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celikovs@utia.cas.cz, j.zikmund@email.cz
∗∗∗ LAAS-CNRS, University of Toulouse, 7 avenue du colonel Roche,

31077 Toulouse, France,henrion@laas.fr

Abstract: This paper aims to further improve previously developed design for Acrobot walking based
on partial exact feedback linearization of order 3. Namely,such an exact system transformation leads
to an almost linear system where error dynamics along trajectory to be tracked is a 4-dimensional
linear time-varying system having 3 time-varying entries only, the remaining entries being either zero
or one. In such a way, exponentially stable tracking can be obtained by quadratically stabilizing a linear
system with polytopic uncertainty. The current improvement is based on applying LMI methods to solve
this problem numerically. This careful analysis significantly improves previously known approaches.
Numerical simulations of Acrobot walking based on the abovementioned LMI design are demonstrated
as well.
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1. INTRODUCTION

Efficient control of underactuated mechanical systems consti-
tutes one of the most challenging problems of recent decades,
see Zikmund and Moog (2005), Fantoni and Lozano (2002) and
references therein. Reliable and economic walking is a typical
example of studies involving both control and robotic commu-
nities. One of the simplest underactuated mechanical systems
is the Acrobot. Despite being a seemingly simple system, the
Acrobot comprises many important features of underactuated
walking robots having degree of underactuation equal to one.
As a matter of fact, one can show that anyn-link havingn− 1
actuators between its links can be decomposed into a fully actu-
ated system and an acrobot “disturbed” by some influence from
that fully actuated (and therefore fully exact feedback lineariz-
able) subsystem, see Spong (1998); Grizzle et al. (2005). Asa
consequence, effective control of the Acrobot is an important
step on the route to underactuated walking. Recently, numer-
ous papers have addressed stabilization of its inverted position,
extending its domain of attraction (Bortoff and Spong (1992),
Murray (1990), Furuta and Yamakita (1991), Wiklund et al
(1993)), or even stable walking-like movement (Čelikovsḱy
and Zikmund (2007), Zikmund et al. (2007),Čelikovsḱy et al.
(2008)).

This paper aims to further extend the results obtained in
Čelikovsḱy et al. (2008). In that paper, asymptotical tracking of
a suitable target trajectory generated by an open-loop reference
control was obtained. As might have been expected, asymptot-
ical tracking constitutes a principally more complicated prob-
⋆ Supported by the Grant Agency of the Czech Republic through the grant
no. 102/08/0186 and by Ministry of Education and Sports of the CR through
the grant no. LA09026.

lem than stabilization since the corresponding error dynamics
has a more complex structure than the Acrobot model itself.
In particular, designed tracking feedback could handle limited
initial tracking error only and its performance was limitedto the
case when the Acrobot walking-like movement was very slow.
This was caused by a specific and analytic method to stabilize
tracking error dynamics. In the present paper, a numerical tun-
ing of such a stabilization using an LMI approach will be used
to significantly improve the limited results ofČelikovsḱy et al.
(2008).

The rest of the paper is organized as follows. The next section
briefly presents the model of the Acrobot together with the main
theoretical pre-requisites necessary for further numerical analy-
sis. Section 3 describes the essence of the LMI approach while
numerical optimization results and subsequent simulations of
Acrobot walking are presented in Section 4. The final section
draws briefly some conclusions and discusses some open future
research outlooks toward efficient underactuated walking.

2. ACROBOT

The Acrobot depicted on Figure 1 is a special case of ann-
link chain withn − 1 actuators attached by one of its ends to
a pivot point through an unactuated rotary joint. Such a system
can be modelled by the usual Lagrangian approach, see Greiner
(2003). The corresponding Lagrangian is as follows

L(q, q̇) = K − V =
1

2
q̇TD(q)q̇ − V (q) (1)

whereq denotes ann-dimensional vector on the configuration
manifoldQ andD(q) is the inertia matrix,K is the kinetic en-
ergy andV is the potential energy of the system. The resulting
Euler-Lagrange equation is



Fig. 1. Acrobot.
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whereu stands for the vector of external controlled forces. Sys-
tem (2) is a so-calledunderactuatedmechanical system having
degree of underactuation equal to one, see Spong (1998). More-
over, the underactuated angle is at the pivot point. Equation (2)
leads to a dynamic equation of the form

D(q)q̈ + C(q, q̇)q̇ +G(q) = u (3)

whereD(q) is the inertia matrix,C(q, q̇) contains Coriolis and
centrifugal terms,G(q) contains gravity terms andu stands for
the vector of external forces.

