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Iterative Decision Feedback Equalization and
Decoding for Rotated Multidimensional
Constellations in Block Fading Channels

Gökhan M. Güvensen, A.̈Ozgür Yılmaz

Abstract— It is known that rotated multidimensional constella-
tions can be used effectively to achieve full-rate and full-diversity
transmission in block fading channels. However, the optimal
decoding complexity is exponential with the number of fading
blocks (or degrees of freedom). In this paper, we propose a
reduced-complexity iterative receiver structure operating on a
block basis for coded modulation schemes with rotated constel-
lations. The proposed detector is based on iterative forward and
backward filtering followed by a channel decoder that uses a
priori log-likelihood ratios (LLR) of coded symbols. Forward and
feedback filters are jointly optimized according to the minimum
mean square error (MMSE) criterion to minimize the spatial
interference induced by rotation. It is observed that the proposed
structure achieves full diversity and performance close tooutage
probability for rotated inputs even with simple Discrete Fourier
Transform (DFT) rotations.

Index Terms— Rotated constellations, block-fading channel,
decision feedback equalization, diversity, outage, singleton bound,
coded modulation, iterative decoding, soft feedback

I. I NTRODUCTION

Rotated multidimensional constellations with uncoded mod-
ulation has been studied and shown to be an effective way
to attain full-rate and full-diversity transmission in fading
channels [1], [2], [3]. Even random multidimensional rotations
are shown to exhibit good diversity distributions to combat
channel fading for uncoded transmission in [3]. The problem
of constructing general coded modulation schemes over multi-
dimensional signal sets obtained by rotating classical complex-
plane signal constellations has recently been studied in [4] for
block fading channels withB fading blocks.

Despite the benefits of rotation overB fading blocks, they
induce large decoding complexity due to the inter-symbol
interference (ISI) caused by rotated constellations. A prob-
lem here is related to the complexity of optimum decoding,
i.e., maximum likelihood (ML) receiver interfaces exhibita
complexity that grows exponentially with the modulation size
and the dimension of rotation (B), and becomes quickly
unpractical as either parameter is large. In [3], a suboptimal
MMSE equalizer with decision feedback is proposed and it
is shown to achieve good performance without destroying the
high diversity order in the rotated constellation. In [5], the
sphere decoding is employed to avoid exhaustive search over
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all candidate points. However, the structures in [3] and [5]
were proposed for uncoded rotations. When coded modulation
is used, the code trellis structure has to be incorporated and
soft information should be provided to the decoder, which
further complicates the problem. As a remedy to this problem,
in [4], the use of rotations with dimension smaller than the
number of fading blocks was considered. The intuition behind
this idea is that the channel code itself can help to achieve full
diversity and sometimes rotations of smaller dimension might
be sufficient. However, for some rate values and constellation
sizes, using rotations with small dimensions may not be
sufficient to achieve optimal rate-diversity tradeoff, i.e., the
rotations of large dimensions might be necessary to attain
full diversity order and the decoding complexity has still
exponential dependence on the dimension of rotation. Soft-
output sphere decoding technique for rotated constellation was
proposed in [6], but it still shows some undesirable limitations
in practice.

In this paper, we propose an iterative receiver structure
with reasonable complexity for coded modulation schemes
with rotated constellations. The proposed detector is based on
iterative forward and backward filtering followed by a channel
decoder that works by using preliminary soft values of the
coded symbols. Since the reliability of coded symbols from
the decoding process are used in deriving the jointly optimal
forward and backward filters, the filters employed in this work
have a different structure from that of previous interference-
cancellation based turbo equalizers, such as [7], [8], [9].It
has been observed that the proposed scheme yields a very
close performance to the outage probability with reasonable
complexity for rotated constellations. The benefits that rotation
brings in terms of diversity exponent is justified without
compromising the decoding complexity when compared to the
optimal ML based structures with exponential complexity.

