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Abstract

Dimensionality reduction techniques are widespread in pattern recognition research. Principal component analysis, as one
of the most popular methods used, is optimal when the data points reside on a linear subspace. Nevertheless, it may fail
to preserve the local structure if the data reside on some nonlinear manifold, which is indisputably important in many real
applications, especially when nearest-neighbor search is involved. In this paper, we propose locality pursuit embedding, a
linear algorithm that arises by solving a variational problem. It produces a linear embedding that respects the local geometrical
structure described by the Euclidean distances. Some illustrative examples are presented along with applications to real data
sets.
? 2003 Published by Elsevier Ltd on behalf of Pattern Recognition Society.
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1. Introduction

Real data of natural and social sciences is often very high
dimensional. However, the underlying structure can in many
cases be characterized by a small number of parameters.
Reducing the dimensionality of such data is bene8cial for
visualizing the intrinsic structure and it is also an important
preprocessing step in many statistical pattern recognition
problems.

Recently, there has been extensive interest in developing
low-dimensional representations when the data arise from
sampling a probability distribution on a manifold [1–5].
Classical techniques for manifold learning, such as PCA [6],
MDS [7], are designed to operate when the submanifold
is embedded linearly or almost linearly in the observation
space. PCA 8nds a d-dimensional subspace of Rn which
captures as much of the variation in the data set as possi-
ble. Speci8cally, given data X = {x1; x2; : : : ; xm} with zero
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mean, it 8nds yi = wtxi maximizing
m∑
i=1

‖yi − By‖2;

where w is the transformation vector, and By =
∑

i yi=m is
the mean. Thus PCA builds a global linear model of the
data (a d-dimensional hyperplane). For linearly embedded
manifolds, PCA is guaranteed to discover the dimension-
ality of the manifold and produce a compact representa-
tion in the form of an orthonormal basis. However, for the
data on a nonlinear submanifold embedded in the feature
space, PCA has two problems. First, PCA has diDculty in
discovering the underlying structure. For example, the co-
variance matrix of data sampled from a helix in R3 has
full-rank and thus three principal components. The helix is
actually a one-dimensional manifold and can be parameter-
ized with a single parameter. Second, embedding given by
PCA preserves only the global structure while local structure
is emphasized in many real applications, especially when
nearest-neighbor search is involved.

Classical MDS 8nds an embedding that preserves pair-
wise distances between data points. It is equivalent to PCA
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when those distances are Euclidean. Recently several nonlin-
ear techniques have been proposed to discover the nonlinear
structure of the manifold. LLE [2] and Laplacian Eigenmap
[1] are local approaches. They essentially seek to map nearby
points on a manifold to nearby points in a low-dimensional
space. They can approximate a broader range of manifold
whose local structure is close to Euclidean but whose global
geometry is not. Isomap [3] is a global approach. It builds on
classical MDS but seeks to preserve the intrinsic geometry
of the data, as captured in the geodesic manifold distances
between all pairs of data points.

These nonlinear methods do yield impressive results on
some benchmark arti8cial data sets besides some real ap-
plications. However, their nonlinear property makes them
computationally expensive. Moreover, they yield mappings
that are de8ned only on the training data points and how to
evaluate the map on novel test points remains unclear.

In this paper, we propose a new linear dimensionality re-
duction algorithm, called locality pursuit embedding (LPE).
Heuristically, a nonlinear manifold embedded in Rn can be
characterized by its linear tangent space on each patch. We
prove that performing a PCA on each local patch will re-
veal the tangent space information and thus the projection
to the tangent space will preserve the local structure. The
new algorithm is distinct from several perspectives.

1. The maps are designed to maximize a diHerent ob-
jective function which intends to preserve the local struc-
ture, rather than the global structure, as PCA and MDS do.
In many real world applications, e.g. image retrieval, one
will ultimately need to do a nearest-neighbor search in the
low-dimensional space. Since LPE is designed for preserv-
ing local structure, it is likely that a nearest-neighbor search
in the low-dimensional space will yield similar results to
that in the high-dimensional space. This algorithm can be
applied to a high-dimensional indexing scheme that would
allow quick retrieval.