For the Acrobot, these computations lead to a second-order
nonholonomic constraint and a kinetic symmetry, i.e. the inertia
matrix depends only on the second variableq2

D(q) =

[

θ1 + θ2 + 2θ3 cos q2 θ2 + θ3 cos q2
θ2 + θ3 cos q2 θ2

]

, (4)

C(q, q̇) =

[

−θ3 sin q2q̇2 −(q̇2 + q̇1)θ3 sin q2
θ3 sin q2q̇1 0

]

, (5)

G(q) =

[

−θ4g sin q1 − θ5g sin (q1 + q2)
−θ5g sin (q1 + q2)

]

, (6)

where the2-dimensional configuration vector(q1, q2) consists
of angles defined on Figure 1 and

θ1 = (m1 +m2)l
2

1
+ I1, θ2 = m2l

2

2
+ I2,

θ3 = m2l1l2, θ4 = (m1 +m2)l1, θ5 = m2l2.
(7)

The partial exact feedback linearization method is based
on a system transformation into a new system of coordinates
that display linear dependence between an output and a new
input, see Isidori (1996). From a theoretical point of view,the
mechanical system dynamics is described by ann-dimensional
state-space equation. Static state-feedback linearization of a
suitable output function of relative degreer yields a linear
subsystem of dimensionr. In other words, the maximal feed-
back linearization problem consists in linearizing a function
with maximal relative degree. In Grizzle et al. (2005) it was

shown that if the generalized momentum conjugate to the cyclic
variable is not conserved (as it is the case of the Acrobot) then
there exists a set of outputs that defines one-dimensional expo-
nentially stable zero dynamics. This means that it is possible to
find a functiony(q, q̇) with relative degree 3 that transforms the
original system (3) by a local coordinate transformation

z = T (q, q̇), z1 = y, z2 = ẏ, z3 = ÿ, z4 = f(q, q̇), (8)

into a new input/output linear system with unobservable non-
linear dynamics of dimension1

ż1 = z2, ż2 = z3, ż3 = α(q, q̇)v + β(q, q̇) = w,
ż4 = ψ1(q, q̇) + ψ2(q, q̇)τ2.

(9)

In the case of the Acrobot there are two independent functions
with relative degree 3 transforming the system into the desired
form1 (9), namely

σ =
∂L

∂q̇1
= (θ1 + θ2 + 2θ3 cos q2)q̇1 + (10)

(θ2 + θ3 cos q2)q̇2,

p= q1 +
q2
2

+
2θ2 − θ1 − θ2

√

(θ1 + θ2)2 − 4θ2
3

arctan

(

√

θ1 + θ2 − 2θ3
θ1 + θ2 + 2θ3

tan
q2
2

)

. (11)

The zero dynamics is used to investigate internal stabilitywhen
the corresponding output is forced to zero. For the most simple
casesy = Cp or y = Cσ the resulting zero dynamics is
only critically stable. However, considering the output function
y = C1p(q) + C2σ(q, q̇) one gets the following zero dynamics
ṗ + C1[C2d11(q2)]

−1p = 0 which is asymptotically stable
wheneverC1/C2 is positive,d11(q2) being the corresponding
part of the inertia matrixD in (3). Unfortunately, the corre-
sponding transformations have a complex set of singularities,
unlessC1 is very small, which is not suitable for practical
purposes.

In Čelikovsḱy et al. (2008), it was shown that using the set of
functions with maximal relative degree, the following transfor-
mation

ξ1 = p, ξ2 = σ, ξ3 = σ̇, ξ4 = σ̈ (12)

can be defined. Notice, that by (10)-(11) and some straightfor-
ward but laborious computations the following relation holds

ṗ = d11(q2)
−1σ, (13)

whered11(q2) = (θ1 + θ2 + 2θ3 cos q2) is the corresponding
element of the inertia matrixD in (3). Applying (12), (13) to (3)
we obtain Acrobot dynamics in partial exact linearized form

ξ̇1 = d11(q2)
−1ξ2, ξ̇2 = ξ3, ξ̇3 = ξ4,

ξ̇4 = α(q, q̇)τ2 + β(q, q̇) = w (14)

with new coordinatesξ and inputw being well defined when-
everα(q, q̇)−1 6= 0.