This paper is organized as follows. In Section II, the system
model is described. In Section III, iterative decision feedback
equalization technique for decoding of rotated constellations is
discussed in detail. In Section IV, iterative decoding structure
concatenated to equalization stage is explained. Finally,simu-
lation results and concluding remarks are presented in Section
V and Section VI respectively.

II. SYSTEM MODEL

The following notation is used throughout the paper. Bold-
face upper-case letters denote matrices and scalars are denoted
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by plain lower-case letters. The superscript(·)∗ denotes the
complex conjugate for scalars and(·)H denotes the conjugate
transpose for vectors and matrices. Then× n identity matrix
is shown withIn. The autocorrelation matrix for a random
vectora is Ra = E{aaH} whereE{·} stands for the expected
value operator. The(i, j)th element of a matrixA is denoted
by A(i, j) and theith element of a vectora is denoted byai.

This paper considers block based transmission as in [10],
[11], [8]. During the transmission of one block, the channel
is assumed to be constant and it changes independently from
block to block. Without dealing with the channel estimation
problem, the channel is assumed to be perfectly known at each
block transmission.

Assuming symbol rate sampling, the discrete time baseband
equivalent model of the point-to-point single-input single-
output block fading channel withB fading blocks can be
written as [12],

yk = Dak + nk, k = 0, 1, . . . , N − 1, (1)

whereN is the codeword length (block length) andD is a
diagonalB × B matrix with main entries,di, i = 1, . . . , B,
i.e.,D = diag(d1, . . . , dB). ak = [a1

k, . . . , aB
k ]T is the portion

of the transmitted codeword at timek andyk = [y1
k, . . . , yB

k ]T

is the corresponding received vector at timek. Main diagonal
entries ofD, di’s are the fading coefficients which are in-
dependent zero-mean circularly symmetric complex Gaussian
(ZMCSCG) random variables with variance 1. Block fading
model is considered and thus the channel matrices are assumed
to be constant during a coherence interval significantly larger
than a duration needed for the transmission of one block [13]
and channel state information at transmitter (CSIT) is not
available. Noise vectorsnk are also taken as ZMCSCG white
(spatially and temporally) noise with varianceN0.

We consider thatak ’s are obtained via the rotation of the
symbols, i.e.,

ak = Vxk, k = 0, 1, . . . , N − 1, (2)

where xk = [x1
k, . . . , xB

k ]T is the vector of complex-plane
signal constellation symbols that is rotated by theB × B

rotation matrixV. The rotation matrix is unitary, i.e.,VVH =
IB and applied uniformly throughout transmitted block.

The codewordsX = [x0, . . . ,xN−1] form a coded modu-
lation schemeχ ⊂ CB×N . In particular, we consider thatχ
is obtained as the concatenation of a binary code of rater

and a modulation over the signal constellationS ∈ C with
M = log2 |S|. The rate in bits per channel use of this scheme
is R = rM . After the transmitted signal block has been
rotated, one can get the equivalent channel from (1) and (2)
as

yk = Hxk + nk, k = 0, 1, . . . , N − 1, (3)

where H = DV. This form resembles to the baseband
equivalent form of MIMO channel. Therefore, we will call
our structure as space-time decoder hereafter and construct
our receiver based on (3) in Section III.

When no rotations are used, the optimal diversity reliability
exponent is given by the Singleton bound for a given rateR

(bits per channel use) and signal constellationM as

d∗χ = 1 +

⌊

B

(

1 −
R

M

)⌋

(4)

for B Rayleigh faded blocks. This value is an upper bound
for the block-diversity of any coded modulation schemeχ ⊂
CB×N with rate R and constellationS ∈ C with M =
log2 |S|. A code is block-wise maximum-distance separable
(MDS) if it achieves the maximum diversity order given in
(4) [12], [4].

