Iterative Decision Feedback Equalization and
Decoding for Rotated Multidimensional
Constellations in Block Fading Channels

Gokhan M. Giivensen, ADzgirr Yilmaz

Abstract— It is known that rotated multidimensional constella- all candidate points. However, the structures in [3] and [5]
tions can be used effectively to achieve full-rate and fulliversity \yere proposed for uncoded rotations. When coded modulation
transmission in block fading channels. However, the optima g \;seq, the code trellis structure has to be incorporated an

decoding complexity is exponential with the number of fadi . . - .
blocks (%r degreesyof fregdom). In this paper, we propose@ a SOft information should be provided to the decoder, which

reduced-complexity iterative receiver structure operatng on a further complicates the problem. As a remedy to this problem
block basis for coded modulation schemes with rotated const-  in [4], the use of rotations with dimension smaller than the
lations. The proposed detector is based on iterative forwat and  number of fading blocks was considered. The intuition bethin
backward filtering followed by a channel decoder that uses a g jgea is that the channel code itself can help to achiete f
priori log-likelihood ratios (LLR) of coded symbols. Forward and diversity and sometimes rotations of smaller dimensionhini
feedback filters are jointly optimized according to the minimum y g
mean square error (MMSE) criterion to minimize the spatial D€ sufficient. However, for some rate values and constetiati
interference induced by rotation. It is observed that the poposed Sizes, using rotations with small dimensions may not be
structure achieves full diversity and performance close twutage sufficient to achieve optimal rate-diversity tradeoff,.,i.the
probability for rotated inputs even with simple Discrete Fourier rotations of large dimensions might be necessary to attain
Transform (DFT) rotations. - - . . .
_ _ full diversity order and the decoding complexity has still
Index Terms—Rotated constellations, block-fading channel, exponential dependence on the dimension of rotation. Soft-
decision feedback equalization, diversity, outage, singlon bound, output sphere decoding technique for rotated constefiatias
coded modulation, iterative decoding, soft feedback . A . .
proposed in [6], but it still shows some undesirable liniitas
in practice.
[. INTRODUCTION In this paper, we propose an iterative receiver structure

Rotated multidimensional constellations with uncoded mot/ith reasonable complexity for coded modulation schemes
ulation has been studied and shown to be an effective ngh r_otated constellations. The _proposed detector isdase
to attain full-rate and full-diversity transmission in fag itérative forward and backV\_/ard f||te_r|n_g followed by a cheahn
channels [1], [2], [3]. Even random multidimensional razas decoder that works by using preliminary soft values of the
are shown to exhibit good diversity distributions to comb&°ded symbols. Since the reliability of coded symbols from
channel fading for uncoded transmission in [3]. The problefi€ decoding process are used in deriving the jointly ogtima
of constructing general coded modulation schemes ovei-mufprward and backward filters, the filters employed in this kvor
dimensional signal sets obtained by rotating classicalptexa have a different structure from that of previous interfeeen
plane signal constellations has recently been studied]ifof4 cancellation based turbo equalizers, such as [7], [8], i9].
block fading channels wittB fading blocks. has been observed that the proposed scheme yields a very

Despite the benefits of rotation ové fading blocks, they close pe_rformance to the outage probability Wlth rea'_scmabl
induce large decoding complexity due to the inter-symb§PMPplexity for rotated constellations. The benefits théition
interference (ISI) caused by rotated constellations. AbproPrings in terms of diversity exponent is justified without
lem here is related to the complexity of optimum decoding@MpPromising the decoding complexity when compared to the
i.e., maximum likelihood (ML) receiver interfaces exhilait OPtimal ML based structures with exponential complexity.
complexity that grows exponentially with the modulatiomesi ~ This paper is organized as follows. In Section Il the system
and the dimension of rotationB), and becomes quickly model is described. In Section Ill, iterative decision fleack
unpractical as either parameter is large. In [3], a Subcmtinﬁqualization technique for decoding of rotated consieltatis
MMSE equalizer with decision feedback is proposed and giscussed in detail. In Section 1V, iterative decoding citice
is shown to achieve good performance without destroying tR@ncatenated to equalization stage is explained. Firifty-
high diversity order in the rotated constellation. In [Shet lation results and concluding remarks are presented indect
sphere decoding is employed to avoid exhaustive search o¥efNd Section VI respectively.
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by plain lower-case letters. The superscript: denotes the (bits per channel use) and signal constellatidnas
complex conjugate for scalars afd” denotes the conjugate R
transpose for vectors and matrices. The n identity matrix dy =1+ {B (1 — M)J 4)

