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Abstract—This paper presents a multi-robot mapping and 

localization system. Learning maps and efficient exploration of 
an unknown environment is a fundamental problem in mobile 
robotics usually called SLAM (simultaneous localization and 
mapping problem). Our approach involves a team of mobile 
robots that uses Scan-Matching and Fast-SLAM techniques 
based on scan-laser and odometry information for mapping large 
environments. The single maps generated for each robot are 
more accurate than the maps generated only by odometry. When 
a robot detects another, it sends its processed map and the master 
robot generates a very accurate global map. This method cuts 
down the global map building time. Some experimental results 
and conclusions are presented. 
 

Index Terms— Multi-robot SLAM, scan-mathcing, fast-slam, 
rao-blackwellised particle filter. 
 

I. INTRODUCTION 

EARNING maps and efficient exploration of unknown 
environments is a fundamental problem in mobile 

robotics. This problem is usually called SLAM (simultaneous 
localization and mapping problem) [1, 2, 3, 4, 5, 6], which 
includes estimating the robot’s position on the map and 
building up a map using the sensory input and the estimated 
robot´s pose. 

The problem of exploration of an unknown environment has 
been extensively studied, first using single robot systems with 
a variety of sensors and later using teams of robots. The first 
multi-robot exploration systems implementations were simple 
extensions of the single robot implementations. Multiple robot 
systems are more complex than other distributed systems 
because they have to deal with a real environment, which is 
more difficult to model since it is dynamic, unpredictable, 
noisy, etc. Therefore, the  extension  to  multiple  robots 
systems  brings  several  new  challenges  and  dif8iculties 
[7][8]:  robot  coordination,  integration  of  information 
collected  by  different  robots  into  a  consistent  map  and 
dealing with limited communication. 

Multirobot exploration systems are usually classified as 
centralized and decentralized. Centralized systems obtain 
solutions close to the optimal but they are computationally 
intensive and its good functioning depends on the central 
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module. On the other hand, decentralized systems are flexible 
and robust, but frequently achieve significantly suboptimal 
solutions. Therefore, the difficulty of the coordination task 
strongly depends on the knowledge of the robots. If the robots 
know their relative locations and share a map of the area they 
explored so far, then effective coordination can be achieved by 
guiding the robots into different, nonoverlapping areas of the 
environment [9], [10], [11]. However, if the robots do not 
know their relative locations, then it is far less obvious how to 
effectively coordinate them, since the robots do not share a 
common map or reference frame [7].  

Map merging task consists on building a consistent model of 
an environment with data collected from different robots. If 
the initial locations of the robots are known, map merging is a 
rather straightforward extension of a single robot mapping 
[12], [13], [14]. If robots do  not  know  their  relative 
locations,  it  is more dif8icult,  since  it  is not clear how and 
where the robots’ traces should be connected.  

One of the hardest problems in robotic mapping is the loop 
closure [15]. When a robot navigates throughout a large cycle 
in the environment, it must face the hard data association 
problem of connecting correctly the data to its own map under 
large position errors. To  scale  to  large‐scale  environments, 
one option consists on transform sequences of laser range‐
scans  into  odometry  measurements  using  range‐scan 
registration  techniques  [16],  which  reduces  the  well‐
known particle deprivation problem [17][18]. 

Rao-Blackwellized particle filters have been introduced as 
effective means to solve the simultaneous localization and 
mapping (SLAM) problem. This approach uses a particle filter 
in which each particle carries an individual map of the 
environment [19], [20]. The main problem of the Rao-
Blackwellized approaches is their complexity, measured in 
terms of the number of particles required to build an accurate 
map. To solve this, Hahnel et al [15] combine Rao-
Blackwellized particle filtering and scan matching with an 
improved motion model that reduces the number of required 
particles. Grissetti et al. [21]  present an adaptive technique to 
reduce the number of particles in a Rao-Blackwellized particle 
filter for learning grid maps, they propose an approach to 
compute an accurate proposal distribution taking into account 
not only the movement of the robot but also the most recent 
observation. This drastic decrease the uncertainty about the 
robot's pose in the prediction step of the filter.  
This  paper  presents  a  comparison of different grid-based 

SLAM algorithms over some application examples. A 
technique  for  merging  maps  from  several  robots  is  also 
described.  The  objective  is  to  build  up  a  highly  accurate 
map  of  an  unknown  environment  with  unknown  initial 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position of robots using Rao-Blackwellized particle filtering 
and scan matching. Finally, some experimental results of our 
proposal and the main conclusions will be drawn and 
commented.  

