
Design and Test Methodologies for Scaled Technologies

362 0740-7475/05/$20.00 © 2005 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

ACCORDING TO the 2001 International Technology

Roadmap for Semiconductors (http://public.itrs.net/

Files/2001ITRS/Home.htm), with feature sizes shrinking

to nanometer scale, clock frequencies reaching the multi-

GHz level, and supply voltages declining to the subvolt-

age range, effects of various noise sources are becoming

stronger than ever. Meanwhile, semiconductor device

noise margins are shrinking significantly. As a result,

nanometer circuits are becoming more vulnerable to sig-

nal integrity issues such as crosstalk and IR drop, as well

as radiation-induced transient soft errors. Even worse, as

this article demonstrates, different noise sources and fail-

ure mechanisms tend to interact, creating compound

effects that exacerbate the difficulty in analyzing and

designing reliable digital-circuit systems.

Significant research and technology developments

aim to ensure the reliability of nanometer chips.

Researchers have widely investigated analysis and opti-

mization techniques for signal integrity issues such as

crosstalk,1 IR drop,2 ground bounce,3 and substrate

noise4 in SoCs. In addition, the effects of process varia-

tions5 and manufacturing defects have drawn extensive

research interest because large uncertainties in device

parameters can lead to yield and performance degra-

dation. However, most noise analysis and prevention

techniques apply to a single noise source and therefore

cannot address the evolving reality of multiple inter-

acting noise sources. Moreover, even single-noise analy-

sis techniques are computationally inten-

sive, and the lack of scalability limits

their applicability to complex SoCs.

Nanometer circuits are also becom-

ing more vulnerable to radiation effects

and other sources of soft errors. Single-

event upsets (SEUs) caused by cosmic

ray neutrons or alpha particles6 severely impact field-

level product reliability. Simulation-based methods

adopted to analyze SEUs (IROC Technologies,

http://www.iroctech.com) are prohibitively time-con-

suming. Researchers have developed concurrent error

detection and concurrent circuit-hardening techniques

to protect circuits from SEUs.7,8 Although they offer fea-

sible solutions, these techniques require significant engi-

neering effort and design overhead. Recently,

Mohanram and Touba suggested partial protection,9 but

an efficient methodology for evaluating circuit robust-

ness wasn’t developed. Therefore, the selection of spots

to be hardened might not be optimal, and a design’s

most vulnerable region might not be protected. The

result is an insufficient partial protection solution.

Despite extensive research on individual noise

sources, few researchers have tried to develop analysis

techniques for combined noise and soft-error effects. As

this article demonstrates, different noise sources tend to

aggravate one another’s effects, making stand-alone noise

analysis results inaccurate. At the same time, the unpre-

dictable and transient nature of these noise effects makes

online detection and protection schemes inevitable,

because design and deterministic manufacturing testing

alone can no longer guarantee 100% robustness.

However, blindly applying hardening techniques to the

entire design incurs unacceptable design overhead.

Finally, as the circuit size drastically increases, simulation-

Soft-Spot Analysis: Targeting
Compound Noise Effects in
Nanometer Circuits

Soft-spot analysis identifies regions in a circuit that are most susceptible to
multiple noise sources and their compound effects so that designers can
harden those spots for greater robustness. HSpice simulation validates the
methodology’s quality, and demonstration on a commercial embedded
processor shows its scalability.

Chong Zhao and Sujit Dey

University of California, San Diego
Xiaoliang Bai

Cadence Design Systems



based approaches cannot complete within a reasonable

time. Therefore, a methodology that statically evaluates

the impact of compound noise effects on nanometer cir-

cuits and identifies the vulnerable regions is essential for

efficient and economical robust digital circuit design.

To overcome the challenges just cited, we propose an

efficient soft-spot analysis methodology aimed at com-

pound noise effects. Fundamentally different from tradi-

tional approaches that focus on the behaviors of random

and transient noise interference, our approach targets a

design’s noise immunity, an intrinsic circuit characteris-

tic that doesn’t depend on external noise interferences

but is closely related to the timing, logic, and electrical

features of the design that can be conveniently analyzed

during the early design phase. Instead of trying to predict

how and when different noise effects will occur without

enough information about the unpredictable sources, the

proposed methodology evaluates the probability that

noise occurring at different nodes in the circuit will cause

a system malfunction. This analysis is based primarily on

the circuit’s structural information and is applicable even

without specific knowledge of noise sources. Moreover,

any additional useful information about various noise

sources can enhance analysis accuracy.

Our methodology provides an overall vulnerability

distribution and reveals that the inherent noise toler-

ance of different circuit regions vary greatly. Designers

can then further investigate the most vulnerable nodes

through focused noise analysis, eliminating potential

noise effects through limited design modifications and

selective application of online hardening techniques.

As a result, the cost and effort of designing highly robust

circuits can shrink dramatically. Because our method-

ology is a static approach that doesn’t require dynamic

simulation or intensive computation, it can handle

large, complex circuits. Numerical results show that the

proposed methodology is accurate, efficient, and scal-

able to large and complex designs.

Compound effects of multiple noise
sources

Various physical mechanisms cause multiple noise

sources in nanometer circuits. Among the noise sources

that might coexist in a nanometer circuit are

■ crosstalk caused by signals switching on strongly

coupled wires,

■ IR drop and ground bounce caused by excessive

simultaneous current draw from the resistive/induc-

tive power grid,

■ substrate coupling noise, and

■ environmental variations such as soft errors induced

by particle strikes during chip operation.

Each of these effects can cause circuit failures; further-

more, as our simulations show, different noise sources

can combine to magnify their effects, greatly increasing

the possibility of errors.