2. LPE is linear. This makes it fast and suitable for prac-
tical applications. While a number of nonlinear techniques
(such as Laplacian Eigenmap [1], LLE [2], Isomap [3]) have
property (1) above, they are computationally intensive and
thus hard to be applied to real problem.

3. LPE can be performed either supervised or unsuper-
vised. In fact, when the class information is available, it can
be easily utilized to 8nd a better projection.

The rest of this paper is organized as follows. Section 2
describes the principal component analysis. The LPE algo-
rithm is proposed in Section 3 followed by a justi8cation
in Section 4. Experimental results are shown in Section 5.
Concluding remarks and future work are in Section 6.

2. Principal component analysis

In the PCA transformation, the sample vector x is 8rst
subtracted by the sample average:

x← x− x: (1)

Denote by X∈Rm×n the matrix whose rows are the centered
sample vectors x1; x2; : : : ; xm ∈Rn. The sample covariance
matrix �= XtX=m has the decomposition

�= V�V t ;

where � = diag(�1; �2; : : : ; �n) are the eigenvalues in de-
scending order and V is an orthogonal matrix whose column
vectors are the corresponding eigenvectors of �. The opti-
mal projection of xi to a d-dimensional (d¡n) space is to
the space spanned by d leading eigenvectors. In fact, these
eigenvectors turn out to be an orthogonal basis of the local
tangent space of the intrinsic nonlinear manifold (see Theo-
rem 1). For sample vectors with nonzero mean, the sample
covariance is

�=
1
m

XtLX;

L= I − 1
m

eet ;

where e is a m-dimensional vector taking 1 at each entry.
We adopt the same notation throughout this paper. In the
sequel ‖ · ‖ denotes the L2 norm of vectors.

3. Locality pursuit embedding

To develop locality-based algorithms for dimensionality
reduction, we face two fundamental questions.

1. What is an appropriate representation of local structure?
2. How to preserve the local structure in the space of

reduced dimension?
LLE [2] asserts the matrix (wij), which minimizes∑m
i=1 ‖xi −

∑m
j=1 wijxj‖2 subject to

∑m
j=1 wij = 1, as the

local structure. Isomap [3] treats the dissimilarity matrix
based on estimated geodesic distances as a representation
of the local structure. We propose that the local tangent
space of the intrinsic manifold as a representation of the
local structure, and each data point in the neighborhood can
be represented by its local coordinates, i.e. its projection to
the nearby tangent space. If the tangent space dimension is
much less than the dimension of ambient space, a projection
to the local tangent space will achieve the two goals simul-
taneously: dimensionality reduction and locality preserving.

In this section, we introduce a new linear dimensionality
reduction algorithm—LPE. The primary goal of LPE is to
preserve local structure.

3.1. The linear dimensionality reduction problem

The generic problem of linear dimensionality reduction
can be stated as follows. Given m points x1; x2; : : : ; xm ∈Rn

denoted as column vectors, 8nd a transformation matrix
W ∈Rn×d that maps these m points to a set of points
y1; y2; : : : ; ym ∈Rd (d�n), such that yi =W txi “represents”
xi. Our method is of particular applicability in the special
case where x1; x2; : : : ; xm ∈M andM is a smooth nonlinear
manifold embedded in Rn.
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3.2. The algorithm

