP parser and the
SeDuMi solver with Matlab, giving the state-feedback matri | the second case we reduce the parameter set into a convex

K =10°-(—3.5810 — 1.8147 — 0.1854 — 0.0037). set much closer to the actual trajectqryt). The number of

LMI constraints is thereby reduced to 6: two constraints are
One can see that these gains are quite large. Moreover, the same as previously, the remaining 4 constraints areedkfin
resulting torques are unrealistic during a short time wratkat  via vertices relatively close to each other and centeredrato
the beginning of the step. In the step trajectory simulatidime parameters value at the middle of the step. Itis nicely sexsn f
initial positions errors are zero but velocities errors abpeut  Figure 6 that this set is reasonably small and close to agiiean
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Fig. 5. Torquer, with and without saturation for rectangular Fig. 7. Angular positions, , ¢» with and without saturation and

bounds onu.

Solving the resulting LMI yields the state-feedback matrix
K =10%. (—1.9087 —1.2097 — 0.1781 — 0.0090).

The gains are significantly smaller than previously.

The initial positions errors are zero while velocities esrare
about20%. For the sake of comparison, they are the same as fc
the rectangular parameter set. The initial torque is mudilem
now, yet still quite unrealistic for the actual model of Abat.
Therefore, a saturation limit in the rang& 0 Nm was used, see
Fig. 9. In Fig. 7 and in Fig. 8 one can see the effect of satumati
limit. Convergence is very good now and saturation limite/no
ensure a realistic implementation.

Finally, Figure 10 shows the animation of the Acrobot wadkin
step with the prismatic parameter set based controller an
torque saturation a£10Nm.

5. CONCLUSIONS AND OUTLOOKS

q [rad/s]
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references (dotted line) for prismatic boundsion

qa, with:sat

a, with sat
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An LMI-based design for the stabilization of error dynamicd™i9- 8- Angular velocitieg,, ¢, with and without saturation and

resulting from tracking a walking-like trajectory of the ot

references (dotted line) for prismatic boundsion



20r feedback transformation between real torgyeand virtual
2 inputw, resulting from partial feedback linearization.

ok ; , ‘ Regarding saturations of the control signal, we could also
model them as sector-bounded nonlinearities and, as a post-

T, with sat processing phase, assess stability of the resulting cllosgd
-20r ~ ' ~ system in the presence of saturations via appropriate ln@apu
based LMI conditions.

EN -a0f : , : These ideas are currently subject of ongoing research.
ACKNOWLEDGEMENTS

We would like to thank Fabrizio Dabbene from Politecnico di
8o} Torino for fruitful discussion and useful tips.

REFERENCES
-100 I I I I I I I}

0 o o2 * e o8 o8 *" S.A. Bortoff and W.M. Spong. Pseudolinearization of the
Acrobot using spline functionsProc. IEEE Conf. Decision
Fig. 9. Torquer, with and without saturation for prismatic and Contro] 593-598, 1992.
bounds onu. S. CelikovsK/. Global linearization of nonlinear systems - a
survey. InBanach Center Publication82:123-137, 1994.

S.Celikovsky and J. Zikmund. Composite control of thdink
chained mechanical systenProc. Conf. Process Control
Strbslé Pleso, Slovakia, 130:1-6, 2007.

S.Celikovsky, J. Zikmund, C. Moog. Partial exact linearization
design for the Acrobot walking.Proc. American Control
Conf Seattle, USA, 2008.

I. Fantoni and R. Lozand\on-linear control of underactuated
mechanical systemsleidelberg: Springer Verlag, 2002.

K. Furuta and M. Yamakita. Swing up control of inverted pen-
dulum. Industrial Electronics, Control and Instrumentation
3:2193-2198, 1991.

W. Greiner. Classical mechanics: system of particles and
hamiltonian dynamic®Berlin: Springer Verlag, 2003.

J.W. Grizzle, C.H. Moog and C. Chevallereau (2005). Nonlin-
ear control of mechanical systems with an unactuated cyclic

Fig. 10. Animation of a single step with sampling tifi®3 s. variable.|[EEE Trans. Autom. Contrp50:559-576, 2005.

The dotted line is the reference, the full line represerés tha | |sidori. Nonlinear control systemsNew York: Springer
actual Acrobot. Verlag, 1996.

has been suggested. Compared to earlier analytic resultsRl'M' Murray and J. Hauser. A case study in approximate
99 . P y Minearization: the Acrobot exampl&roc. American Control

éelikovslg? et al. (2008), it gives now quite realistic torque at  =gni. 1990.

the Acrobot actuator. M. Spong. Underactuated mechanical systems, control prob-

Yet, further torque optimization is possible via a further r  lems in robotics and automatioriondon: Springer Verlag,
striction of the set estimating parameter values. Namaly, s 1998. _ .

far we have modeled the parameter trajectory as a polytopl Wiklund, A. Kristenson and K.JAstrom. A new strategy
in the parameter space, and this allowed for the applicationfor swinging up an inverted pendulunProc. IFAC World

of simple vertex LMI conditions corresponding to the search CongressSydney, Australia, 191-196, 1993.

of a quadratic Lyapunov function. More sophisticated LMF. Zikmund and C.H. Moog. The structure of 2-body mechan-
conditions, based on representations of positive polyatsni  ical systems.Proc. IEEE Conf. Decision and Contioban
can be derived for parameters varying along a curve, or withi Diego, USA, 6464-6469, 2006.

a general basic semialgebraic set (conjunction of multivar J. Zikmund, SCelikovsky and C.H. Moog. Nonlinear control
polynomial inequalities). In the same vein, we could alsivée design for the AcrobotProc. IFAC Symp. Systems Structure
LMI conditions to search for parameter-dependent polyabmi  Control, Foz do Iguassu, Brazil, 2007.

in-the-state Lyapunov functions, so as to reduce conssmat

if necessary.

Nevertheless, the issue of defining criterion to minimize th
input torque action remains open. First problem is tha¢don
should be linear in LMI variable¥’, Q while gains K are
nonlinear function of them, i.e. they can not be directletalas
the linear cost function. Secondly, gaihsaffect real torques
indirectly because there is nonlinear change of coordsnanel