is shown withI,. The autocorrelation matrix for a random _ _ _

vectora is R, = E{aa’ } whereE{-} stands for the expectedfor B Raylelgh fad_ed blocks. This value is an upper bound
value operator. Théi, j)'* element of a matrixA is denoted for the block-diversity of any coded modulation scheme:

by A(i, j) and thei'" element of a vectoa is denoted by:!. CP*" with rate R and constellationS € C with M =

This paper considers block based transmission as in [ﬂ%}‘\g2 |S]. A code is block-wise maximum-distance separable
[11], [8]. During the transmission of one block, the channdMDS) if it achieves the maximum diversity order given in
is assumed to be constant and it changes independently fl{)%[lz]’ [4]- ) . ) . I
block to block. Without dealing with the channel estimation !t Was shown in [4] that the optimal diversity reliability

problem, the channel is assumed to be perfectly known at e&fpOnent achieved by random Gaussian codes can also be
block transmission. achieved by random coded modulation schemes concatenated

. . . . with a full-diversity rotation of dimensioB when R < M.

Assuming symbol rate sampling, the discrete time baseb NAhis case. the optimal reliability exponent is given by
equivalent model of the point-to-point single-input sieg| '

output block fading channel wittB fading blocks can be d*=1B (5)

written as [12], which is the available degrees of freedom in the channel.

yr = Day + ng, k=0,1,...,N —1, (1) The rotation of dimensionB takes care of achieving full
diversity while the coding gain is left to the outer coded

where N is the codeword length (block length) addl is a modulation scheme ove$ and, so for rotated schemes, the

dlag](:))nilg_ x 5 matrlz with mjunlentrlesgi,Tz‘_ :thL T ’tB’ MDS constraint on the code is relaxed [4].
e, D =diagds,...,dp). ar = [a, ...,a ]IS the portion gy iy e seen in Section V, simple rotations like DFT
of the transmitted codeword at tinkeandy = [y;., . - ., yi. ]

which is not full-diversity rotation may be sufficient to e

IS th.e corresporjdlng rece|ved.vector at t}kld\/lam .d|agona_l optimal diversity orderB in coded schemes, since the code
entries of D, d;'s are the fading coefficients which are in-

: : itself help to achieve maximum reliability exponent. In @th
dependent zero-mean c_|rcularly .symmgtnc complex Gaus.‘s@ords, the optimal diversity order in (5) is achieved by both
(ZMCS_CG) ra_ndom variables with variance 1_. Block fadmgOded modulation and the rotation in this case.
model is considered and thus the channel matrices are adsume
to be constant during a coherence interval significantigdar
than a duration needed for the transmission of one block [13] !l- | TERATIVE DECISION FEEDBACK EQUALIZATION
and channel state information at transmitter (CSIT) is not (DFE) FORROTATED CONSTELLATIONS
available. Noise vectors,, are also taken as ZMCSCG white We consider iterative space-time decoder with soft degisio
(spatially and temporally) noise with variané@. feedback in this paper. Since both equalization and degodin

We consider thah,’s are obtained via the rotation of theProcesses can be performed in each iteration, turbo ptencip
symbols, i.e., can be applied as done in [7], [8], [9]. In Fig. 1, an exemplary
receiver structure is shown for iterative decision fee#tbac

ap = Vxy, k=0,1,...,N —1, (2) equalizer (DFE).