Given m points x1; : : : xm in Rn, for each point xi, de-
note by ne(i) the set of its neighborhood. It could be
K-nearest neighbor (KNN) or �-neighborhood, to name
a few. To preserve the local structure of {xk : k ∈ ne(i)}
in {yk : k ∈ ne(i)}, the data points should be projected to
the local tangent space. This can be achieved by max-
imizing the generalized variance of {yk : k ∈ ne(i)}, i.e.∑

k∈ne(i) ‖yk − �yi‖2, which is equivalent to PCA’s objec-
tive function. Here �yi is the mean vector of {yk : k ∈ ne(i)}.
In principle, it is possible to discover the local geomet-
rical structure by maximizing the objective function in
each neighborhood respectively at a price of computation
time. As a compromise, we consider the linear projection
y = W tx that maximizes a global objective function con-
structed locally, i.e. the sum of all local objective functions,∑n

i=1

∑
k∈ne(i) ‖yk − �yi‖2. The maximization problem re-

duces to an eigenvalue problem. The projective directions
are the leading eigenvectors. The algorithm procedure is
formally stated below.

1. Initialize the m× m matrix L= 0.
2. For each i=1; 2; : : : ; m, denote by ne(i) the KNN of xi.

k ∈ ne(i) if and only if xk is among the KNN of xi. De8ne
diagonal matrix Di:

Di =




I1∈ne(i) 0 · · ·
0 I2∈ne(i) 0

· · · · · · · · ·
· · · 0 Im∈ne(i)


 ; (2)

where I is an indicator function de8ned by

Ik∈ne(i) =

{
1; xk ∈KNN of xi

0; otherwise:

with k = 1; : : : ; m. Recursively update the L matrix

L← L+ Di − 1
K
DieetDi; i = 1; 2; : : : ; m:

3. Solve the following eigenvector problem:

XtL Xw = �w: (3)

Let w1; : : : ;wn be the solutions of Eq. (3), ordered according
to their eigenvalues, �1¿ �2¿ · · ·¿ �n. The matrix L is
symmetric positive semi-de8nite, so is XtLX. Therefore, the
eigenvectors are orthogonal. The embedding is as follows:

W = (w1;w2; : : : ;wd);

xi → yi =W txi :

4. Justi"cation

In this section, we give a theoretical justi8cation of our
algorithm.

4.1. Local tangent space

In many examples, the observed data points x1; : : : ; xm can
be considered lying on a submanifold M that is linearly or
almost linearly embedded in Rn of higher dimension. PCA,
as a dimension-reduction tool, chooses the projections that
best represent the whole data in the sense of smallest global
reconstruction error, but the directions do not necessarily
best preserve the locality.

In the case that sample vectors reside on a smooth non-
linear manifold, it is necessary to consider its local geom-
etry (local tangent space) rather than global structure. To
this aim, based on the Euclidean distances (‖xi − xj‖) met-
ric, we can perform a PCA on the neighborhood. The next
theorem shows that under some regularity conditions, local
tangent space can be constructed based on the eigenvectors
of the local sample covariance matrix and the local principal
components give a representation of data sets in this tangent
space. To state the theorem, let M be a manifold embedded
in Rn, we begin with two assumptions

1. Local smoothness: The manifold has a suDciently
smooth (at least locally) generating function x =
f(z)∈Rn; z∈Rd where d�n.

2. Dense sampling: The observed data points xi= f(zi); i=
1; 2; : : : is a simple random sample with zis are indepen-
dent and identically distributed (iid) with mean �z, co-
variance matrix C = E(z − �z) (z − �z)t of full rank.
Denote the observed sample vectors in the neighborhood
of f(�z) by xi = f(zi); i = 1; : : : ; m. Assume m → ∞ as
total sample size increases.

The next theorem shows that local tangent space can be
constructed based on the eigenvectors of the local sample
covariance matrix.

Theorem 1. Under assumptions 1, 2, let � =
∑m

i=1(xi −
Bx)(xi − Bx)t=m be the sample covariance matrix of x= f(z),
then the eigenvectors of � form a basis of the tangent space
of M at the f(�z).