II. PERFORMANCE  COMPARISON OF GRID-BASED SLAM 
ALGORITMS 

This section makes a comparison of different SLAM 
algorithms. To do that, firstly, we will study the basic of the 
SLAM techniques then, we will compare them over some 
application examples and finally we will present some 
conclusions about its performance. 
 

A. Scan-Matching SLAM 
The scan matching algorithm that we have implemented is 

an extension of the approach presented in [16], where the 
problem of concurrent mapping and localization can be treated 
as a maximum likelihood estimation problem, in which the 
aim is to find the most likely map given the data: 
 
Let m be a map. At time t, the map is written: 

       (1) 

where oT denotes a laser scan and xT its pose, and t is time 
index. 

The goal of mapping is to find the most likely map given 
the data, that is: 

         (2) 

where data dt is a sequence of laser range measurements and 
odometry readings: 

       (3) 
where o denotes an observation (laser range scan), a denotes 
an odometry reading, and t are time indexes. 
 

The map likelihood function P(m | dt) can be transformed 
into the following product [18]: 
 

 

          (4) 

 
where η is a normalizer and P(m) is prior over maps which, if 
assumed to be uniform, can safely be omitted. Thus, the map 
likelihood is a function of two terms, the motion model, P(xt+1 
| at, xt ), and the perceptual model, P(ot | mt, xt ). If stationarity 
is assumed (i.e., neither model depends on the time index t), 
the time index can be omitted and instead write P(x | a, x’), for 
the motion model and P(o | m, x ) for the perceptual model. 

 

B. Grid-based Fast-SLAM 
This algorithm adapts the Fast-SLAM algorithm to 

occupancy grid maps. This gives us a volumetric 

representation of the environment that does not require any 
predefined landmark and it can therefore model arbitrary types 
of environments. The pseudo-code for grid-based Fast-SLAM 
[22] in each iteration is the following: 

 
For i=0 to M do 

 = motion model  

 = model map  

 = update_map  

 

endfor 
 
For i=0 to M do 
 Draw i with probability  

  Add to  

Endfor 
 

C. Rao-Blackwellized mapping 
The key idea of the Rao-Blackwellized particle filter [21] 

for SLAM is to estimate a posterior p(x1:t | o1:t , a0:t) about 
potential trajectories x1:t of the robot given its observations o1:t 
and its odometry measurements a0:t and to use this afterwards 
to compute a posterior over maps and trajectories: 

 
 (5) 

 
This can be done efficiently, since the posterior over maps 

can be computed analytically given the 

knowledge of x1:t and o1:t. 
To estimate the posterior  over the potential 

trajectories Rao-Blackwellized mapping uses a particle filter 
in which an individual map is associated to every sample. 
Each map is built given the observations o1:t and the trajectory 
a1:t represented by the corresponding particle. The trajectory 
of the robot evolves according to the robot motion and for this 
reason the proposal distribution is chosen to be equivalent to 
the probabilistic odometry motion model.  

One of the most common particle filtering algorithms is the 
Sampling Importance Resampling (SIR) filter. A Rao-
Blackwellized SIR filter for mapping incrementally processes 
the observations and the odometry readings as they are 
available. This is done by updating a set of samples 
representing the posterior about the map and the trajectory of 
the vehicle. 

This is done by performing the following four steps: 
 

• Sampling: The next generation of particles  is obtained 

from the current generation  by sampling from a 
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proposal distribution . 

• Importance Weighting: An individual importance weight 
wi is assigned to each particle, according to 

       (6) 

The weights wi account for the fact that the proposal 
distribution Β in general is not equal to the true 
distribution of successor states. 