It was shown in [4] that the optimal diversity reliability
exponent achieved by random Gaussian codes can also be
achieved by random coded modulation schemes concatenated
with a full-diversity rotation of dimensionB when R < M .
In this case, the optimal reliability exponent is given by

d∗ = B (5)

which is the available degrees of freedom in the channel.
The rotation of dimensionB takes care of achieving full
diversity while the coding gain is left to the outer coded
modulation scheme overS and, so for rotated schemes, the
MDS constraint on the code is relaxed [4].

As it will be seen in Section V, simple rotations like DFT
which is not full-diversity rotation may be sufficient to reach
optimal diversity orderB in coded schemes, since the code
itself help to achieve maximum reliability exponent. In other
words, the optimal diversity order in (5) is achieved by both
coded modulation and the rotation in this case.

III. I TERATIVE DECISION FEEDBACK EQUALIZATION

(DFE) FOR ROTATED CONSTELLATIONS

We consider iterative space-time decoder with soft decision
feedback in this paper. Since both equalization and decoding
processes can be performed in each iteration, turbo principle
can be applied as done in [7], [8], [9]. In Fig. 1, an exemplary
receiver structure is shown for iterative decision feedback
equalizer (DFE).

Fig. 1. Iterative Decision Feedback Equalization (DFE) anddecoding for
rotated constellations

One can write the output from the DFE for thekth vector
in the block in theith iteration as

x̃
(i)
k = (W(i))Hyk − (F(i))H x̂

(i−1)
k (6)

for k = 0, . . . , N − 1. W(i)’s and F(i)’s are forward and
feedback filters with sizesB × B and x̂

(i−1)
k ’s are soft deci-

sions from the previous iteration. When the filters are designed
based on the MMSE criterion and the information bearing
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signals are Gaussian, this structure is information theoretically
optimum as stated in [14]. The first term in (6) is actually
the feedforward estimate of thekth transmitted vector. In (6),
x̂

(i−1)
k ’s are the soft feedback decisions from the previous

iteration and they are utilized at the feedback filtering process
to improve the estimate ofxk. The forward and backward
filter matrices are jointly optimized and found according
to the MMSE criterion given byE

{

∑N−1
k=0 ||x̃

(i)
k − xk||

2
}

presented in [10], [11].
The nth component of the estimation is not used in the

feedback equalization of thenth component of the received
vector, and so we impose the following condition on the
feedback filter

F(i)(n, n) = 0, n = 1, . . . , B (7)

since, by imposing this constraint, one can avoid self-
subtraction of the desired symbol by its previous estimate.

The Lagrange multiplier method can be used to obtain
optimal filter coefficients. Lagrangian vectors and the cor-
responding scalar constraints (Lagrangian function) can be
written as

Γ(i) = diag
[

Γ
(i)
1 , . . . , Γ

(i)
B

]

(B×B)
,

Lagrangian(Γ(i)) =

B
∑

n=1

(F(i)(n, n))∗Γ(i)
n (8)

Due to an interleaving operation both in time and space, we
can assume that,

E{xk(xl)
H} = EsInt

δkl, for k, l = 0, . . . , N − 1, (9)

whereδkl is the delta function which is 0 for allk but k = l.
Some important correlation matrices used by the forward and
feedback filters are defined for theith iteration as

P(i) = E{xk(x̂
(i−1)
k )H}, B(i) = E{x̂

(i−1)
k (x̂

(i−1)
k )H}

(10)
for k = 0, . . . , N − 1. To simplify the computation of
the filter coefficients, feedback decisions are assumed to be
independent. Furthermore, due to interleaving operation of
the coded symbols, feedback decisions are assumed to be
uncorrelated with the symbols transmitted at different block or
symbol time. It is further assumed that the reliability matrices
of the decision feedback are the same for allk, i.e.,

E{xk(x̂
(i−1)
l )H} = 0, E{x̂

(i−1)
k (x̂

(i−1)
l )H} = 0, for k 6= l

(11)
E{xm

k (x̂n
k )∗} = ρmδmn, E{x̂m

k (x̂n
k )∗} = βmδmn (12)

for m, n = 1, . . . , B and the expectations are independent of
symbol indexk. Then, we can write