Proof. Since f(z) is suDciently smooth, it is diHerentiable
near �z and its Jacobian Jf (�z) = (@f=@z1; : : : ; @f=@zd)|�z
∈Rn×d, its tangent space at f(�z) is spanned by the columns
of Jf (�z). By 8rst-order Taylor expansion:

f(z) = f(�z) + Jf (�z)(z − �z) +O(‖z − �z‖2): (4)

The central limit theorem implies Bz − �z ∼ Nd(0; W=m), it
follows that, up to order O(‖z − �z‖),
Bx = f(�z) + Jf ( Bz − �z) ≈ f(�z) +Op(m

−1=2): (5)

We say x ∼ Op(m−1=2) if for any %¿ 0, exists A% ∈ (0;∞)
such that P(|√mx|¿A%)¡%. Referring to Eqs. (4), (5), we
rewrite the sample covariance matrix ) as follows:

) =
1
m

m∑
i=1

(xi − Bx)(xi − Bx)t
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Table 1
Eigenvalues and eigenvectors of local variance matrix of (x; ex) near x = 0.

x∈ (−1:0; 1:0) x∈ (−0:5; 0:5) x∈ (−0:25; 0:25)

0.013 0.812 0.001 0.171 0.000 0.043( −0:766

0:642

) (
0:642

0:766y

) ( −0:717

0:697

) (
0:697

0:717

) ( −0:704

0:710

) (
0:710

0:704

)

=
1
m

m∑
i=1

Jf (�z)(zi − �z)(zi − �z)tJ tf (�z) +Op(m
−1)

≈ Jf (�z) CJ tf (�z):

Let v be the eigenvector of � with corresponding eigenvalue
�, i.e.

�v = Jf (�z) CJ
t
f (�z)v = �v: (6)

Notice Jf (�z) CJ tf (�z) has the same rank (denoted by r)
as Jf (�z) since C is symmetric and positive de8nite. Let
�1¿ �2¿ · · ·¿ �r ¿ 0 be the r leading positive eigenval-
ues in Eq. (6) with corresponding normalized eigenvectors
v1; : : : ; vr , it follows that

vi =
1
�i
Jf (�z) WJ

t
f (�z)vi : (7)

Since Eq. (7) holds for every i, clearly each of v1; : : : ; vr is
in the (tangent) space spanned by the columns of Jf (�z) (of
dimension r). The orthogonality of v1; : : : ; vr shows that they
form a basis of the local tangent space ofM near f(�z).

Remark 1. The two assumptions arise naturally in view
of the bias-variance trade-oH phenomena in many nonpara-
metric regression problems. As a matter of fact, there are
two competing constraints, choosing a neighborhood small
enough such that Taylor expansion Eq. (4) can be justi-
8ed and keeping suDciently many data points in the neigh-
borhood such that the local covariance matrix can be well
estimated.

Remark 2. Rather than treating the data points in the same
neighborhood equally, we could introduce a weight function
(Heat kernel, Epanechnikov kernel, etc.) and compute the
weighted covariance matrix. It can improve the robustness
of the algorithm against outliers.

Remark 3. Denote V = (v1; : : : ; vr)∈Rn×r . The projection
of xi onto the local tangent space is yi = V t(xi − Bx). This
is the same as principal components found by PCA since
PCA solves the same equation as Eq. (6). So a geometrical
interpretation of PCA is that the data points are embedded
to the local tangent space of lower dimension by orthogonal
projections.

−1.0 < x < 1.0 −0.5 < x < 0.5 −0.25 < x < 0.25

Fig. 1. The eigenvectors of local covariance matrix in the neighbor-
hood |x|¡ 1, 0.5, 0.25 (from left to right). The leading direction
is in blue.

As an illustration of Theorem 1, we give a geometrically
intuitive example.

Example 1. We sample 100 data points according to the
relationship y = exp(x):

yi = exp(xi) i = 1; : : : ; 100

xi ∼ Unif (−1; 1). In Table 1, we summarize the empirical
eigenvectors and corresponding eigenvalues of the local
variance matrix in the neighborhood of |x|¡ 0:25; |x|¡ 0:5
and |x|¡ 1:0. Clearly the eigenvectors approach the
tangent direction (1=

√
2; 1=
√
2)t and normal direction

(−1=√2; 1=√2)t of the curve y = exp(x) at the point
(x = 0; y = 1) (See Fig. 1) as the chosen neighborhood is
more concentrated around the (x = 0; y = 1).