In the circuit shown in Figure 1, because of coupling

capacitances Cx1 and Cx2 between the victim net (in the

middle) and the two aggressor nets, when the input of

INV1 remains at 0, a 0 → 1 transition at the input of INV3

or INV5 will result in a negative crosstalk glitch on the

victim net, which will propagate to the input of a D-type

flip-flop (DFFV) through INV2. However, as shown by

INV2 input voltage V(xv) and output voltage V(dv) in

Figure 2a, even in the worst case when both aggressors

switch simultaneously in the same direction, the output

glitch of INV2 is not strong enough to be captured as a

stable logic error in the DFFV, so the DFFV remains at

the correct value—0 [V(qv) in Figure 2a]. However, if

a particle strikes the sensitive region of either INV1

(Figure 2b) or INV2 (Figure 2c) at a certain time, with

all the other conditions unchanged, an erroneous 1 is

latched in the DFFV. Our experiment models soft errors

as current sources10 between the drain of the MOS tran-

sistor and the output node. In another case, the same

crosstalk glitch that wasn’t strong enough to change the

state of DFFV is turned into a latched error by an IR drop

in the DFFV power line (Figure 2d). In all the failure

cases, the error effects are the same: an observable error

captured by the DFFV.

These experiments show that although the essential

physical mechanisms of these noise effects differ, they

can affect circuit behavior in a combined manner. A

single noise source that isn’t strong enough to affect

behavior might be intensified by other noise effects.

Therefore, a system exposed to multiple noise sources

becomes more vulnerable. Furthermore, simply exam-

ining the erroneous behavior won’t pinpoint the noise

source(s) causing the failure. Hence, methodologies

that try to address the effect of a single noise source

while ignoring other sources might be both overly opti-

mistic and inefficient. We propose a promising solution

that considers multiple noise sources and efficiently

evaluates a given design’s overall vulnerability.

Soft-spot-analysis methodology
Random occurrences and complex physical mecha-

nisms of noise and their interactions depend on many

363July–August 2005



Design and Test Methodologies for Scaled Technologies

364 IEEE Design & Test of Computers

1

0

1

0

0

INV3 INV4

INV1

INV5 INV6

INV2

Aggressor 1

Aggressor 2

Victim

Ra1 Ra2

Ra3 Ra4

Rv1 Rv2

Cx1

Cx2

xa1

xa2

xv

Clock

Clock

DFFA1

dv qv
DFFV

Clock

DFFA2

VDD − δ
IR drop

Figure 1. Example circuit showing compound noise effects.

V(xv)

V(dv)

V(qv)

V(xv)

V(dv)

V(qv)

V(xv)

V(qv)

V(dv)

V(xv)

V(dv)

V(qv)

1.5

1.0

0.5

0

V
ol

ta
ge

0 5×10−10 1.5×10−9 2.0×10−9 2.5×10−910−9

0 5×10−10 1.5×10−9 2.0×10−9 2.5×10−910−9

0 5×10−10 1.5×10−9 2.0×10−9 2.5×10−910−9

0 5×10−10 1.5×10−9 2.0×10−9 2.5×10−910−9

(a)

1.5

1.0

0.5

0

V
ol

ta
ge

(b)Time (seconds) Time (seconds)

1.5

1.0

0.5

0

V
ol

ta
ge

(c)

1.5

1.0

0.5

0

V
ol

ta
ge

(d)Time (seconds) Time (seconds)

Figure 2. HSpice simulation of single and compound noise effects: crosstalk only (a); crosstalk and

a particle strike on INV1 (b); crosstalk and a particle strike on INV2 (c); crosstalk and an IR drop in

the DFFV power line (d).



factors that cannot be precisely deter-

mined until the product is manufactured

and operating in a real environment. As

a result, the behaviors and aggregated

effects of various noise sources are

extremely difficult to predict during chip

design. However, using various EDA

tools, designers can effectively analyze

information about the design, such as tim-

ing feature, logic paths, and layout-

extracted electrical characteristics,

during the design phase. Together, these

factors influence the design’s noise

immunity, an intrinsic characteristic that

is independent of the external noise disturbances. By

studying these design features, we can estimate the abil-

ity of different regions in a design to resist potential noise

interferences, and we can predict the severity of func-

tional impact if a noise occurs. These ideas form the

basis of our soft-spot-analysis methodology.

For each node N in a given digital circuit, we define

the softness SN as its vulnerability to noise, reflected by

the node’s tendency to allow noise to propagate through

it with enough strength and proper timing to eventually

cause observable errors. An observable error is one that

is latched into a memory element and thus becomes a

stable erroneous logic value. The objective of our soft-

spot analysis is therefore to determine the magnitude of

SN for all circuit nodes and to identify a collection of soft

spots as the nodes with high softness values.

Not all noise occurring inside a digital circuit can

eventually cause functional errors. Three well-known

masking effects—timing masking, electrical masking,

and logic masking—all tend to prevent a noise from

causing observable errors. Correspondingly, SN should

reflect all three masking effects at a circuit node. First we

introduce novel methods to obtain numerical represen-

tations of all three masking effects, and then we calcu-

late SN as a function of the strengths of these factors.

Our current work focuses only on the glitch-type noise,

which we model as an electrical pulse with certain mag-

nitude and duration. A little additional effort and further

research will let us consider the delay-type noise as well.

Timing masking
Timing masking means that noise can cause an

observable error only if it is captured by a memory ele-

ment. To be captured, it must arrive at the memory ele-

ment’s input within a sampling window. For a DFF, the

sampling window is bounded by setup time tsu and hold

time th around the active clock edge, as shown on the

right side of Figure 3. To determine the required time

interval for noise at a node to reach a DFF within its sam-

pling window, we define the effective noise window

TWeff
N such that only noise existing at node N overlap-

ping with TWeff
N can reach at least one DFF during the

DFF’s sampling window. In other words, if a noise orig-

inates or arrives at node N before the start (or after the

end) of TWeff
N , it will reach all DFFs before the start (or

after the end) of their sampling window and will there-

fore not be captured by any DFF. As Figure 3 shows, the

TWeff
N of a specific path (p) is bounded by start time t N p

start

and end time tNp
end, determined by the worst-case longest

delay (∆Tp)max and best-case shortest delay (∆T p)min

from N to the DFF through p, respectively. If the clock

period is T, it is easy to see that tNp
start = T – tsu – (∆Tp)max

and t Np
end = T + th – (∆Tp)min.

Because there are usually multiple DFFs reachable

from node N through many logic paths, we use the max-

imum (latest) t Np
end and the minimum (earliest) t Np

start

among all paths to calculate TWeff
N . Let P be the collec-

tion of all possible paths through node N:

(1)

This TWeff
N gives a pessimistic timing requirement

for noise occurrences at node N and provides a mea-

surement of the timing masking effect’s strength: The

larger a node’s timing window, the more likely it is

that noise at this node will overcome the timing mask-

ing effect. This timing window requirement is an effi-

cient measurement of the timing characteristic of

glitch-type noise propagation. It’s possible to model

the delay effects of noise as variations in the derived

effective noise window, but this is beyond the scope

of this work.

