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compromising unlinkability of their transcripts; other schemes require servers to search through 
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This article describes an approach based on a lightweight trapdoor one-way function from 
modular squaring. The solution exploits the fact that synchrony can be recovered even if tags are 
endowed with only the ability to perform public-key operations, whilst the trusted server is 
capable of trapdoor computations. The construction is provably secure and generic, transforming 
any anonymous, challenge-response RFID authentication protocol into another that is robust 
against active adversaries and supports constant key-lookup cost. 
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1 Introduction 

Radio-Frequency Identification Devices or tags (RFIDs), 
with their limited computational capabilities and 
constrained power source, represent the extreme low-end 
of computational devices that are both endued with 

a native communication interface and used for 
identification, verification, integrity and security 
functions. 

Embedded RFIDs enable objects to be identified by 
radio waves, without physical contact and without need 
for line-of-sight alignment. The flexibility of this 
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technology holds great promise for novel applications, and 
increasingly RFID tags are being deployed in situations 
where their proper operation must be assured to a medium 
or high level of confidence. Well-known examples are the 
use of RFIDs to harden identification documents against 
forgery (in particular passports), or to provide access 
control to physical resources and/or secure locations. The 
deployment of RFIDs in consumer goods and 
identification documents give rise to considerations of 
privacy, in particular as the devices are designed to 
operate in promiscuous mode and are able to communicate 
wirelessly over distances that often exceed the ‘sphere of 
personal privacy’. Thus, in addition to authenticity and 
integrity requirements, it is often desirable, and sometimes 
required, that RFIDs provide anonymised identification 
services. This has motivated the design of lightweight 
anonymous authentication protocols for RFIDs. 

A considerable body of research has been developed to 
provide solutions to the anonymous authentication 
problem in RFID (Sharma, Weis and Engels, 2003; 
Henrici and Müller, 2004; Avoine and Oechslin, 2005; 
Burmester, van Le and de Medeiros, 2006; Molnar, 
Soppera and Wagner, 2006; Tsudik, 2006). However, 
currently available solutions either do not provide robust 
security guarantees, or suffer from scalability issues when 
the number of tags issued by the system is very large. The 
principal reason leading to this conflict between 
requirements is the small circuit footprint available on 
RFID tags, which has so far limited implementation of 
cryptography in tags to symmetric-key algorithms. In the 
anonymous setting, symmetric-key approaches introduce 
the difficulty that the server must first decide which tag 
(and corresponding key) should be used to validate a tag’s 
authentication transcript. This difficulty is worsened if the 
system has a large number of tags, creating vulnerabilities 
to denial-of-service attacks and potentially raising threats 
to privacy through timing attacks. 

In this article, we focus on the worst-case complexity 
(time and computation) of identifying tags, by searching 
for matches in the symmetric-key database of the 
back-end server. More specifically, we consider the ratio 
between the costs of: 

1 authenticating the response of a tag against a single 
tag identity 

2 authenticating the response of a tag in an anonymous 
interaction (when the identity of the tag is not known 
a priori).

This ratio we call the ‘key-lookup cost’. In the worst case, 
for anonymous RFID authentication, the key-lookup cost 
is linear in the number of tags (the server has to exhaust 
the symmetric-key database to find a match). Molnar, 
Soppera and Wagner (2006) presented an anonymous 
RFID protocol that achieves logarithmic key-lookup, by 
using a binary tree of symmetric-keys (the tree of secrets), 
and assigning to each tag the keys of a root-to-leaf path: 
the response of a tag is then linked to this path, and this 

link is used to identify the tag (only 2 log T checks are 
needed, where T is the number of tags). Burmester, van Le 
and de Medeiros (2006) use a different approach, in which 
the key-lookup is constant for tags that have not been 
previously interrogated by rogue readers (invoked by the 
adversary), but otherwise it is linear. 

1.1 New approach and results 

In Burmester, de Medeiros and Motta (2008), we 
introduce a new approach that leads to a reconciliation of 
privacy and availability requirements in anonymous RFID 
authentication: a generic compiler that maps each 
challenge-response RFID authentication protocol into 
another that supports key-lookup operations in constant-
cost. If the original protocol were to satisfy anonymity 
requirements, the transformed one inherits these 
properties. The compiler is described in detail in 
Section 3.2; the result improves the prior best bound on 
worst-case key-lookup cost of O (log n), by Molnar, 
Soppera and Wagner (2006). The compiler never degrades 
the security and privacy properties enjoyed by the original 
protocol (compilee). It can be used to construct schemes 
with constant-cost-key-lookup that do not require the use 
of shared hierarchical keys (e.g. as in Molnar, Soppera and 
Wagner (2006)) and that, therefore, do not suffer from 
enhanced exposure to key leaks. 