There are two issues worth pointing out. First, if the neigh-
borhood is too small so that it contains few data points or
too wide so that the Taylor expansion, Eq. (4), incurs large
error, then the local covariance matrix’s eigenvectors will
deviate from the true tangent (normal) direction.

Second, if the data points contain an independent noise
term, i.e. yi = exp(xi) + %i; %i ∼ N (0; *2), then the result is
worse but the eigenvectors still approach the local tangent
(normal) direction provided that *2 is small (say 0:01 in this
example).

4.2. Optimal linear embedding

As seen from the above result, pursuit of the maximum
variance of projection within a small neighborhood leads to
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a discovery of the local tangent space, which preserves the
structure faithfully.

It is well known that classical manifold learning technique
(PCA, MDS) will fail if the nonlinear structure of subman-
ifold cannot be regarded as a small perturbation from a lin-
ear approximation. However, we can view the data points
as a union of small patches on a nonlinear manifold, and
each patch is homeomorphic to a Euclidean space given it
is small. By Theorem 1, performing a PCA on each small
patch can preserve locality.

For each xi, denote by ne(i) the indices of its neighbor-
hood, including xi itself. In this paper we set ne(i) to the
KNN. The ne(i) is a small patch around xi on the intrin-
sic manifold. Suppose this neighborhood is small enough
so that the submanifold could be well approximated lin-
early on this patch. To this point, we look for an embedding
that attains locally maximal variance under appropriate con-
straint, in analogy to PCA. So the objective function on this
patch is

∑
k∈ne(i) ‖yk − Byi‖2 where Byi is the mean vector of

{yk : k ∈ ne(i)}.
An ideal embedding should seek to maximize

∑
k∈ne(i)

‖yk − Byi‖2 on each patch ne(i), which is unrealistic in most
cases. To this end, a reasonable criterion is to maximize a
global objective function, which is the sum of the objective
functions on each patch:

m∑
i=1

∑
k∈ne(i)

‖yk − Byi‖2: (8)

To simplify the expression, let X = (x1; : : : ; xm)t, Y =
(y1; : : : ; ym)t be the data matrix of the m observations
xk ∈Rn and their projections yk ∈Rd, then we have

∑
k∈ne(i)

(yk − Byi)(yk − Byi)t

=
1
2K

∑
k;l∈ne(i)

(yk − yl)(yk − yl)
t

=
1
2K

∑
k;l∈ne(i)

(yky
t
k + yly

t
l − yky

t
l − yly

t
k)

=
∑
k∈ne(i)

yky
t
k − 1

K


 ∑
k∈ne(i)

yk





 ∑
k∈ne(i)

yk




t

=(DiY)t(DiY)− 1
K

(DiY)te et(DiY)

=Yt(Di − 1
K
Die etDi)Y:

The last two “=” in the preceding display hold since DiY=
(y1I1∈ne(i); : : : ; ymIm∈ne(i))t, i.e. the projection of {xk : k �∈
ne(i)} is set to zero and the others remain unchanged.
Observe ‖y‖2 =Tr(yyt) for any vector y∈Rd which entails

the following:
m∑
i=1

∑
k∈ne(i)

‖yk − Byi‖2

=
m∑
i=1

∑
k∈ne(i)

Tr[(yk − Byi)(yk − Byi)t]

=Tr

[
Yt

m∑
i=1

(
Di − 1

K
Die etDi

)
Y

]

=Tr[YtLY];

where L is a symmetric positive semi-de8nite matrix of m×
m dimension.

L=




d11(1− 1
K ) − 1

K d12 · · · − 1
K d1m

− 1
K d12 d22(1− 1

K ) · · · · · ·
· · · · · · · · · · · ·
− 1

K d1m · · · · · · dmm(1− 1
K )


 :

(9)

Here dkl =
∑m

i=1 Ik; l∈ne(i) is the number of neighborhoods
into which both xk , xl fall.