TW t tN

p P

Np

p P

Np
eff end start= { }− { }

∈ ∈
max min

365July–August 2005

T

t Npt NpTW N

th

tsu
(∆T p)max

(∆T p)min

Clock

Effective noise window DFF
sampling
windowstart endefft Np

Figure 3. Calculating the effective noise window.



Electrical masking
Electrical masking means that noise must have enough

duration and amplitude to propagate through multiple

logic gates. We can represent the strength of a single gate’s

electrical masking effect by the gate’s noise rejection

curves (NRCs). Figure 4a shows an example of NRCs for

an inverter in a 0.18-micron cell library with different

capacitive loads. The x- and y-axes are the input noise’s

width and height. The curve is such that a glitch can prop-

agate through the gate with enough strength (character-

ized by a predefined threshold voltage) only if its shape

is in the region above the curve (the noise-sensitive

region). The region under the curve is the noise-immune

region. The NRC is also a function of the capacitive load

driven by the gate. With all other conditions unchanged,

the NRC is closer to the axes when driving a smaller load,

indicating that it is more vulnerable than the same gate

driving a greater load

capacitance.

We can view an NRC

as a representation of a

gate’s immunity to noise

caused by arbitrary noise

sources. In reality, the

nature of certain noise

sources, such as radiation

effects, might be com-

pletely unknown until

field operation, whereas

the effects of other noise

sources, such as crosstalk,

can be estimated on the

basis of the circuit’s RC

characteristics. If we can

insert information about those analyzable

noise sources into the NRC, we can use

the modified curves to measure the

remaining noise margin owing to those

unpredictable noise sources. We realize

this idea through the concept of a curve

shift.

The circuit shown in Figure 5 illus-

trates the curve-shift idea using crosstalk

as an example. Gates G1 and G4 are iden-

tical inverters with the same 50-fF load

capacitance, including the input capaci-

tance of pin B of the two-input OR gate G3

(CinB) and the wire capacitance (Cw).

They should have the same 50-fF NRC

shown in Figure 4a. However, if a cou-

pling capacitance (Cx) exists between the inputs of G1

and G2, G1 will, under certain circumstances, experi-

ence crosstalk noise at its input and become less resis-

tant than G4 to any other random noise disturbances in

addition to this crosstalk that might occur at its inputs.

Therefore, using the same NRC to describe the noise tol-

erance of G1 and G4 becomes inappropriate. Some

glitches in the original NRC’s noise-immune region might

propagate through G1, meaning they should be in the

noise-sensitive region. We can also see this as an expan-

sion of the noise-sensitive region from the original NRC

by shifting the curve toward the axes, as shown in Figure

4b.

A quick way to determine the amount of the shift is

to estimate the worst-case magnitude of the crosstalk

using existing techniques (for example, the extended 2-

π model11) and then downshift the curve toward the x-

Design and Test Methodologies for Scaled Technologies

366 IEEE Design & Test of Computers

1.0

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.6
0.7
0.8
0.9

1.1
1.2
1.3
1.4
1.5

(a) (b)

In
pu

t h
ei

gh
t (

V
)

In
pu

t h
ei

gh
t (

V
)

0.1 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80.3 0.5 0.7 0.9 1.1 1.3 1.5
Input width (ns) Input width (ns)

Load = 50 fF
Load = 100 fF
Load = 150 fF
Load = 200 fF

Original curve
Shifted curve

Figure 4. Noise rejection curves and curve shift: noise rejection curves of an inverter

under varying capacitive loads (a); curve shift resulting from crosstalk (b).

A

B

OR2

A

B

NAND2

A

B

OR2

Cw

Cw + CinB = 50 fF
Cx CinB

Cw CinB

G3

G1

G4

G2 G5

INV

INV

Figure 5. Example circuit with crosstalk to demonstrate curve shift.



axis by this amount. It’s possible to apply this method

during the soft-spot analysis, but because it considers

only the worst case, the result is pessimistic. A more

sophisticated, but also more time-consuming, way is to

create the shifted curves under certain crosstalk scenar-

ios using offline simulations (as we did to generate

Figure 4b) and store the curves in a database along with

the original NRCs. During circuit noise analysis, a proper

curve is retrieved from the database on the basis of the

loading conditions and the estimated crosstalk strength.

Now, in the NRC graph, we define the noise propa-

gation ratio Re
N as

(2)

where Asen is the area of the noise-sensitive region and

Aimm is the area of the noise-immune region. When cal-

culating the areas, we set the upper bound on the y-axis

to be the maximum possible input glitch height, which

is the power supply voltage, and we set the upper

bound to be the maximum possible input glitch width,

which we assume to be the clock period. Re
N lets us mea-

sure the strength of the electrical masking effect at node

N: A higher Re
N means a larger noise-sensitive region;

therefore, more glitches can propagate through the gate,

and the node is more vulnerable.

Although noise propagates in a circuit, when evalu-

ating a single node’s electrical masking effect, it isn’t

necessary to consider the electrical masking of other

nodes, including those on the logic paths en route to

the primary outputs (POs). We can understand this by

looking at both the conceptual and technical aspects.

Conceptually, the essential idea of soft-spot analysis

is to evaluate how an individual circuit node can effec-

tively contribute to prevent a glitch-type noise from pro-

ducing observable errors. It doesn’t mean studying the

noise-propagating behavior. A stronger electrical mask-

ing effect at a single node will tend to reduce the possi-

bility that an incoming glitch will propagate with

enough strength, and this makes the glitch less harmful

to the subsequent logic. From this point of view, the

electrical masking effect is localized to the node, and

the designer needn’t consider the electrical masking of

the subsequent gates.