P(i) = diag[ρ1, . . . , ρB] , B(i) = diag[β1, . . . , βB] . (13)

This assumption makes the forward and backward filters inde-
pendent of time indexk and, so the block processing on each
received signal can be implemented effectively. This can be
achieved by simply averaging the correlations of soft feedback
decisions from the previous iteration as will be done in Section
IV. These are standard and reasonable assumptions as stated

in [10], [7], [8] since the average symbol error probabilityis
approximately the same for each symbol in a large block with
quasi-static fading. Calculation of the correlation matricesP(i)

andB(i) will be done in Section IV.
After taking the gradient of the MMSE cost function and the

Lagrangian with respect to the rows of(W(i))H and(F(i))H ,
equating the gradients to the zero vector, taking expectations
and combining vectors into single matrix equations forn =
1, . . . , B, one can obtain the following matrix equations giving
the optimal forward and backward filter matrices

RyW
(i) = H

[

EsIB + P(i)F(i)
]

(14)

B(i)F(i) = (P(i))H
[

HHW(i) − IB

]

− Γ(i) (15)

where

Ry = E{yk(yk)H} =
(

HHHEs + N0IB

)

(16)

and Γ(i) can be obtained from the constraint in (7). By
substituting W(i) into (15) and using the constraint, the
Lagrangian terms given in (8) and backward filter matrices
can be readily found after some calculations as,

Γ(i)
n =

[

A(i)(n, :)D(i)(:, n)
]

A(i)(n, n)
, n = 1, . . . , B (17)

F(i) = A(i)
[

D(i) − Γ(i)
]

, (18)

where

A(i) =
[

B(i) − (P(i))HHHR−1
y

HP(i)
]−1

, (19)

D(i) = (P(i))HHHR−1
y

HEs − (P(i))H , (20)

A(i)(n, :) is the n−th row of A(i), D(i)(:, n) is the n−th
column ofD(i) and forward filterW(i) can be obtained from
(14).

IV. I TERATIVE DECODING

In this section, we will calculate the log-likelihood ratios
(LLR) and soft decisions of the coded symbols to be used in
decision feedback. BPSK modulation is assumed for simplic-
ity, but the extension to other M-ary or M-PSK modulations
is straightforward. At each iteration, extrinsic information is
extracted from detection and decoding stages and is then used
as a priori information in the next iteration, just as in turbo
decoding. The soft output from the DFE in theith iteration
after (6) can be written as,

x̃
m (i)
k = µ(i)

m xm
k + η

m (i)
k (21)

for k = 0, . . . , N − 1 and m = 1, . . . , B. In this case,
the equalized channel in (21) can be considered as a quasi-
parallelized channel and the LLR for themth component of
the kth transmitted symbol can be written as

λ
m (e)
k = loge

P (x̃
m (i)
k |xm

k = +1)

P (x̃
m (i)
k |xm

k = −1)
. (22)

The LLR termλ
m (e)
k is the extrinsic information that can be

obtained from the equalizer output. An a priori probability
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ratio λ
m (p)
k (loge

P (xm

k
=+1)

P (xm

k
=−1) ) is given by the decoder as the

intrinsic information obtained from the previous iteration [10],
[7] and used to construct a soft estimate of the coded symbol
xm

k . The extrinsic information given in (22) can be expressed
as,

λ
m (e)
k =

4Re{(µ(i)
m )∗x̃

m (i)
k }

E{|ηm
k |2}

(23)

by using the equivalent complex amplitude,µ
(i)
m of xm

k at the
output of the equalizer and the residual interference power,
E{|η

m (i)
k |2}. These values can be easily found in terms of

channel matrices, forward and backward filter coefficients and
correlation matrices as done for the SISO systems in [10],
[7]. While computing the LLRs, we resort to simplification of
the decoding algorithm by neglecting the correlation existing
between the residual noise terms, i.e., theηm

k ’s are taken
as uncorrelated form = 1, . . . , B as done in the decoding
stage of [8] for flat fading MIMO channel and the residual
interference is further approximated by a Gaussian distribution
as in [10], [7]. It can be shown thatµ(i)

m and E{|η
m (i)
k |2}

values do not depend on symbol time indexk, so these values
are calculated only once for the decoding of one block in each
iteration, which reduces the complexity significantly.