 
• Resampling: Particles with a low importance weight w 

are typically replaced by samples with a high weight. 
This step is necessary since only a finite number of 
particles are used to approximate a continuous 
distribution. Furthermore, resampling allows to apply a 
particle filter in situations in which the true distribution 
differs from the proposal. 

• Map Estimating: for each pose sample , the 

corresponding map estimate  is computed based on 
the trajectory and the history of observations according 

to . 

 

D. Performance comparison 
Firstly, we are going to compare the different SLAM 

algorithms using a manufactured rectangular map (figure 1). 
The objective of this initial test is to study the performance of 
these algorithms in environments with large corridors without 
points of interest (points where the symmetry of other types of 
information is conducive to accurate location). 

  
Fig. 1. Manufactured map. 
 
Figures 2 and 3 show the map obtained after one and three 

map laps, respectively, using the scan-matching SLAM 
algorithm. 

 
 

 
Fig. 2. Initial map using scan-matching SLAM. 

 
Fig. 3. Scan-matching map (3 laps). 
 
Figures 4 and 5 show the map obtained after one and three 

map laps, respectively, using the grid-based Fast-SLAM 
algorithm. 

 
 

 
Fig. 4. Initial map using grid-based Fast-SLAM.  
 

21,3 m 

17 m 
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Fig. 5. Grid-based FastSlam map (3 laps). 
 
Figures 6 and 7 show the map obtained after one and three 

map laps, respectively, using the Rao-Blackwellized particle 
filter for SLAM. 

 

  
Fig. 6. Initial map using Rao-Blackwellized particle filter for SLAM. 
 

 
Fig. 7. Rao-Blackwellized Slam map (3 laps). 
 
All cases under study show that errors decrease and results 

improve with the number of laps. This stands to reason, since 
the system progressively solves the mapped errors detected in 
the first lap. 

Figure 8 shows the three maps obtained, superimposed over 

the original map. The red unbroken line shows the original 
map, the green dot-and-dash line (-·-) traces out the map 
obtained using scan-matching, the orange dashed line (--) 
shows the map generated using grid-based Fast-SLAM while 
the blue dotted line (···) shows the map generated using Rao-
Blackwellized mapping. 

 
 

 
 
Fig. 8. Mapping errors (3 laps). 
 
Table I shows the dimensional errors detected using the 

three algorithms. After three laps these errors decrease very 
slowly and then improvements are very low.   

 
TABLE I  

DIMENSIONAL ERROR 
 Real Scan-

Matching 
Grid-based 
Fast-SLAM 

Rao-
Blackwellized 

Length 21.3 m 22.3 21.7 22.4 
Error_length  4.6% 1.8% 5.1% 

Heigh 17 m 17.1 16.8 16.7 
Error_heigh  0.5% 1.1% 1.7% 

 
These results show that the detected errors are small and 

negligible in small-dimension environments. The best results 
would seem to be obtained by the grid-based Fast-SLAM 
algorithm, but the map geometry in fact shows that the 
generated map in this case is the worst of the three. 

One of the problems that appear in environments of this 
type (especially for the case of scan-matching) is that if there 
is not outstanding information in the corridors (points of 
interest) the results record the overall corridor length smaller 
than the real one. This is because the maximum likelihood 
estimation method is used, in which the aim is to find the most 
likely map given the data. This occurs especially when we 
work in real environments and is due mainly to the 
environment-detection limitations of the sensor used. In our 
case this sensor is a laser SICK-LMS200 and in the corridors 
when the end is not detected, there are many points where the 
laser measurement is the same or very similar. The maximum 
likelihood estimation algorithm therefore generates significant 
estimation errors. 

The next objective is to study a more complex environment.  
Figure 9 shows a manufactured map from the Electronics 
Department of University of Alcala (corridor 3 and 4). Figure 
10 shows the map obtained using odometry and laser data 
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without any correction. The robot starts in Lab_1, goes to 
Lab_2 and returns to Lab_1.  

 
 

 

 
Fig. 9. Department of Electronics map (Corridor 3 and 4). 