Technically, because of the high gains of digital CMOS

logic gates in a transition region,12 a small change in the

input voltage produces a large output variation in the

region. As a result, when a glitch reaches a gate’s input,

if its shape falls in the noise-sensitive region—even if it’s

only slightly above the curve—the output glitch will

become large enough to propagate through the remain-

ing gates (the subsequent gate will not be able to electri-

cally mask it) on its path to a PO. On the other hand, if it

falls in the noise-immune region, even if it’s just slightly

below the curve, the output glitch will be so small that it

will not propagate through additional gates. This means

its shape will not gradually change as it propagates

through a chain of logic gates. Instead, the electrical char-

acteristic of the first gate that it encounters almost com-

pletely determines whether it can electrically propagate

to the POs. Under certain boundary conditions (when

the voltage gain is close to unity and the output glitch’s

shape resembles that of the input glitch), designers

should consider the electrical masking effects of the sub-

sequent gates. However, the probability that this bound-

ary condition will persist over several levels of logic gates

is very low. Taking a first-order approximation, we don’t

consider the effect of the gates en route to the POs.

Here we describe how to calculate Re
N for every circuit

node during circuit noise analysis. For cell-based designs,

we first precalibrate the standard-cell library using offline

HSpice to create an NRC database of all gates with differ-

ent capacitive loads. Then, for a given design, we obtain

the load capacitance of each node from layout-extracted

RC information to retrieve the proper curve from the data-

base. This retrieved curve can then be shifted according to

preliminary analysis results of certain noise sources. For

example, given the detailed RC parasitic and coupling

capacitances, we can estimate crosstalk effects using exist-

ing techniques such as the extended 2-π model.11 Finally,

we compute Re
N as the area ratio in the modified curve.

Figure 6 illustrates this process. Given specific design and

process information, we can similarly consider curve shifts

caused by other mechanisms.

An obvious advantage in the flow just described is

that one-time cell calibration is sufficient for a given

library and can apply to all circuits implemented in the

same library. As a result, we can make full use of

HSpice’s accuracy without repeatedly suffering from its

time-consuming nature. Another advantage is that we

build noise information into the single entity Re
N by

applying a curve shift; therefore, using existing noise

analysis techniques can improve accuracy.

Logic masking
Logic masking refers to the effect that noise ceases to

propagate through a gate whose output is solely deter-

mined by inputs other than the one carrying the noise.

The chances that noises occurring at different nodes will

R
A

A

N
e

sen

imm NRC

=
⎛
⎝⎜

⎞
⎠⎟

367July–August 2005



survive multiple levels of logic gates and eventually

reach the memory elements depend on the logic struc-

ture. Complete determination of the logic masking effect

requires exhaustive exploration of the entire input vec-

tor space and prohibitively long dynamic simulation

time. As an alternative, we developed an efficient logic-

path tracing algorithm to estimate the propagation prob-

ability (P N
prop), defined as the ability of a glitch

propagating from node N to extend to all reachable DFFs

through legitimate logic paths. According to this defini-

tion, the input of a DFF with no other fan-out has a prop-

agation probability of 1, indicating that a glitch at the

DFF’s input will be able to logically reach one DFF.

Our algorithm has two steps, each

using the breadth-first search (BFS) algo-

rithm to go through the design’s gate-

level netlist.13 The first step uses a forward

BFS, starting from the primary inputs

(PIs), to derive for each node the logic

probability—that is, the probability of

being logic 1 (or 0)—denoted by PrN(1),

PrN(0) = 1 – PrN(1). Figure 7 best illus-

trates how to calculate the logic proba-

bilities of all nodes. Assuming the logic

probabilities for all inputs [PrA(1), PrB(1),

PrC(1), and PrD(1)] are 1/2, the algorithm

calculates PrE(1), PrG(1), PrF(1), and

PrH(1) in order as the netlist is searched,

and the calculated results are listed

above the circuit. To start the process,

the logic probabilities at the PIs should

be known; these are usually available

through functional vector simulations.

More specifically, designers can obtain

them by recording the statistics of logic

0s and 1s applied to the PIs during func-

tional verification. If such information isn’t available,

assuming that logic 1 and 0 have equal probabilities at

all PIs is a good approximation.

The second step uses a backward BFS, starting from

the input nodes of the DFFs, to calculate P N
prop at each

node. As the algorithm searches the netlist backward, it

calculates the value at an input of a gate M (a descendant

node) from the value at the output node of gate M (the

parent node) and the probability of all the side inputs car-

rying noncontrolling values of gate M. The algorithm

determines this probability from the logic probabilities

at the side inputs obtained during the forward BFS. In the

same example in Figure 7, PH
prop is set to 1 because node

Design and Test Methodologies for Scaled Technologies

368 IEEE Design & Test of Computers

Curve
shift

Crosstalk
estimation

Optional operationOne-time offline operation

Noise
rejection

curve
database

Noise
rejection

curve

Standard-
cell library

Design
database

Layout-
extracted

RC
information

Load
capacitance

Noise
propagation
ratio (R N)HSpice calibration e

Figure 6. Calculating noise propagation ratio Re
N in cell-based designs.

QD

A 1/2

B 1/2

C 1/2

D 1/2

G

E F

H

Clock

DFFj
(Fj = 1)

Step 1: Forward breadth-first search
• PrE(1) = PrC(0) × PrD(0) = 1/4
PrG(1) = 1 − PrG(0) = 1 − [PrA(1) × PrB(1)] = 3/4

• PrF(1) = PrE(0) = 1 − PrE(1) = 3/4
• PrH(1) = 1 − PrH(0) = 1 − [PrF(1) × PrG(1)] = 7/16

Step 2: Backward breadth-first search
• PF

prop = PrG(1) × PH
prop = 3/4

PG
prop = PrF(1) × PH

prop = 3/4
• PE

prop = PF
prop = 3/4

PC
prop = PE

prop × PrD(0) = (3/4)(1/2) = 3/8, PD
prop = … = 3/8

• PA
prop = PG

prop × PrB(1) = (3/4)(1/2) = 3/8, PB
prop = … = 3/8

Figure 7. Example circuit to demonstrate calculation of logic masking

factor.



H is the input of a single DFF. Next, the

search reaches nodes F and G during the

backward BFS. The algorithm calculates

PF
prop as P H

prop multiplied by PrG(1), because

the noncontrolling value of a NAND gate

is 1. The algorithm similarly calculates

PG
prop at the same time. As the search con-

tinues, the algorithm calculates the values

at nodes E, A, and B and then nodes C and

D in turn. The calculations and results

appear under the circuit in Figure 7. If a

node has multiple parents (multiple fan-

outs), the total of the values derived from

all parents gives the cumulative propaga-

tion probability at the node.