Soft feedback decisions,̂xm
k for the DFE can be taken

as tanh
(

1
2λ

m (p)
k

)

for Es = 1, m = 1, . . . , B and k =

0, . . . , N − 1 as done in [7], [8], [10]. The non-zero diagonal
entries of the correlation matricesP(i) andB(i) in (10) used
by the forward and backward filters can be calculated by using
the following approximation,

ρk,m , E{xm
k (x̂m

k )∗} = E{E{xm
k }(x̂m

k )∗} = |x̂m
k |2 (24)

ρm = βm =
1

N

N−1
∑

k=0

ρk,m (25)

E{xm
k } was taken aŝxm

k and this is a common assumption
in various turbo detection techniques as done in [10], [7] and
[15].

Correct estimation ofP(i) and B(i)’s are important since
our proposed DFE takes into account the reliability of the
feedback decisions and therefore alleviates the error propaga-
tion problem different than the original DFE studies assuming
perfect feedback decisions. In the first iteration,P(i) andB(i)

can be taken as0B, i.e, reliable feedback decisions are not
available. As the number of iterations incresases, both metrics
approach the asymptotic value:EsIB.

V. SIMULATION RESULTS

A. Outage Probability Calculations

For sufficiently large block lengthN , the packet error
probability of any coding scheme is lower bounded by the
information outage probability [13]. In this section, we will
compare the performance of our proposed decoding struc-
ture with the corresponding constrained outage probability
of rotated and unrotated schemes. The constrained capacity
can be found for the system model in (3) given the complex
vector setχ of cardinality |S|B = (2M )B (e.g., M-ary or M-
PSK modulations) similar to the derivations for block fading

channels in [12] and rotated schemes in [4] as

C
χ
rotated =

1

N

N−1
∑

k=0

1

B
I(xk;yk|H) =

log2 |S| −
1

B
En{

∑

xk∈χ

1

|S|B
log2

∑

xi∈χ

exp

(

−‖H(xk − xi) + n‖2 + ‖n‖2

N0

)

} (26)

where n is ZMCSCG vector and the corresponding outage
probability can be written as

P
rotated, χ
out (R) = P {Cχ

rotated < R} . (27)

Constrained outage probabilities will be used for perfor-
mance evaluation in the next part.

B. Performance Results

In Fig. 2, simulation results are depicted for block fading
channels with 3 fading blocks. Each block is Rayleigh faded
with unity power. The error probability of rotated and unro-
tated systems with QPSK modulation and their corresponding
outage probabilities are shown. A full block diversity attaining
blockwise concatenated convolutional code (BCCC) is used
for encoding for both rotated and unrotated cases as adapted
from [12]. The outer code is a rate-1

2 convolutional code
and the inner codes are 3 trivial rate-1 accumulators. The
information block length, i.e., the information bits entering
the outer encoder is taken as 148 per frame and the rate in
bits per channel use of this scheme isR = rM = 1

22 = 1.
A DFT matrix with size 3 is used to rotate discrete QPSK
inputs. Number of iterations inside the Turbo BCCC decoder
is set to 10 and the number of equalizer iterations at which
the forward and backward filters are updated by using the
reliability matrices is taken as 3.
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Fig. 2. Performance comparison of iterative DFE and outage for rotated and
unrotated constellations,B = 3