wherex;, = [z,...,25]T is the vector of complex-plane

signal constellation symbols that is rotated by tBex B Torward Ch
. . . . . . H — 51T A annel

rotation matrixV. The rotation matrix is unitary, i.eVV* = Received Filtering Decoder
Iz and applied uniformly throughout transmitted block.  yecior Signal |

The codewordX = [xq,...,xy—1] form a coded modu- Soft Estimate
lation schemey ¢ CB*N. In particular, we consider that of the Coded Symbols
is obtained as the concatenation of a binary code of rate Teodback |
and a modulation over the signal constellatiSne C with Filtering
M =1log, |S|. The rate in bits per channel use of this scheme
is B = rM. After the transmitted signal block has beermig. 1. Iterative Decision Feedback Equalization (DFE) aegoding for
rotated, one can get the equivalent channel from (1) and (2ipted constellations

5

as
yi = Hxp, + ng, k=0,1,...,N—1, @) One can vyrite the output from the DFE for thé" vector
in the block in thei'” iteration as
where H = DV. This form resembles to the baseband ~ (i) ()N H (i) H o (i~ 1)
equivalent form of MIMO channel. Therefore, we will call X, = (W) Ty, — (F) 7% (6)

our structure as space-time decoder hereafter and constfgg . = 0,...,N — 1. W(®'s and F()’s are forward and

our receiver based on (3) in Section |II. feedback filters with size® x B andx\'"’s are soft deci-
When no rotations are used, the optimal diversity religbili sions from the previous iteration. When the filters are desig
exponent is given by the Singleton bound for a given date based on the MMSE criterion and the information bearing



signals are Gaussian, this structure is information thealéy in [10], [7], [8] since the average symbol error probability
optimum as stated in [14]. The first term in (6) is actuallapproximately the same for each symbol in a large block with
the feedforward estimate of thié" transmitted vector. In (6), quasi-static fading. Calculation of the correlation metsiP (%)
5{,8’1)’5 are the soft feedback decisions from the previowdB(® will be done in Section IV.

iteration and they are utilized at the feedback filteringgess  After taking the gradient of the MMSE cost function and the
to improve the estimate ok,. The forward and backward Lagrangian with respect to the rows @V () and (F(®)#,
filter matrices are jointly optimized and found accordingquating the gradients to the zero vector, taking expecisti
to the MMSE criterion given byE{Z]kV:}Jl ||5¢§;'> _ X,€||2} and combining vectors into single matrix equations for

presented in [10], [11]. 1,..., B, one can obtain the following matrix equations giving
The nt" component of the estimation is not used in thg“e optimal forward and backward filter matrices
feedback equalizatio_n of thet" compoqent of th_e_ received RyW(i) —-H {ESIB T P(i)F(i)} (14)
vector, and so we impose the following condition on the
feedback filter BOFG — (P(i))H [HHw(i) _ IB} _7® (15)
() — _
FW(n,n)=0,n=1,...,B @) Where

since, by imposing this constraint, one can avoid self-
subtraction of the desired symbol by its previous estimate.

The Lagrange multiplier method can be used to obtagnd I'” can be obtained from the constraint in (7). By
optimal filter coefficients. Lagrangian vectors and the cosubstituting W into (15) and using the constraint, the
responding scalar constraints (Lagrangian function) can bagrangian terms given in (8) and backward filter matrices
written as can be readily found after some calculations as,

£ diag[r{’...., 1] (A (n, ) DO (:, )]
A (n,n) ’

B
Lagrangian(T'V) = Z(F(i) (n,n)) TP (8) FO = A® {D(i) - I‘(i)} ; (18)
n=1

Ry = E{yi(yx)"} = (HH" E, + NoIp) (16)

(BxB)' i = n=1,...,B (17)

Due to an interleaving operation both in time and space, \)oglere )
can assume that, A — [B(i) _ (P(i))HHHR;lHP(i)} - ’ (19)
E Y = B1,,6p, fork,1=0,....,.N -1, (9 , , ,
{Xk(Xl) } kl ( ) D(z) _ (P(l))HHHR;IHES _ (P(l))H, (20)
whered,; is the delta function which is O for alt but k& = 1.