In reality, a design’s DFFs might not all

be of equal functional significance.

Designers might assign the jth DFF a func-

tional weighting factor Fj on the basis of

design-specific knowledge. For example,

a DFF that stores a crucial control signal

such as global reset, clock gating enable,

or interrupt status should be assigned a

higher weight, indicating that an observ-

able error latched in this DFF will have a

greater functional impact. As a result, the

propagation probability of the input to

the jth DFF will be equal to Fj, and the

backward BFS will start from different DFFs with differ-

ent weights. Hence, the propagation probability of each

node obtained thereafter contains extra information

about the functional impact if a glitch were to occur at

the node.

Evaluating softness and identifying soft spots
We have described ways to measure the three mask-

ing effects. Softness SN should be a function of the tim-

ing factor TWeff
N , the electrical factor Re

N, and the logic

factor PN
prop. Although SN might have many possible ana-

lytical forms, if we consider TWeff
N , R e

N, and PN
prop to con-

tribute independently, we can express SN as

SN = WN (TWeff
N × Re

N × P N
prop) (3)

In Equation 3, WN is an optional application-specific

weighting factor at node N, with 1 as the default, for

designers to convey design-related knowledge.

Examples of information contained in WN include a pre-

liminary analysis result of temperature variations across

the chip during operation, empirical data about process

variation, or even information about a potential radia-

tion hit. This weighting factor gives the proposed

methodology additional flexibility and controllability.

We developed an automated flow called the auto-

matic soft-spot analyzer (ASSA), shown in Figure 8, to

implement the methodology. To execute, ASSA first

uses a library calibration engine to generate an NRC

database for the cell library. This step is a one-time oper-

ation for each library, after which ASSA can read in the

database from storage when analyzing a given design.

Next, ASSA uses information in the design database

(gate-level netlist, timing, physical layout, extracted RC,

and so on) to evaluate timing, electrical, and logic fac-

tors. ASSA then calculates SN and provides a softness dis-

tribution as its output. From this distribution, we can

identify a set of soft spots as nodes with high softness

values. In addition, optional inputs, including PI logic

probabilities, DFF functional weighting factors, and

overall weighting factors, might also be provided to

improve the results’ accuracy and validity by giving the

tool more information about the circuit functionality

and the external environment.

369July–August 2005

Mandatory inputs Optional inputs

Design
database

Cell
library

PI logic
probabilities

(Ppi (1))

Functional
weighting

factors
(Fj)

Overall
weighting

factors
(WN)

Noise
rejection

curve
database

Library
calibration

engine

Automatic
soft-spot
analyzer

(TWeff
calculator

N (Re
calculator

N (Pprop)
calculator

N

SN = WN (TWeff  × R e  × Pprop )
N N N

Softness
distribution

Timing
factor

Electrical
factor

Logic
factor

i

))

Figure 8. Automatic soft-spot analyzer.



Selection of soft spots according to the softness dis-

tribution relates closely to the affordable design cost. A

cost metric can help in determining the softness value

threshold, Sth: A lower threshold means that more nodes

will be identified as soft and that the cost to analyze,

revise, and protect these soft spots will be greater, result-

ing in a higher level of robustness. For mission-critical

applications such as medical equipment, Sth should be

set low so that ASSA marks a larger portion of nodes as

soft spots for designers to make the design highly noise

immune at a higher cost. For cost-sensitive commercial

applications, Sth should be set higher so that designers

need consider further robustness optimization only for

the nodes most likely to cause the largest functional

impact if affected. Determining the cost metric and

robustness optimization are topics of ongoing research

beyond the scope of this work.

Methodology limitations
Soft-spot analysis not only provides an efficient

method for quickly identifying a circuit’s most vulnera-

ble spots but also proposes a new viewpoint on circuit

reliability analysis. However, the current methodology

has some limitations. Equation 3 assumes that the tim-

ing factor, the electrical factor, and the logic factor are

independent of each other. However, this assumption

is oversimplified, because contributions by each of the

three factors might be affected by the others. To deter-

mine overall softness, instead of a simple equation we

need an empirical metric that considers the interaction

among the three factors.

The algorithm for calculating the logic masking

effect doesn’t apply to reconverging paths. Com-

plete determination of the logic probability is a cir-

cuit-satisfiability problem and has been proven to

be NP-complete.13 Much work has been done

attempting to find approximation algorithms.14 The

algorithm we used is fast, efficient, and has a limited

loss of accuracy. Moreover, its accuracy can

improve with the use of an existing algorithm. (BFS

is neither the only choice nor the best choice.)

However, the well-studied satisfiability problem is

not the main focus of this work.

The current methodology doesn’t consider the

effects of process variations or manufacturing defects.

Process variation is becoming a major uncertainty in cir-

cuit reliability, and researchers can best describe its

effects probabilistically. Improved soft-spot analysis

would incorporate distributions of the three factors on

the basis of process information.

Experimental results
The proposed methodology can accurately identify

the most vulnerable nodes in a circuit and is useful for

large systems, because its runtime is almost linear to the

number of circuit nodes.

Accuracy and efficiency
We applied the proposed methodology to four circuits

to evaluate its quality and speed by comparing our results

with accurate HSpice fault simulation results. Because of

HSpice’s speed limitation, we can perform simulation

only on small circuits. Two of the four circuits are basic

blocks in many digital designs (adder, which is a 4-bit

adder; and DEC, which is a 4-bit decoder). The other two

(Xt1 and Xt2) are random logic circuits extracted from a

commercial processor (Xtensa, from Tensilica, http://

www.tensilica.com/xtensa_overview_handbook.pdf).

All circuits are combinational blocks with registered POs.

Synopsys’ DesignCompiler performs synthesis using a

0.18-micron cell library, Cadence’s Silicon Ensemble gen-

erates physical layout, Mentor Graphics’ xCalibre extracts

RC networks, and Synopsys’ PrimeTime provides static

timing analysis.