 

 
Fig. 10. Map obtained using odometry and laser data without correction. 
 

Figures 11, 12 and 13 show the map obtained using scan-
matching SLAM, grid-Fast-SLAM and grid-based Rao-
Blackwellized SLAM, respectively. All algorithms solve 
existing errors using odometry and laser data, but a certain 
error exists in the orientation of the corridors.  

 
 

 
Fig. 11. Map obtained scan-matching SLAM 

 

 
Fig. 12. Map with Fast-SLAM. 

 
 
 

 
Fig. 13. Map with grid-based Rao-Blackwellized SLAM. 
 

Lab 2 

Lab 1 
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 Another experiment to determine the errors introduced by 
these algorithms involves mapping a larger real environment 
as is the whole third floor of the Polytechnic building, as can 
be seen in Fig. 14.  

The aim in this case is to compare results using scan-
matching and grid-based Rao-Blackwellized SLAM. To do 
that a lap around the building will be carried out and the map 
generation errors will be studied. Figures 15 and 16 show the 
results obtained from one complete lap of the building. The 
start and the end point is a research laboratory in office 34. 
Robot trajectory has been superimposed on the real map to 
compare map-building errors.  
 

 
 
 
 
 
Fig. 14. 3ª Floor – Politechnic School. 
 
 

Both cases show that significant position estimation errors 
occur after one lap of the building. Figure 15 (scan-matching) 
shows a position error of about 2 meters, while Figure 16 
(Rao-Blackwellized SLAM) gives a 6 meter error. It should be 
bore in mind here that more than 400 meters have been 
traveled without any loop closing or point of interest that 
might allow correction of the existing map. Simulations 
suggest that results improve after several laps around the 
building. The results obtained can therefore be considered 
satisfactory. 
 

III. ARCHITECTURE 

A. Robots 
Four robotic platforms have been developed based on 

PeopleBot, pioneer DX and pioneer AT robots of ActivMedia 
Robotics [23] (see figure 17). Their architecture comprises 
four large modules: environment perception, navigation, 
human-machine interface and high-level services. The 

perception module is equipped with encoders, bumpers, sonar 
ring, laser sensor and a vision system based on a PTZ (pan-
tilt-zoom) color camera connected to a frame grabber. The 
human-machine interface is composed of loudspeakers, 
microphone, a tactile screen, the same PTZ camera used in the 
perception module, and a wireless Ethernet link. The high-
level services block controls the rest of the modules and 
includes several tasks of tele-assistance, tele-monitoring, 
providing, reminding and social interaction [24]. 
 

 
Fig. 15. Scan-matching  SLAM map. Comparison of real and obtained map. 
 

 
Fig. 16. Grid-based Rao-Blackwellized SLAM map. Comparison of real and 
obtained map. 
 

 
 

175 m 

Office 34 

Office 34 
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    PeopleBot         P2-DX 

  
             P3-DX        P3-AT 

Fig. 17. Robots. 
 

B. Navigation module  
The navigation module combines information from the 

perception module for carrying out different tasks. The core of 
this module is CARMEN (Carnegie Mellon Robot Navigation 
Toolkit) [25] which is an open-source collection of software 
for mobile robot control. CARMEN is modular software 
designed to provide basic navigation primitives including: 
base and sensor control, obstacle avoidance, localization, path 
planning, people-tracking, and mapping. 

This source has been modified to implement multi-robot 
localization, because CARMEN permits only single-robot 
working; there is also a different initial distribution for 
studying the robot localization (based on Montecarlo 
localization). This source implements the motion, perception 
and detection models. A virtual simulator has also been 
developed for testing the detection model using visual 
information and the localization process.  