Some important correlation matrices used by the forward afdl” (;2) is the n—th row of A®), DU(:,n) is the n—th
feedback filters are defined for thi# iteration as column of D and forward filterW () can be obtained from

. -~ _ o (14).
P(l) — E{Xk(f(](; 1))H}7 B(z) _ E{&EJ 1)(5(](; 1))]-]}
(10) IV. | TERATIVE DECODING

for k ~ O"'.".N — 1 To 5|mp||f)_/ _the computation of In this section, we will calculate the log-likelihood ratio
the filter coefficients, feedback decisions are assumed to ?_R) and soft decisions of the coded svmbols to be used in
independent. Furthermore, due to interleaving operatibn y

the coded symbols, feedback decisions are assumed to nglon feedback. BPSK modulation is assumed for simplic-

; ) . ity,”but the extension to other M-ary or M-PSK modulations
uncorrelgted W'Fh the symbols transmitted at ol_lffe_r_ent_blor is straightforward. At each iteration, extrinsic infornaet is
symbol time. It is further assumed that the reliability nces

e extracted from detection and decoding stages and is theh use
of the d?CIS'On feedback are_ the sgme forkall.e., as a priori information in the next iteration, just as in torb
E{x,&"Hy =0, E{FVV&RITY)H) =0, fork #1  decoding. The soft output from the DFE in thié iteration

(11) after (6) can be written as,

E{z;*(@2)"} = pmOmn, E{2(21)"} = Bmbmn  (12) ‘%Zl (@ _ M%)le + 77;” (@) (21)
for m,n = 1,..., B and the expectations are independent %r k= 0. . N—1andm = 1.....B. In this case,

symbol indexk. Then, we can write the equalized channel in (21) can be considered as a quasi-

PY =diag[p:,...,ps], BY =diag[pi,...,3s]. (13) parallelized channel and the LLR for the'” component of

. . i _ the k'* transmitted symbol can be written as
This assumption makes the forward and backward filters inde-

pendent of time indeX and, so the block processing on each \m (@
received signal can be implemented effectively. This can be k
achieved by simply averaging the correlations of soft feettb

decisions from the previous iteration as will be done in Bect The LLR term);" () is the extrinsic information that can be
IV. These are standard and reasonable assumptions as stalt¢dined from the equalizer output. An a priori probability

Py Ve = +1)
Py Vlap = -1)

= log, (22)



ratio A" () (log, W) is given by the decoder as thechannels in [12] and rotated schemes in [4] as

(zp=-1)
intrinsic information Obtained from the previous iteratid 0], N—1
[7] and used to construct a soft estimate of the coded symbol CX roted = E Z lI(Xk;yklﬂ) =
x7'. The extrinsic information given in (22) can be expressed N =0 B
as, 1 1
(1) ~m (i) log, [S| — — En targ lo
AR 4Re{éﬂm i 23) 8151~ 3 {X;X S8 82 XXE:X
e xp (ZIFLGs = x0) 0 + )Y 26)
by using the equivalent complex amplitudé;) of 2" at the No

output of the equalizer and the residual interference POWEGIhere n is ZMCSCG vector and the corresponding outage
E{|n" 121, These values can be easily found in terms Wrobability can be written as

channel matrices, forward and backward filter coefficients a

correlation matrices as done for the SISO systems in [10], Pyt X(R) = P{CX, 0peq < R} (27)
[7]. While computing the LLRs, we resort to simplification of
the decoding algorithm by neglecting the correlation éxist
between the residual noise terms, i.e., tjg¢'s are taken

Constrained outage probabilities will be used for perfor-
mance evaluation in the next part.