In each experiment, we extract the Spice netlist used

in HSpice simulation from the physical layout. The

netlist contains RC information, including coupling

capacitances, so that we can observe crosstalk effects.

Preliminary HSpice simulation results show that

although some crosstalk effects exist at many nodes,

none of the effects is strong enough to cause functional

errors. In addition, we inject transient glitches of ran-

dom shape and timing into the circuit to create com-

pound noise effects with the existing crosstalk. These

transient glitches can help us model various noise

effects, such as an erroneous logic switch resulting from

particle strikes on the transistor’s sensitive region.

Because the goal is to study the vulnerability of indi-

vidual circuit nodes, we focus the HSpice simulation on

a specific node at a time, applying input vectors to the

circuit while spuriously injecting transient glitches on a

single node. These transient glitches interact with poten-

tial crosstalk noise on the node to produce compound

effects and can cause observable errors, captured by the

DFFs. We count the number of observable errors result-

ing from noise injection on each node separately, and

this count serves as a measurement of the node’s simu-

lated softness. We compared these results with the ASSA-

computed softness values. During computation, the

actual statistics of HSpice simulation input vectors pro-

vide the input logic probability; the other two optional

Design and Test Methodologies for Scaled Technologies

370 IEEE Design & Test of Computers



inputs (Fj and WN) are set to 1 for the lack

of application-specific knowledge.

Table 1 shows statistics from the exper-

iments. Rows 1 and 2 are the area and the

internal node count of the sample cir-

cuits. Rows 3 and 4 show the number of

nodes on which we chose to inject noise

and the number of input vectors used for

simulating the effects of noise on each

node. Row 5 compares ASSA’s runtime

with that of HSpice in terms of average

evaluation time per node, and in the last

row we see that ASSA achieved speedup factors on the

order of 103 over HSpice. Furthermore, as circuit com-

plexity increases, HSpice’s simulation speed decreases

drastically, requiring trade-offs between precision and

runtime. For example, DEC is only 2.3 times the size of

the adder, but the number of chosen nodes and simu-

lated vectors had to be reduced by half and by a fourth,

respectively, to finish simulation in comparable time.

ASSA, however, shows constant analyzing time per node

for circuits of similar complexity (adder, Xt1, and Xt2),

whereas the analyzing time per node actually improves

for the larger circuit, DEC.

Figure 9 compares calculated softness with simulat-

ed softness, node by node. The indices of the simulat-

ed nodes appear on the x-axis, and the normalized

softness values of selected nodes appear on the y-axis,

where the ASSA and HSpice curves show the ASSA-cal-

culated and the HSpice-simulated values. As the figure

371July–August 2005

Table 1. Sample circuits and simulation time for HSpice and ASSA.

Adder DEC Xt1 Xt2

Area (µm2) 1,107 2,488 865 995 

Node count 89 210 74 59

No. of simulated nodes 42 20 22 37

No. of input vectors 512 128 512 256

Runtime (seconds/node) HSpice 12,062 19,097 9,548 5,230

ASSA 4.65 2.45 4.14 4.88

Speedup factor 2.6 x103 7.8 x 103 2.3 x 103 1.1 x 103

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

39 41 43
0

0.2

0.4

0.6

0.8

1.0

1.2

0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

111 3 5 7 9 13 15 17 19 21

DECAdder

Xt1 Xt2

HSpice
ASSA
Logic only

HSpice
ASSA
Logic only

0

0.2

0.4

0.6

0.8

1.0

1.2

0

0.2

0.4

0.6

0.8

1.0

1.2

HSpice
ASSA
Logic only

HSpice
ASSA
Logic only

N
or

m
al

iz
ed

 s
of

tn
es

s

Node index

Figure 9. Automatic soft-spot analyzer results compared with HSpice simulation.



shows, ASSA not only correctly captured the most-vul-

nerable nodes but also provided a distribution of soft-

ness among all simulated nodes, a distribution that

matched HSpice results closely. The nodes with high

calculated softness values indeed cause more func-

tional errors upon noise injection.

To demonstrate that all three masking effects con-

tribute collectively to the overall softness evaluation and

that considering only one effect is not enough, we plot-

ted the logic masking factor in the same graph, marked

“logic only.” Obviously, the logic factor alone doesn’t

reflect the actual softness, and the correlation is highly

circuit dependent. For example, for the smallest circuit,

Xt1, the logic factor dominates in the overall softness.

This is because all the nodes have similar capacitive

loads, so their electrical factors are very close, and all

timing paths have large positive slack and similar prop-

agation delays, which means the nodes’ effective noise

windows are also similar. However, in a larger circuit,

such as the adder, considering only the logic factor pro-

duces an inaccurate result because all three factors have

large variations from node to node. The circuit’s size isn’t

the only reason for the inaccuracy. In the largest circuit,

DEC, the logic factor distribution gives a relatively high-

er degree of correlation than in the adder circuit. We can

conclude that the logic factor doesn’t consistently mea-

sure circuit softness, and the result depends heavily on

the circuit’s structural characteristics. The only way to

measure circuit softness accurately is to jointly consid-

er all three masking effects, using soft-spot analysis.

We obtained the ASSA calculation results in Figure

9 without considering crosstalk-induced curve shifts. As

we discussed in the subsection “Electrical masking,”

curve shift can improve accuracy by

building analyzable noise information

into the NRCs. We chose the DEC circuit

to demonstrate the effect of curve shift

because it is relatively large and makes

strong crosstalk effects observable at

some internal nodes. In Figure 10, the

third curve, marked “ASSA with

crosstalk,” represents the softness values

calculated by ASSA after the analyzer

considers the curve shift. The discrepan-

cies between the simulation and the cal-

culation results diminish as the

calculated values increase for most of the

nodes. At node 2 in particular, where we

estimate the worst-case crosstalk to be

0.25 V, calculated softness improves from

0.62 to 0.84, which is very close to the simulated value

(0.82). However, results for some nodes (such as nodes

3 and 4) indicate that considering the crosstalk effect

makes the calculation more pessimistic. This is because

the crosstalk estimation technique gives only the worst-

case values, which might not occur during simulation.

These experiments on small circuits show that soft-

spot analysis can efficiently evaluate the relative vul-

nerability among all nodes. However, they cannot show

whether the method can handle large circuits or how

the softness values are distributed among a large num-

ber of nodes. Therefore, we next apply soft-spot analy-

sis to a large commercial circuit.