If we consider only linear transformations: yi = W txi,
where W =(w1; : : : ;wd) subject to the constraint W tW = Id,
the objective function reduces to a quadratic form:
Tr[W tXtLXW ] =

∑d
i=1 wt

iX
tLXwi. And the optimization

problem:

max
‖w‖=1

d∑
i=1

wtXtLXw (10)

is solved by taking w1; : : : ;wd as the d leading eigenvectors
of Xt LX. This leads to step 3 in our algorithm.
Interestingly, it can be shown that L given by Eq. (9) is the

Laplacian matrix of a weighted graph with the weight matrix
W tW=K , where W = (wij)m×m with elements wij = Ij∈ne(i).
For details, see [8]. This observation leads to a simpli8ed
coding.

5. Experiment results

Some illustrative examples are discussed in this section.
We also apply LPE to image retrieval, in which the local
structure is particularly important.

5.1. Simply synthetic example

We illustrate the diHerence between PCA and LPE by a
simple synthetic example.

Example 2. Consider the surface Z = 4 exp(−X 2 − Y 2=4)
in R3. The sample points are drawn from this surface with
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Gaussian noise.

(X; Y; Z)t

=(R cos (/) + %1; 2R sin (/) + %2; 4 exp (−R2) + %3)
t ;

where R=0:5; 1; 2; /=k=1800; k=1; : : : ; 360; %i ∼N (0; 0:01),
iid. Although the data points are in R3, they are de8ned
by two parameters x, y, therefore the projection to the X; Y
plane preserves the structure of the data points faithfully.

The leading two projections by PCA are in the direc-
tions of (0; 1; 0)t, (0; 0; 1)t which are the Y; Z axes. In
Fig. 2 the three original rings R = 0:5; 1:0; 2:0 are green,
red and blue, which are the same as their projections. The
projection consists of three segments corresponding to the
three rings. Clearly the mapping from a ring to a line
segment collapses the structure, in other words, it is not
isomorphic. The phenomenon arises since PCA projection
is trying to align the three rings and therefore the “between”
structure among the three rings makes it unable to preserve
the “within” structure.

LPE, on the other hand, returns the leading two projec-
tions along (1; 0; 0)t, (0; 1; 0)t, which is the X , Y plane. Each
ring in the original data is still projected to a ring. Clearly
it successfully preserves the structure not only locally, but
also globally.

5.2. Handwritten digital images

We applied our algorithm to collections of images of
handwritten digits. The data set is from theMNIST database.
It consists of 974 examples of the digit “8”. The size of each
image is 28×28 pixels, with 256 gray levels per pixel. Thus
each image is represented by a vector of 784 dimension. We
apply LPE to construct a two-dimensional representation of
these 784-dimensional vectors (see Fig. 3). Each point in
the two-dimensional space corresponds to an image of digit
“8”. We select several points in the 8rst dimension (hori-
zontal) and the second dimension (vertical). These selected
points are connected to give a guidance of the direction.
Their corresponding images of digit “8” are shown along
respective direction. The 8rst dimension appears to describe
the slant of each digit and the second dimension appears to
describe the fatness of each digit. More speci8cally, along
the horizontal direction starting from left, the selected digits
changes from right-slanted to no slant; going upward along
the vertical direction, the selected digits changes from fat to
thin. As can be seen, though our method is still a linear al-
gorithm, it is somehow capable of discovering the nonlinear
structure of the data manifold.