as uncorrelated forn = 1,..., B as done in the decoding
stage of [8] for flat fading MIMO channel and the residuaP- Performance Resuits
interference is further approximated by a Gaussian digich In Fig. 2, simulation results are depicted for block fading

as in [10], [7]. It can be shown that'y and E{|n]" ’|2} channels with 3 fading blocks. Each block is Rayleigh faded
values do not depend on symbol time indexso these values with unity power. The error probability of rotated and unro-
are calculated only once for the decoding of one block in eatdted systems with QPSK modulation and their corresponding
iteration, which reduces the complexity significantly. outage probabilities are shown. A full block diversity attag

Soft feedback decisions;)" for the DFE can be taken blockwise concatenated convolutional code (BCCC) is used
as tanh %)\ZT (P? for E, = 1, m = 1,...,B andk = for encoding for both rotated and unrotated cases as adapted

0,...,N =1 as done in [7], [8], [10]. The non-zero diagonaf’om [12]. The outer code is a rate-convolutional code
entries of the correlation matric@®® andB( in (10) used and the inner codes are 3 trivial rate-1 accumulators. The

by the forward and backward filters can be calculated by usiffformation block length, i.e., the information bits entegr
the following approximation, the outer encoder is taken as 148 per frame and the rate in
bits per channel use of this schemeHRs= rM = %2 = 1.
prm = E{af"(27)"} = E{E{2"}(@")*} = 127> (24) A DFT matrix with size 3 is used to rotate discrete QPSK
N—1 inputs. Number of iterations inside the Turbo BCCC decoder
Pm = B = 1 Z Pk (25) is set to 10 and the number of equalizer iterations at which
N =0 the forward and backward filters are updated by using the

E{z7'} was taken ag]’ and this is a common assumptior{ellablllty matrices is taken as 3.

in various turbo detection techniques as done in [10], [d ar ;

= = = Outage (Gaussian)
[15]' + = Outage, DFT rotation (R= 1 bit; hannel QPSK)
. . . i\ . . - = Outage, rotation = Its per channel use,
Correct estimation o and B()’s are important since —+— DFT rotation, DFE~soft (3 heration)
our proposed DFE takes into account the reliability of th [ _ —#é— DFT rotation, linear MMSE filtering (no iteration)
.. . RS - © = Unrotated out: R= 1 bit: h | use, QPSK
feedback decisions and therefore alleviates the erroragmp ™ [*<%:; % o o e per chameluse, QP8I0

tion problem different than the original DFE studies assigni
perfect feedback decisions. In the first iterati®i? andB(®
can be taken a®g, i.e, reliable feedback decisions are na
available. As the number of iterations incresases, bothicset
approach the asymptotic valug,Is.

(PER)

107°F

ror Rate

Packet Er

10°F

V. SIMULATION RESULTS
A. Outage Probability Calculations

For sufficiently large block lengthV, the packet error w7
probability of any coding scheme is lower bounded by thc
information outage probability [13]. In this section, We”WI Fig. 2. Performance comparison of iterative DFE and outagedtated and
compare the performance of our proposed decoding strurotated constellations3 = 3
ture with the corresponding constrained outage probwgbilit
of rotated and unrotated schemes. The constrained capacitis it is seen from the outage probabilities, rotation engble
can be found for the system model in (3) given the complé® capture largest possible reliability exponent achietgd
vector sety of cardinality|S|? = (2M)5 (e.g., M-ary or M- Gaussian inputs, namel{f = B = 3, while unrotated inputs
PSK modulations) similar to the derivations for block faglinhaved; = 2. It has been observed that there is approximately

SNR (Es/No, dB)