As it is seen from the outage probabilities, rotation enables
to capture largest possible reliability exponent achievedby
Gaussian inputs, namelyd∗ = B = 3, while unrotated inputs
haved∗χ = 2. It has been observed that there is approximately
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2 dB difference between the outage probability with rotated
inputs and the performance of decision feedback equalizer
(DFE) with 3 iterations. This gap from the outage is similar to
the gap between the outage and code performance of unrotated
inputs. Then, one can say that the spatial interference and the
error propagation problem inherent in decision feedback are
almost eliminated and it is possible to attain optimal diversity
of the block fading channel by using the proposed space-time
equalizer. These results show that the theoretical benefit of
rotation can be materialized by the proposed practical decod-
ing structure with significantly reduced complexity. Moreover,
it is seen that the simple DFT rotation is sufficient to attain
optimal diversity order in coded schemes since the code itself
helps achieve full diversity different than the uncoded rotations
in which the full diversity rotations are necessary to get the
optimal exponent.

Furthermore, it is interesting to note that the performance
improvement of the iterative DFE with soft feedback over the
linear MMSE filtering without decision feedback is about 3 dB
at PER=0.0001. There is also a loss in diversity as observed
in the reduced PER slope without decision feedback. The
suboptimality of linear equalizer prevents the system achieving
high diversity orders. One can say that the proposed equalizer
gains more diversity in comparison to the linear forward
MMSE filtering by a careful design of both the forward and
backward filters.

In Fig. 3, simulations are repeated for 6 fading blocks
and outage probabilities are constructed for Gaussian inputs,
BPSK inputs and rotated BPSK inputs with DFT rotation of
size 6. The same BCCC structure is used with rate-1

2 outer
convolutional encoder and 6 inner rate-1 accumulators. The
information block length is taken as 238. Similar results are
obtained as in Fig. 2 and the optimal reliability exponent
d∗ = 6 is achieved by coded modulation scheme with simple
DFT rotation, while unrotated inputs haved∗χ = 4 from
the singleton bound. The optimal diversity order and a close
performance to outage probability of rotated scheme at rate
R = 0.5 bits per channel use within 2 dB are achieved by our
practical decoding structure.
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Fig. 3. Performance comparison of iterative DFE and outage for rotated and
unrotated constellations,B = 6

Fig. 4 shows the benefits of rotations by comparing the
performance of the proposed iterative DFE for rotated QPSK
inputs and unrotated code performances for 8 fading blocks.
DFT rotation and BCCC structure with rate-1

2 outer convo-
lutional encoder and 8 inner rate-1 accumulators are used.
The information block length is taken as 318. The maximum
diversity order, namelyd∗ = 8 is achieved by the iterative
DFE with soft feedback since the performance of iterative
DFE shows the same slope as outage with Gaussian inputs,
while the code performances with unrotated inputs can get
d∗χ = 5. However, the gap between rotated and unrotated
schemes may not be so significant at moderate PER values
and even performance of the rotated scheme with the use
of suboptimal non-iterative MMSE equalizer is below the
performance of unrotated schemes. Therefore, for channels
with large diversity order, one may not observe a considerable
benefit of rotated constellations over some PER values. One
has to be careful while choosing decoding architecture, since
the use of non-iterative suboptimal structures may destroythe
high diversity benefits induced by rotated constellations due
to residual spatial interference.
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Fig. 4. Performance comparison of iterative DFE and outage for rotated and
unrotated constellations,B = 8

VI. CONCLUSION

We have studied the block-fading channels with rotated
signal constellations. Although rotated schemes can provide
large diversity to combat fading, demodulation is prohibitive
for large number of fading blocks and combined with coded
modulations. We have proposed an iterative MMSE type de-
coding structure based on soft decision feedback in this paper.
The proposed architecture shows a very close performance
to the outage probability with rotated inputs and achieves the
optimal diversity order attained by Gaussian inputs. Therefore,
the theoretical benefit of rotated constellations is captured by
the proposed structure with significantly reduced complexity.
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