1 Actually, by (2),σ̇ = d
dt

∂L

∂q̇1
= ∂L

∂q1
and therefore by (1),̇σ = −

∂V (q)
∂q1

as D(q) ≡ D(q2) by (4). In other words,σ̇ has relative degree 2, i.e.σ
has relative degree 3. Moreover, by straightforward differentiation it holds
ṗ = d11(q2)−1σ, i.e. ṗ has relative degree 2, i.e.p should have relative degree
3 as well.



System (14) is almost linear, but there is a nonlinearity
d11(q2)

−1 in the first row that depends onq2 only. Instead
of expressing this nonlinearity in coordinatesξ and trying to
study its exact influence, one can use some favorable qualitative
properties. Namely, one can easily see that

amin ≤ d11(q2)
−1 ≤ amax (15)

amin =
1

m2(l1 + l2)2 +m1l21 + I1 + I2
(16)

amax =
1

m2(l1 − l2)2 +m1l21 + I1 + I2
. (17)

Notice, that the quantity

amax − amin =

4l1l2m2(m2(l1 + l2)
2 +m1l

2

1
+ I1 + I2)

−1

(m2(l1 − l2)2 +m1l21 + I1 + I2)
(18)

is quite small and therefore the nonlinearityd11(q2)
−1 is actu-

ally varying in a quite narrow range. Therefore, its derivative
also evolves in a favorable way, namely

∂[d11(q2)
−1]

∂q2
= (2θ3 sin q2)d11(q2)

−2, (19)

∣

∣

∂[d−1

11
]

∂q2

∣

∣ ≤ 2θ3a
2

max. (20)

The above favorable properties of Acrobot partial linearization
will be used in the sequel for a feedback design ensuring expo-
nentially tracking of a given walking-like trajectory. We assume
that an open-loop control generating a suitable reference trajec-
tory is given in partial exact linearized coordinates (14),and our
task is to track the following reference system

ξ̇ref
1

= d−1

11
(qref

2
)ξref

2
, ξ̇ref

2
= ξref

3
,

ξ̇ref
3

= ξref
4

, ξ̇ref
4

= wref . (21)

The following theorem gives a constructive and analytic wayto
asymptotically track reference system (21).

Theorem 1.Consider system (14) with the following feedback

w = wref+
Θ3K1e1 + Θ3K2e2 + Θ2K3e3 + ΘK4e4,
e =: ξ − ξref .

(22)

Further, letK1 < 0 andK2,3,4 be such that the polynomial
λ3 + K4λ

2 + K3λ + K2 is Hurwitz. Then there existΘ >
0,R > 0,B > 0 such that for all reference trajectories given
by (21) and satisfying

∀t ≥ 0 |s(φ2(ξ
ref )(t))| ≥ B > 0, (23)

|ξref
2

(t)| ≤ R, ∀t ≥ 0, (24)

whereφ2 and s(q) are certain functions given iňCelikovsḱy
et al. (2008), it follows thate(t) → 0, t → ∞. locally
exponentially fore given by (22).

The above theorem is based on a certain specific adaptation of
high-gain technique, enabling to produce an exact mathematical
proof of stability. The drawback is rather high stabilizinggains
leading to an unreasonable high torque at the actuated Acrobot
joint. Moreover the convergence is slow and proved only for
slow walking speed. As a matter of fact, simulations show

that the stabilizer works even for walking speeds significantly
higher than those necessary for the theoretical proof.

Therefore, a natural idea is to try to stabilize the error dynamics
using more sophisticated numerical methods, like linear matrix
inequalities (LMI). To be more specific, let us repeat that in
Čelikovsḱy et al. (2008) it was shown that subtracting (21) from
(14) with (22) one obtains

ė1 = d−1

11
(φ2(ξ1, ξ3))ξ2 − d−1

11
(φ2(ξ

ref
1

, ξref
3

))ξref
2

,

ė2 = e3, ė3 = e4, ė4 = Θ3K1e1+Θ3K2e2+Θ2K3e3+ΘK4e4.