 

C. Detection model  
Each robot has the ability to sense each others. The detection 

model describes the probability that robot n is at location x, 
given that robot m is at location x´ and perceives robot n with 
measurement rm. 
 To determine the relative location of other robots, our 
approach combines visual information obtained from an 
onboard camera with proximity information coming from a 

laser range-finder. Camera images are used to detect other 
robots and, together with laser range-finder scans, determine 
the relative position of the detected robot and its distance.  
 The robots are marked by a unique and colored marker to 
facilitate their recognition (green cylinder). The marker can 
therefore be detected regardless of the robot’s orientation. 
 To find robots in the images obtained from a camera, our 
system first filters the image by employing local color 
histograms (HIS space color). A basic segmentation algorithm, 
based on the histogram, is then employed to search for the 
marker’s color. If it is found, this implies  that a robot is 
present in the image. 
 Once a robot has been detected, its size and position in the 
image are processed and a laser scan is made for calculating 
the relative position of one robot respecting the other (see 
figures 18 to 20). This multi-sensor technique has been proven 
to be robust in practical tests. Currently, images are analyzed 
approximately at 20 fps. This framerate is enough  for this 
application. 
 When a robot detects the other one, a detection model is 
generated (based on a Gaussian function) representing the 
probability that the detected robot is at this point. This 
detection model carries out the adjustment of the particles by 
means of Collaborative Monte Carlo localization. 
 
  

 
Fig. 18. Original image. 
 

 
Fig. 19. Processed image. 
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Fig. 20. Laser scan. Robot detected. 

 

IV. MULTI-ROBOT MONTE CARLO LOCALIZATION  
Monte Carlo Localization has been widely studied in [6,14]. 

MCL is a recursive Bayes filter that estimates the posterior 
distribution of robot poses conditioned on sensor data.  

The key idea of Bayes filtering is to estimate a probability 
density over the state space x conditioned on the data. This 
posterior is typically called the belief and is denoted: 

   (7) 

Where xt is the vector state at time t, o denotes observations 
(perceptual data such as laser range or vision measurements) 
and a represents actions (odometry data which carry 
information about robot motion). 

Bayes filters estimate the belief recursively. The initial 
belief characterizes the initial knowledge about the system 
state. In the absence of such knowledge, it is typically 
initialized by a uniform distribution over the state space. In 
mobile robot localization, a uniform initial distribution 
corresponds to the global localization problem, where the 
initial robot pose is unknown. 

To derive a recursive update equation, (7) can be 
transformed by Bayes rule to: 

 (8) 

 (9) 

Bayes filters assume that the environment is Markov, that 
is, past and future data are (conditionally) independent if one 
knows the current state. The Markov assumption implies: 

    (10) 

       (11)  

Therefore, the belief can be denoted by: 
  (12) 

Where p(ot|xt) is called perceptual model and p(xt|xt-1,at-1) 
represents the motion model. 

 
The key idea of multi-robot localization is to integrate 

measurements taken at different platforms, so that each robot 
can benefit from data gathered by other robots than itself. 
Therefore, when a robot n is detected by robot m it is 

necessary to introduce the detection model according with 
data obtained rm in (12). In the absence of detections, the 
Markov localization works independently for each robot. A 
summary of the multi-robot Markov localization algorithm is: 

• Initialize the belief Beln(x) according with initial data 
(typically uniform distribution).  

• If the robot n receives an observation on (new sensory 
input) on, it is applied the perception model:: 

             (13) 
•  If the robot n do some action an (receives a new 

odometry reading), It is applied the motion model: 

 (14) 

• And finally, if the robot n is detected by the m-th robot 
it is applied the detection model: 

 (15) 

The idea of MCL is to represent the belief by a set of m 
weighted samples distributed according to Bel(x): 

 (16) 

Where xi is a sample of the random variable x (pose) and wi 
is called importance factor and represents the importance of 
each sample. The set of samples, thus, define a discrete 
probability function that approximates the continuous belief 
Bel(x). 

The initial set of samples represents the initial knowledge 
Bel(xo) about the state of the dynamical system. For instance, 
in global mobile robot localization, the initial belief is a set of 
poses drawn according to a uniform distribution over the 
robot’s universe, annotated by the uniform importance factor 
1/m. If the initial pose is known up to some small margin of 
error, Bel(xo) may be initialized by samples drawn from a 
narrow Gaussian centered on the correct pose. 

