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1. INTRODUCTION
Landslides are a serious geological hazard caused when

masses of rock, earth, and debris flow down a steep slope
during periods of intense rainfall and rapid snow melt. The
western (Konkan) coast and the Himalayan region of India
are subject to many such landslides every year. Landslides
in these rocky regions are mainly caused by the increase in
strain due to percolating rain water in rocks fissures, causing
rocks to fracture and slide down the slope. According to
government reports, from 1998 to 2001 alone, landslides have
killed more than 500 people, disrupted the communication
and transport for weeks and destroyed thousands of hectares
of crop area.

Existing solutions are restricted to landslide detection. A
trip wire is installed along the landslide prone areas, and a
break in the trip wire due to the falling rocks and debris
triggers an alarm. Although this is an inexpensive solution
for landslide detection, it is ineffectual in providing warning
of the impending landslide.

Typical sensors used for monitoring slope stability are
multi-point bore hole extensometers, tilt sensors, displace-
ment sensors, and volumetric soil water content sensors.
These require drilling 20-30 meter holes into the surface
making the installation very expensive (≈ $50 per meter)
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and requiring skilled labor. Furthermore, these are expen-
sive sensors making wide scale deployment infeasible. In-
stalling a single sensor for monitoring an entire hill side is
not sufficient as the properties of the rocks change every
100-200 meters. Wiring each sensor to a central data logger
is also not feasible in the rocky terrain and requires high
maintenance.

In contrast to the existing approaches, we propose using
a Wireless Sensor Network (WSN) of 2-axis strain gauges
to predict landslides. The small sized, low cost, and wire-
less battery operated nodes require minimum maintenance
and can easily be deployed over a wide area. Strain gauges
can operate at low depths (25-30 cms) and require low ex-
citation voltage compared to the other sensors. The orders
of magnitude lower depth of operation make strain gauges
ideal for deployment

The goals of SenSlide are quite different from previous
WSN deployments we are familiar with. A majority of the
WSN deployments [3, 4] are mainly data collection networks,
where the sensors are periodically sampled and sensor data
is collected at a central base station for offline analysis. At
the other end of the spectrum, there have been WSN de-
ployments, which only communicate with the base station
when a rare event is detected [1]. In our application, we
need to satisfy both ends of the spectrum. Data needs to
be sampled periodically to help earth scientists gather much
needed historical trend information, while ensuring that the
life-time of the network is not adversely affected by frequent
sampling. Thus, SenSlide shares features of a rare event
detection network as well as a very low sampling rate data
collection network.

During the system design we encountered several chal-
lenges in successfully deploying sensors for predicting land-
slides. These challenges are detailed in the following four
sections.

Our overall system design consists of sensor nodes (mica2
motes interfaced with strain gauges) organized in a hierarchy
to monitor the strain in the rocks. A subset of these are
designated as aggregators that collect the locally smoothed
sensor data and create spatial summaries. These aggregators
communicate with the base station (laptops connected to the
Internet) providing summary data at adaptively adjusted
frequencies.

2. FILTERING OF LOCAL SENSOR DATA
The inaccurate calibration of the cheap strain gauges re-

sult in noisy sensor data. Locally sampled sensor data must
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be smoothed before processing to avoid false positives and
negatives.

Based on field experiments using extensometers, we ob-
serve that the strain in the rocks can be modeled as a piece-
wise linear function of time. In the first region, which per-
sists for a relatively long time, the strain is constant. In the
second region, the strain increases linearly with time until
it reaches the elastic limit of the rock.

Each sensor samples data at a fixed rate: 3 minutes based
on our analysis of the field data. Each sensor calculates
an exponentially weighted moving average of the samples.
It communicates this average to the rest of the system at
different rates, depending on the region of the strain curve
at which the sensor estimates it is operating.

The slowest rate at which sensors communicate data to
aggregators is once every 30 minutes. During periods of
increasing strain, which the sensor detects as increasing av-
erage values, the communication rate is increased as well,
up to a maximum of once every 3 minutes.