Straightforward computations based on Taylor expansions give

ė1 = µ2(t)e2 + µ1(t)e1 + µ3(t)e3 + o(e) (25)

ė2 = e3, ė3 = e4, (26)

ė4 = Θ3K1e1 + Θ3K2e2 + Θ2K3e3 + ΘK4, (27)

µ1(t) = ξref
2

(t)
∂[d−1

11
]

∂q2

∂φ2

∂ξ1
(qref

2
(t)), (28)

µ2(t) = d−1

11
(qref

2
(t)), (29)

µ3(t) = ξref
2

(t)
∂[d−1

11
]

∂q2

∂φ2

∂ξ3
(qref

2
(t)), (30)

qref
2

(t) = φ2(ξ
ref
1

(t), ξref
3

(t)), q2 ∈ [0, 2π). (31)

In Čelikovsḱy et al. (2008) it was shown that

|µ1(t)| ≤ 2θ3a
2

max(θ4 + θ5)
R

B
(32)

|µ3(t)| ≤ 2θ3a
2

max

R

B
, 0 < amin ≤ µ2(t) ≤ amax. (33)

It turns out that the above bounds can be quite easily evaluated
numerically.

3. LMI BASED STABILIZATION OF THE ERROR
DYNAMICS

It was shown at the end of the previous section that for reference
trajectory tracking one has to solve the following stabilization
problem. Consider the open-loop continuous time-varying lin-
ear system

ė = A(t)e+Bu, (34)

where

A(t) =







µ1(t) µ2(t) µ3(t) 0
0 0 1 0
0 0 0 1
0 0 0 0






, B =







0
0
0
1






.

The tracking problem consists in finding the state-feedback
controller

u = Ke, K = (K1 K2 K3 K4 ) , (35)

producing the following closed-loop system

ė = (A+BK) e =







µ1(t) µ2(t) µ3(t) 0
0 0 1 0
0 0 0 1
K1 K2 K3 K4






e, (36)

where bounds forµ(t) = (µ1(t), µ2(t), µ3(t)) are given by
(32)-(33).



Despite entries ofµ(t) areknown functions, the appealing idea
is to treat them asunknown disturbancessatisfying the above
mentioned given constraints. If constraints are tight enough,
one can think about solving quadratic stability conditionsand
design a unique feedback stabilizing such an “uncertain” sys-
tem. Obviously, such a feedback would be at the same time
solving our tracking problem.

To pursue such an idea, let us obtain LMI conditions for
quadratic stability. Let us recall here that quadratic stability
is a particular case of robust stability, valid for arbitrarily fast
time-variation of the uncertain parameters, and certified by a
unique quadratic-in-the-state parameter-independent Lyapunov
function. Consider the well-known Lyapunov inequality to be
solved for all values ofµ(t) by finding a suitable symmetric
positive definite matrixS and a vectorK:

(A (µ) +BK)
T
S + S (A (µ) +BK) � 0, (37)

S = ST ≻ 0. (38)

Such a problem is in fact bilinear with respect to the unknowns.
Denoting

Q = S−1, Y = KS−1 (39)

we derive the following LMI condition for quadratically stabi-
lizing feedback design:

QAT (µ) +A (µ)Q+ Y TBT +BY � 0. (40)

Notice that the pair(A(µ), B) is controllable if and only if

µ1µ3 + µ2 6= 0. (41)

Obviously, if the set of possible values ofµ contains, or stays
close to, the singular set given by (41), LMI (40) becomes
infeasible, or almost infeasible.

4. NUMERICAL ANALYSIS AND SIMULATIONS

As already indicated, bounds onµ(t) during a single step of
the so-called passive walking, cf.̌Celikovsḱy et al. (2008),
can be obtained numerically, see Figs. 2 and 6. Two cases
of LMI solving will be considered: when theµ(t) trajectory
is estimated by box-like (rectangular) set and secondly by a
prism-like (non-rectangular) set.