The recursive update is carried out in three steps: 
• Sample xi

t-1− Bel(xt-1).  Each such particle xi
t-1 is 

distributed according to the belief distribution Bel(xt-1).  
• Sample xi

t-1− p(xt|xi
t-1,at-1). In this case, xi

t is distributed 
according to the product distribution p(xt|xt-1,at-

1)·Bel(xt-1). 
• The importance factor is assigned to the i-th sample: 

wi=0· p(ot|xi
t)    (17) 

 
The following example shows how collaborative multi-

robot Monte Carlo localization improves single localization 
[15]. Robot 1 starts out with uniform belief and Robot 2 with 
Gaussian belief. Figs. 21a.b show the robots’ initial position 
and Figs. 21c.d show the initial particle distributions. 
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a)            b) 

 

 
c)           d) 

  
Fig. 21. Initial distributions. 

 
If Robot 1 wanders across the top horizontal corridor (Fig. 

22a), when Robot 2 detects Robot 1 (Fig. 22b), the detection 
model is sent to Robot 1 and this updates its belief 
distribution. Robot 1 is therefore well-located before reaching 
the corridor (Fig. 22c). 

 
 

 
a)            b) 

 

  
c)            d) 

 

  
e)            f) 

 
Fig. 22. Collaborative multi-robot Monte Carlo localization. 

 

V. MULTIROBOT MAP MERGING  

This section describes how to build a map from data obtained 
by multiple robots. We are currently working with scan-match 
[16], grid-based Fast-SLAM [15] and grid-based SLAM with 
Rao-Blackwellized particle filter [21] for map merging; 
comparing the results. To do so, we have modified some codes 
and parameters in algorithms (GMapping and GridSLAM) 
obtained from OpenSlam.org [26] which provides SLAM 
researchers with a platform for publishing their algorithms. 

In this initial work we are focused on developing multirobot 
map merging using a scan-match technique. Next, a merging 
map example is commented on, working with a scan-match 
technique (see figures 23 to 27). The goal is mapping corridors 
3 and 4 of the Electronics Department of the Polytechnic 
School. Figure 23 shows the trajectories followed for each 
robot and figure 24 shows the global map using CARMEN 
(Montecarlo localization). Robot 1 explores across corridor 4 
and Robot 2 explores corridor 3; each robot builds its partial 
map and calculates its pose at any time. When Robot 1 meets 
Robot 2, Robot 2 send its map to Robot 1. Robot 1 uses the 
partial Robot 2 map and the detection model (Robot 2´s pose 
detected) to generate the global map (Fig. 27). 

The main problem we run into here is the need for very 
precise inter-robot detection for map merging purposes. Any 
small orientation error would mean that the map built up from 
the slave robot data would be displaced vis-à-vis the master 
robot. We are currently working to improve inter-robot 
detection, making it much more precise in the interests of 
correct global map reconstruction. 

Our final goal is to be able to map exteriors and implement 
other SLAM techniques for reconstructing the most 
trustworthy environment possible. One of the problems we are 
finding is that 2D laser information outdoors may be of little 
value in wider settings and we are therefore trying to merge 
laser with vision. We are thus working towards the 
introduction of visual information in localization and mapping 
process to improve SLAM’s performance outdoors. 
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Fig. 23. Robots trajectories. 
 

 
Fig. 24. Complete map obtained using CARMEN. 
 

 
Fig. 25. Partial map built by robot 2. 
 

 
Fig. 26. Partial map built by robot 1. 
 

 
Fig. 27. Global map using scan-matching. 

Robot 2 

Robot 1 
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VI. CONCLUSION 
We present herein initial work in mobile robot mapping. 

We show and comment on results using several algorithms for 
SLAM (scan-matching, grid-FastSLAM and grid-based 
SLAM with Rao-Blackwellized particle filter) for a single 
robot and multi-robot map merging using a scan-match 
technique. The results show that it is possible to use a team of 
robots to explore and navigate in unknown environments.  

Our future work will be focused on improve performance of 
our proposal for indoor environments and to generalize it for 
outdoor environments. According to this point, the results 
obtained show that it is necessary to use other sources of 
information (3D laser, vision, etc) to obtain similar results to 
those obtained indoors. 
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