Scalability and softness distribution
We applied ASSA to Tensilica’s Xtensa, a commer-

cial state-of-the-art configurable and extensible reduced-

instruction-set computing (RISC) processor. We

experimented on a large logic module, EX, with 97 reg-

istered output ports, 338 input ports, and 3,156 internal

nodes. EX is particularly challenging because of its

many inputs, unbalanced logic paths, and strong

crosstalk effects, the latter resulting from an aggressive

layout scheme. The performance and reliability require-

ments make it essential to identify and fix potential vul-

nerable spots and provide low-cost online protection

schemes in the early design phase. Because of the

design complexity, simulation-based methods are not

applicable. Our soft-spot analysis, however, finished

within a reasonable time. Table 2 shows the time break-

down for each step. The processing time for each node

(2.55 seconds) is comparable to that for the DEC (2.45

seconds), indicating that our methodology can scale

Design and Test Methodologies for Scaled Technologies

372 IEEE Design & Test of Computers

0

0.2

0.4

0.6

0.8

1.0

1.2

11 12 13 14 15 16 17 18 19 20101 2 3 4 5 6 7 8 9
Node index

HSpice
ASSA without crosstalk
ASSA with crosstalk

S
of

tn
es

s

Figure 10. Effect of considering crosstalk-induced curve shift.



approximately linearly as design complexity increases.

Most of the long processing time for calculating R e
N

and TWeff
N is due to layout, RC extraction, and static tim-

ing analysis. Because all these operations are inevitable

steps in any VLSI design flow, our tool will perform

much better and will not require much additional time

or effort when integrated with a standard design flow.

We also established that the vulnerabilities of differ-

ent nodes vary greatly in the large circuit EX. Figure 11a

shows the softness distribution of all nodes in EX. The

x-axis is the normalized softness in the logarithm scale

(normalized to 10,000 for convenience of depiction),

and the y-axis is the number of nodes with the various

softness values. The figure clearly demonstrates the

nonuniform softness distribution among all nodes: Only

about 0.7% (22) have softness exceeding 10% of the

maximum value, and another 18.6% (587) have softness

exceeding 1%, whereas the softness values of the other

80.7% of all nodes are at least two orders of magnitude

lower than the maximum value. Figure 11b shows the

actual softness distribution among all nodes: The x-axis

is the list of all circuit nodes, and the y-axis shows the

softness values (normalized to 10,000) in the logarithm

scale. This example also illustrates the selection of soft

spots discussed in the subsection “Evaluating softness

and identifying soft spots”: If Sth is set to 10% of maxi-

mum softness value Smax, ASSA categorizes only 22 spots

as soft spots, whereas if Sth is set to 1% of Smax, ASSA cat-

egorizes 609 nodes as soft spots.

This unbalanced softness distribution plays an impor-

tant role in efficient, low-cost, robust circuit design.

During the premanufacturing design phase, designers

can perform accurate but time-consuming analysis on

fewer soft spots. If aggressive design causes high vulner-

ability at some circuit nodes, localized design modifi-

cations can reduce their softness. Furthermore, our

methodology provides a guideline for selectively apply-

ing an online error detection and protection scheme to

the spots most likely to be affected by transient errors

during the product’s lifetime, so a high degree of online

robustness is achievable with low design overhead.

Applications of soft-spot analysis
We propose two useful applications of soft-spot

analysis: robustness enhancement and robustness inser-

tion. Both use the result of soft-spot analysis to efficiently

improve overall circuit reliability while keeping the

incurred design overhead under control, but they take

different approaches.

Robustness enhancement increases a circuit’s noise

immunity by reducing the three masking effects at the

identified soft spots through localized and limited

design modifications at the gate level. As the analysis

identifies soft spots, reducing one or more of the three

contributing factors can reduce the spots’ softness. If a

373July–August 2005

Table 2. ASSA runtime on circuit EX.

Operation Time

Calculating electrical factor Re
N 52 minutes*+

Calculating logic factor PN
prop 2 minutes

Calculating timing factor TWeff
N 78 minutes++

Calculating softness SN 2 minutes

Total time 134 minutes

Processing time per node 2.55 seconds
* Library calibration time not included

+ Including layout and RC-extraction time

++ Including static timing analysis time

26

389
587

22

Sth1 = Smax × 10% No. of soft spots = 22

Sth2 = Smax × 1% No. of soft spots = 609

1

<1 1-10 11-100 101-1,000 1,001-10,000

401 801 1,201 1,601 2,001 2,8012,401

Node index

10,000

1,000

2,500

2,000

1,500

1,000

500

0

100

10

1

N
or

m
al

iz
ed

 s
of

tn
es

s 
(lo

g)

(b)

(a) Normalized softness (log)

2,132
N

um
be

r 
of

 n
od

es

Figure 11. Node vulnerability in the large circuit EX: softness

distribution (a) and soft-spot identification (b).



large softness value is due to a large logic factor, logic

changes can reduce the propagation probability. If the

timing factor is the major cause of softness, techniques

such as buffer insertion can balance the timing paths

and shrink the effective noise window. If the electrical

factor is high, techniques such as cell resizing can

improve a node’s noise rejection feature. All these tech-

niques are highly localized to the vicinity of the soft

spots. However, reducing one factor might cause other

factors to increase, possibly leading to a greater overall

softness distribution. Therefore, researchers should

develop an optimization algorithm to quickly find the

best enhancement solution that optimally improves the

three terms in Equation 3 with minimal circuit change.

Robustness insertion judiciously adds circuit-hard-

ening cells at the soft spots to improve the circuit’s

online reliability against transient errors. Spatial and

temporal redundancies that protect circuits from noise

disturbances have been important techniques for

improving circuit online reliability. However, without

guidelines, excessive redundancy insertions incur unac-

ceptable design overhead, and the protection might still

not be efficient if the most vulnerable circuit elements

are underprotected and other circuit elements are over-

protected. The goal of robustness insertion is to find an

optimal protection scheme to achieve the highest level

of robustness improvement under given design con-

straints, using the guidelines of soft-spot analysis and an

efficient optimization algorithm.