5.3. Image retrieval

Due to the rapid growth of the number of digital im-
ages, there is an increasing demand for eHective image
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Fig. 2. 3-D plot of sample(left); 2-D projection by PCA(middle);
2-D projection by LPE (right).

management tools. Content-based image retrieval [9–11]
use low-level features (color, texture, shape, etc.) automat-
ically extracted from the images themselves to search for
images relevant to a user’s query. Typically, the dimensions
of image feature vector range from tens to hundreds. For
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Fig. 3. 2-D visualization of handwritten digital images. The fatness
of each digit varies across horizontal direction and the slant of each
digit changes along vertical direction.

example, a color histogram may contain 256 bins. High di-
mensionality creates several problems for image retrieval.
First, learning from examples is computationally infeasible
if it has to rely on high-dimensional representations, which
is known as “curse of dimensionality”. Learnability thus ne-
cessitates dimensionality reduction. Second, in large mul-
timedia databases, high-dimensional representation is com-
putationally intensive and most users do not wait around to
provide a great deal of feedbacks. Hence for storage and
speed concern, dimensionality reduction is needed.

PCA is one of the most frequently used linear algorithms
for high-dimensional indexing. It is optimal in the global
sense. However, in image space, the local structure is more
important than the global structure in most cases. In fact,
if the distance between two images is large enough, then
the absolute distance makes little sense. For example, it is
meaningless to say that a tiger is more similar to a dog
than to a horse. Therefore, the locality preserving property
is especially important for image retrieval.

In this section, we performed several experiments to eval-
uate the eHectiveness of the proposed approach over a large
image database. The database we use consists of 3000 im-
ages of 30 semantic categories from the Corel dataset. It is
a large and heterogeneous image set. A retrieved image is
considered correct if it belongs to the same category of the
query image. Three types of color features and three types
of texture features are used in our system, which are listed
in Table 2. Each image is represented by a 435-dimensional
vector in the image space.

We designed an automatic feedback scheme to model
the retrieval process. At each iteration, the system marks
the 8rst three incorrect images from the top 50 matches as
irrelevant examples and also selects at most 3 correct
images as relevant examples (relevant examples in the
previous iterations are excluded from the selection). These
automatically generated feedbacks are added into the query
example set to re8ne the retrieval. To evaluate the perfor-
mance of our algorithms, we de8ne the retrieval accuracy as

Table 2
Image features used for retrieval

Color-1 Color histogram in HSV space with quantization 256
Color-2 First and second moments in Lab space
Color-3 Color coherence vector in LUV space with quanti-

zation 64
Color-4 Tamura coarseness histogram
Color-5 Tamura dictionary
Color-6 Pyramid wavelet texture feature
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Fig. 4. Comparison of image retrieval performance in the original
space, PCA space and LPE space.

follows:

Accuracy =
relevant images retrieved in top N returns

N
:

We compare the retrieval performances in the original
space, PCA space with 20 dimensions and LPE space with
20 dimensions. Fig. 4 shows the fraction of relevant images
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among the top N (=20; 100) images returned in each space,
as a function of the number of iterations of user feed-
back. Rui’s relevance feedback scheme [9] is used in these
experiments.

As can be seen, image retrieval performs better in
LPE space than in PCA space. Furthermore, though the
dimensionality of the original space is very high, its in-
trinsic dimensionality is very low, hence we can reduce it
to a low-dimensional subspace without sacri8cing much
performance.

6. Conclusion and future work

A new linear dimensionality reduction algorithm, called
locality pursuit embedding (LPE) is introduced in this pa-
per. DiHerent from PCA which preserves the global struc-
ture by maximizing the variance of the whole data set, LPE
preserves the local structure by maximizing the variance of
each local patch. This is of particular interest in the real ap-
plications which emphasize local structure, especially when
the nearest neighbor kind of classi8ers are used. This obser-
vation leads to a new criterion for choosing appropriate pro-
jective maps. Experimental results show the eHectiveness of
our algorithm.

In this paper, we use LPE to seek a projection which
preserves local structure. It works in an unsupervised
learning manner. When the training samples are labelled,
a possible extension of our method is to incorporate
such prior information into the adjacency graph to make
our approach have more discriminatory power. Further-
more, with neighborhood preserving character, the LPE
algorithm has a natural relationship with clustering. We
are currently exploring this relationship in theory and
practice.
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