4.1 Convex rectangular parameter set

In the first case the convex set is defined as a rectangular box,
see Fig. 2. Each vertex of the box is defined by a combination
of upper- and lower-bounds on entries ofµ. Summarizing, we
have 8 constraints

QAT

i +AiQ+ Y TBT +BY � 0, i = 1, . . . , 8,
A1 = AT (µ1, µ2, µ3) , A2 = AT

(

µ1, µ2, µ3

)

, . . . ,
A7 =

(

µ1, µ2, µ3

)

, A8 =
(

µ1, µ2, µ3

)

.
(42)

These LMIs are solved using the YALMIP parser and the
SeDuMi solver with Matlab, giving the state-feedback matrix

K = 105 · (−3.5810 − 1.8147 − 0.1854 − 0.0037).

One can see that these gains are quite large. Moreover, the
resulting torques are unrealistic during a short time interval at
the beginning of the step. In the step trajectory simulations, the
initial positions errors are zero but velocities errors areabout

20%. Because the initial torque is unrealistic for the actual
model of Acrobot, we set the saturation limit to the range
±25Nm, see Fig. 5. The effect of the saturation limit is clearly
visible on Fig. 3 and Fig. 4. Experimentally, the saturationlimit
could not be further lowered, yet it is still almost unrealistic.

Summarizing, using the rectangular box to estimate the values
of µ(t) produces highly conservative and practically unaccept-
able design. Fortunately, tighter bounding sets can be usedto
estimate the values ofµ(t), as shown in the next subsection.
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4.2 Convex prismatic parameter set

In the second case we reduce the parameter set into a convex
set much closer to the actual trajectoryµ(t). The number of
LMI constraints is thereby reduced to 6: two constraints are
the same as previously, the remaining 4 constraints are defined
via vertices relatively close to each other and centered around
parameters value at the middle of the step. It is nicely seen from
Figure 6 that this set is reasonably small and close to a triangle.
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Solving the resulting LMI yields the state-feedback matrix

K = 104 · (−1.9087 − 1.2097 − 0.1781 − 0.0090).

The gains are significantly smaller than previously.

The initial positions errors are zero while velocities errors are
about20%. For the sake of comparison, they are the same as for
the rectangular parameter set. The initial torque is much smaller
now, yet still quite unrealistic for the actual model of Acrobot.
Therefore, a saturation limit in the range±10Nm was used, see
Fig. 9. In Fig. 7 and in Fig. 8 one can see the effect of saturation
limit. Convergence is very good now and saturation limits now
ensure a realistic implementation.

Finally, Figure 10 shows the animation of the Acrobot walking
step with the prismatic parameter set based controller and
torque saturation of±10Nm.

5. CONCLUSIONS AND OUTLOOKS

An LMI-based design for the stabilization of error dynamics
resulting from tracking a walking-like trajectory of the Acrobot
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Fig. 10. Animation of a single step with sampling time0.08 s.
The dotted line is the reference, the full line represents the
actual Acrobot.

has been suggested. Compared to earlier analytic results in
Čelikovsḱy et al. (2008), it gives now quite realistic torque at
the Acrobot actuator.

Yet, further torque optimization is possible via a further re-
striction of the set estimating parameter values. Namely, so
far we have modeled the parameter trajectory as a polytope
in the parameter space, and this allowed for the application
of simple vertex LMI conditions corresponding to the search
of a quadratic Lyapunov function. More sophisticated LMI
conditions, based on representations of positive polynomials,
can be derived for parameters varying along a curve, or within
a general basic semialgebraic set (conjunction of multivariate
polynomial inequalities). In the same vein, we could also derive
LMI conditions to search for parameter-dependent polynomial-
in-the-state Lyapunov functions, so as to reduce conservatism,
if necessary.

Nevertheless, the issue of defining criterion to minimize the
input torque action remains open. First problem is that criterion
should be linear in LMI variablesY,Q while gainsK are
nonlinear function of them, i.e. they can not be directly taken as
the linear cost function. Secondly, gainsK affect real torques
indirectly because there is nonlinear change of coordinates and

feedback transformation between real torqueτ2 and virtual
inputw, resulting from partial feedback linearization.

Regarding saturations of the control signal, we could also
model them as sector-bounded nonlinearities and, as a post-
processing phase, assess stability of the resulting closed-loop
system in the presence of saturations via appropriate Lyapunov-
based LMI conditions.

These ideas are currently subject of ongoing research.
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