AUTOMATIC SOFT-SPOT ANALYSIS will greatly facilitate

robust circuit design as circuits become more sensitive

to complicated noise interferences resulting from tech-

nology scaling. It is the key first step toward the design

of low-cost, highly robust nanometer circuit systems.

Although the current framework has some limitations,

we expect future research to make the methodology

more comprehensive and more accurate.

The current methodology’s applicability is limited to

glitch-type noise in static digital CMOS circuits. Delay-

type noise plays an equally important role in circuit reli-

ability degradation. Unlike the glitch-type noise, which

causes logic errors, delay-type noise causes timing

requirement violations. Therefore, researchers must

investigate ways to characterize a circuit node’s softness

in terms of its potential to cause excessive delays. In

dynamic logic, the affecting factors differ from those in

static circuits. For example, the noise rejection feature

should be calibrated differently, and the timing window

calculation also differs. It is imperative to extend the

current framework’s applicability to include a variety of

circuits and noise types. ■

Acknowledgment
This work was supported by the MARCO/DARPA

Gigascale Systems Research Center.

References
1. J. Cong, D.Z. Pan, and P.V. Srinivas, “Improved Crosstalk

Modeling for Noise Constrained Interconnect Optimiza-

tion,” Proc. Asia and South Pacific Design Automation

Conf. (ASP-DAC 01), IEEE CS Press, 2001, pp. 373-378.

2. S. Young, “Identifying IR Drop in High Performance

Nanometer Design,” Electronic Eng., vol. 74, no. 905,

June 2002, pp. 30-33.

3. L. Shen and N. Chang, “Challenges in Power-Ground

Integrity,” Proc. IEEE Int’l Conf. Computer-Aided Design

(ICCAD 01), IEEE CS Press, 2001, pp. 644-651.

4. L. Hongmei et al., “Comprehensive Frequency-Depen-

dent Substrate Noise Analysis Using Boundary Element

Methods,” Proc. Int’l Conf. Computer-Aided Design

(ICCAD 02), IEEE CS Press, 2002, pp. 2-9.

5. C. Hess et al., “Logic Characterization Vehicle to Deter-

mine Process Variation Impact on Yield and

Performance of Digital Circuits,” Proc. Int’l Conf. Micro-

electronic Test Structures (ICMTS 02), IEEE Press,

2002, pp. 189-196.

6. P. Hazucha and C. Svensson, “Cosmic-Ray Soft Error

Rate Characterization of a Standard 0.6-µm CMOS

Process,” IEEE J. Solid-State Circuits, vol. 35, no. 10,

Oct. 2000, pp. 1422-1429.

7. L. Anghel and M. Nicolaidis, “Cost Reduction and Evalu-

ation of a Temporary Faults Detecting Technique,” Proc.

Design, Automation and Test in Europe (DATE 00),

IEEE CS Press, 2000, pp. 591-598.

8. Y. Zhao and S. Dey, “Separate Dual-Transistor

Registers—A Circuit Solution for On-line Testing of Tran-

sient Error in UDMS-IC,” Proc. 9th IEEE Int’l On-Line Test-

ing Symp. (IOLTS 03), IEEE CS Press, 2003, pp. 7-11.

9. K. Mohanram and N.A. Touba, “Cost-Effective Approach

for Reducing Soft Error Failure Rate in Logic Circuits,”

Proc. IEEE Int’l Test Conf., IEEE CS Press, 2003, pp.

893-901.

10. L.B. Freeman, “Critical Charge Calculations for a Bipolar

SRAM Array,” IBM J. Research and Development, vol.

40, no. 1, Jan. 1996, pp. 119-129.

11. X. Bai et al., “Noise-Aware Driver Modeling for Nanome-

ter Technology,” Proc. IEEE Int’l Symp. Quality Electron-

ic Design (ISQED 03), IEEE Press, 2003, pp. 177-182.

Design and Test Methodologies for Scaled Technologies

374 IEEE Design & Test of Computers



12. J.M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital

Integrated Circuits—A Design Perspective, 2nd ed.,

Prentice Hall, 2003.

13. T.H. Cormen et al., Introduction to Algorithms, McGraw-

Hill, 1990.

14. S. Arora et al., “Proof Verification and the Hardness of

Approximation Problems,” J. ACM, vol. 45, no. 3, May

1998, pp. 501-555.

Chong Zhao is a PhD student in elec-
trical and computer engineering at the
University of California, San Diego. His
research interests include signal integri-
ty analysis and testing, circuit reliability

analysis, and robust nanometer VLSI circuit design.
Zhao has a BS in physics from Peking University, Bei-
jing, China; and an MS in electrical engineering and an
MA in physics from the University of Southern California,
Los Angeles. He is a student member of the IEEE.

Xiaoliang Bai is a member of the
consulting staff at Cadence Design
Systems. His research interests include
signal integrity analysis, circuit opti-
mization, and design for test. Bai has a

PhD in electrical and computer engineering from the
University of California, San Diego. He is a member of
the IEEE.

Sujit Dey is a professor in the
Department of Electrical and Comput-
er Engineering at the University of Cal-
ifornia, San Diego, where he heads the
Mobile Embedded Systems Design

and Test Laboratory. Dey is also the founder and CEO
of Ortiva Wireless; he is affiliated with the California
Institute of Telecommunications and Information Tech-
nology (Cal-IT2) and the UCSD Center for Wireless
Communications. His research interests include devel-
oping configurable platforms consisting of adaptive
wireless protocols and algorithms, and deep-submi-
cron adaptive SoCs for next-generation wireless net-
works and appliances. Dey has a PhD in computer
science from Duke University, Durham, North Carolina.
He is a senior member of the IEEE.

Direct questions and comments about this article
to Chong Zhao or Sujit Dey, Department of Electrical
and Computer Engineering, University of California,
San Diego, La Jolla, CA 92093, {chong, dey}@
ece.ucsd.edu; or Xiaoliang Bai, baix@cadence.com.

For further information on this or any other computing

topic, visit our Digital Library at http://www.computer.

org/publications/dlib.

375July–August 2005

Get access
to individual IEEE Computer Society 

documents online.

More than 100,000 articles 

and conference papers available!

US$9 per article for members 

US$19 for nonmembers

http://computer.org/publications/dlib/