3. ROUTING AND UNIFORM WEAR
LEVELING

Convergecasting all sensor data to a central base station
leads to non-uniform wear leveling of nodes in the network,
and failure of all links one-hop away from the base station
would partition the entire network. To avoid this, SenSlide
designates multiple aggregator nodes that filter data and
transmit to the base station only a summary of the data.
Non-aggregator nodes transmit averages of local strain sen-
sor data to the closest aggregator.

Data is routed within the network using Beacon Vector
Routing (BVR), a scalable point-to-point routing protocol
[2]. Periodically, each sensor node transmits a node sta-
tus message to its closest base station containing its ID, its
BVR coordinate vector, its energy level, and its neighbor
list. The periodicity of these messages is much lower than
the minimum sensor data communication rate.

A designated leader base station combines status informa-
tion received at multiple base stations and designates cer-
tain nodes as aggregators. Aggregator nodes are selected
based on the k-means clustering algorithm. The BVR coor-
dinate vector, which is based on radio connectivity, is used
to calculate the “k” aggregator nodes in the network. Our
algorithm accounts for the constraints that (a) aggregators
are not too close to the base stations nor at the extremities
of the network, and (b) aggregators have sufficient energy to
survive long enough to detect a rare event, and (c) they are
not geographically co-located so as to survive environmental
hazards that affect a large region of the network.

To avoid hot spots in the network, aggregator nodes are
not static and are re-assigned by the leader base station.
The aggregator selection algorithm is triggered when the
energy level at the aggregator drops below Ethresh or when
an aggregator is considered to have failed.

4. SPATIAL SUMMARY OF SENSOR DATA
Even though data from individual sensors is smoothed,

single sensor observations are insufficient to predict a land-
slide. Aggregator nodes should summarize spatial sensor
data for accurate prediction. This is achieved by curve fit-
ting, where the aggregator only computes the coefficients of
the curve that approximate the smoothed sensor data and

transmits these coefficients to the base station. The base
station can reconstruct the distribution of strain over the
entire region by receiving only the coefficients from individ-
ual aggregator nodes. Any significant deviation in the co-
efficients triggers an alarm, which adaptively increases the
sampling rate of the network. We are in the process of carry-
ing out experiments to select appropriate curve fitting tech-
niques based on distributed strain sensor data collected from
different rocks.

5. FAULT TOLERANCE
SenSlide achieves fault tolerance by introducing redun-

dancy at various levels of the system and detects failure
using low overhead system heartbeats.

Sensor node and link failures are detected by exploiting
the underlying broadcast nature of the wireless medium by
using symmetric links for communication. Only nodes that
are a single hop away from an aggregator request an explicit
acknowledgement.

Aggregator failure is detected by monitoring the loss rate
at base stations since aggregators transmit periodic sum-
mary data to the closest base station. An aggregator failure
triggers the aggregator node selection algorithm. Changes in
aggregator nodes and other control messages are broadcast
by the leader base station to the entire network.

Base station failures are detected by having the multi-
ple base stations monitor the liveness of each other. A
leader base station is elected via a fault-tolerant distributed
leader election algorithm running on the base stations. Pe-
riodic data received at a base station (aggregator summaries
as well as periodic node status messages) is synchronously
replicated on other base stations for fault-tolerance.

Notice that by using the replicated node status informa-
tion, we can reconstruct the aggregator selection in the pres-
ence of base station failure. Based on the summary data
from the aggregators we can reconstruct the distribution of
strain over the entire network at the base station.

6. STATUS AND FUTURE WORK
We have completed the design of SenSlide and initial sim-

ulations of the aggregator selection algorithm. The 2-axis
strain gauges have been interfaced with the mica2 motes,
and are being used to collect extensive strain data for dif-
ferent rock types. This data will be used to select suitable
curve fitting algorithms for spatial summarization. We plan
to incorporate this data into network simulations to better
understand the behavior of the system at scale. We also
intend to evaluate our prototype in an indoor testbed and
subsequently deploy it in the field.
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