2 dB difference between the outage probability with rotated Fig. 4 shows the benefits of rotations by comparing the
inputs and the performance of decision feedback equalizegrformance of the proposed iterative DFE for rotated QPSK
(DFE) with 3 iterations. This gap from the outage is similar tinputs and unrotated code performances for 8 fading blocks.
the gap between the outage and code performance of unrotdd®d rotation and BCCC structure with rageouter convo-
inputs. Then, one can say that the spatial interferenceland lutional encoder and 8 inner rate-1 accumulators are used.
error propagation problem inherent in decision feedbaek arhe information block length is taken as 318. The maximum
almost eliminated and it is possible to attain optimal dsitgr diversity order, namelyl* = 8 is achieved by the iterative
of the block fading channel by using the proposed space-tid&E with soft feedback since the performance of iterative
equalizer. These results show that the theoretical benkfit@FE shows the same slope as outage with Gaussian inputs,
rotation can be materialized by the proposed practical dlecavhile the code performances with unrotated inputs can get
ing structure with significantly reduced complexity. Moveg  d; = 5. However, the gap between rotated and unrotated
it is seen that the simple DFT rotation is sufficient to attaischemes may not be so significant at moderate PER values
optimal diversity order in coded schemes since the codH itsand even performance of the rotated scheme with the use
helps achieve full diversity different than the uncodeations of suboptimal non-iterative MMSE equalizer is below the
in which the full diversity rotations are necessary to get thperformance of unrotated schemes. Therefore, for channels
optimal exponent. with large diversity order, one may not observe a considerab
Furthermore, it is interesting to note that the performan&enefit of rotated constellations over some PER values. One
improvement of the iterative DFE with soft feedback over thieas to be careful while choosing decoding architectureesin
linear MMSE filtering without decision feedback is about 3 dBhe use of non-iterative suboptimal structures may dedtrey
at PER=0.0001. There is also a loss in diversity as observaigh diversity benefits induced by rotated constellations d
in the reduced PER slope without decision feedback. The residual spatial interference.
suboptimality of linear equalizer prevents the systemecdhg
high diversity orders. One can say that the proposed equali 10’ g

. . . . d . = = = = Outage (Gaussian)
gains more diversity in comparison to the linear forwar :’:;\_.,_DFT rotation, DEE-soft (3 iteration)

MMSE filtering by a careful design of both the forward anc < To, | & DFT rotation, linear MMSE filtering (no iteration)
~ ~ _| = ® = Unrotated outage (R= 1 bits per channel use, QPSK)

backward filters. AP Unrotated, code performance
In Fig. 3, simulations are repeated for 6 fading block - '
and outage probabilities are constructed for Gaussiantsnpig
BPSK inputs and rotated BPSK inputs with DFT rotation c%
size 6. The same BCCC structure is used with fatedter &
convolutional encoder and 6 inner rate-1 accumulators. Tg
information block length is taken as 238. Similar results ag
obtained as in Fig. 2 and the optimal reliability exponerd
d* = 6 is achieved by coded modulation scheme with simp ;-
DFT rotation, while unrotated inputs hav§ = 4 from
the singleton bound. The optimal diversity order and a clo:
performance to outage probability of rotated scheme at r¢
R = 0.5 bits per channel use within 2 dB are achieved by ot " ! . L
practical decoding structure. SNR (Es/No, dB)

10 12

Fig. 4. Performance comparison of iterative DFE and outagedtated and
- - - Outage (Gaussian) unrotated constellations} = 8
- + = Qutage, DFT rotation (R= 0.5 bits per channel use, BPSK)

—o— DFT rotation, linear MMSE filtering (no iteration)
= © = Unrotated outage (R= 0.5 bits per channel use, BPSK)
Unrotated, code performance

VI. CONCLUSION

We have studied the block-fading channels with rotated
signal constellations. Although rotated schemes can geovi
large diversity to combat fading, demodulation is prolieit
for large number of fading blocks and combined with coded
modulations. We have proposed an iterative MMSE type de-
coding structure based on soft decision feedback in thismpap
The proposed architecture shows a very close performance
to the outage probability with rotated inputs and achiebes t
optimal diversity order attained by Gaussian inputs. Tioeeg

Fig. 3. Performance comparison of iterative DFE and outagedtated and the theoretical benefit of _rotaFed-gonstellations is cautury .
unrotated constellations3 = 6 the proposed structure with significantly reduced compjexi

Packet Error Rate (PER)

SNR (Es/No, dB)
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