In order to instantiate the protocol, we make use of a 
lightweight one-way trapdoor function. Until recently, it 
was not believed that trapdoor functions could be 
implemented within the limitations of current tag 
architectures. Recently, Shamir demonstrated a 
construction of a one-way function based on modular 
squaring (and provably as secure as factoring), called 
SQUASH (for ‘SQUaring hASH’). SQUASH is fully 
amenable to implementation in RFIDs (Shamir, 2007, 
2008). We observe that, at a moderate additional cost, it is 
possible to implement a variant of SQUASH that supports 
trapdoor functionality (Section 3.3). This trapdoor variant 
is the tool that makes practical realisations of the compiler 
possible. 

A security proof of the compiler is provided in 
Section 3.5.2. We also show that any RFID authentication 
protocol that simultaneously provides guarantees of 
privacy protection and of worst-case constant-cost 
key-lookup must also imply ‘public-key obfuscation’, at 
least when the number of tags is asymptotically large 
(Section 4). 

We also consider relaxations of the privacy 
requirements and show that, if limited linkability is to be 
tolerated, then simpler approaches can be pursued to 
achieve constant key-lookup cost (Section 5). 

2 Privacy at odds with availability 
Fundamental requirement of all practical systems are 
robustness and availability. Indeed, the need to provide 
minimal guarantees of continuity of service and to tolerate 
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denial-of-service attacks often trumps other security 
requirements at a functional level, including privacy 
concerns. 

There are several attack strategies against RFID 
systems that target availability. For instance, jamming 
attacks seek to overwhelm the communication medium 
with noise; such attacks can be detected and mitigated by 
mechanisms at the physical layer (Sharma, Weis and 
Engels, 2003). In this article, we focus instead on 
mechanisms that support availability at the protocol level 
(RFID application layer). A related threat (at the protocol 
level) to availability in wireless communication protocols 
is represented by network storms, when the number of 
transmissions exceeds the capacity of the system to 
process them, thus restricting availability. Storms are 
typically a result of design and protocol failures, e.g. if a 
system relies on network flooding for message 
transmission, this can result in storms if the local node 
density is high. In an RFID system, readers may not be 
able to process all tag responses, when the number of tags 
in the vicinity is too large. 

In terms of adversarial threats, an attack may exploit 
the complexity of a key-lookup operation by having a 
rogue tag make faulty responses on behalf of several 
‘virtual’ tags. It may not be easy to detect such attacks, 
because they cannot be distinguished from non-adversarial 
faulty responses. If the back-end server spends more 
resources trying to disambiguate fake responses than the 
adversary spends on generating them, then the RFID 
system is inherently flawed. Note that the cost of 
triggering such an ‘RFID storm’ is restricted to the cost of 
selecting EPC channels (EPC Global), one for each 
response, since the faulty response can be generated by 
simply updating a counter (or some similar mechanism). 
Furthermore, the rogue tag is not subject to the usual tag 
constraints (e.g. it can have its own power supply). 
Therefore, it is important to design RFID systems with 
scalable key-lookup, as systems with large number of tags 
may require a constant-cost of key-lookup to achieve 
resilience against attacks that target availability (denial-of-
service attacks). 

In devising a scheme to reduce the cost to key-lookup, 
one should not overlook a (in some ways complementary) 
class of attacks against availability, termed disabling 
attacks, which target state synchronisation requirements. 
More precisely, strong authentication (in the symmetric-
key setting) requires that RFID tags and the back-end 
server share secrets (e.g. keys and other state information). 
In the case of privacy-preserving protocols, mutable 
information (e.g. a changing pseudonym) must be used by 
the back-end server to recognise the tag in the absence of 
fixed identification values. These represent shared 
dynamic states that must be maintained in synchrony by 
tags and the back-end server. Disabling attacks seek to 
break this synchronicity. 

Among RFID protocols that provide strong privacy 
guarantees, some have limited ability to tolerate attacks 

against availability. For instance, in the Ohkubo–Suzuki–
Kinoshita (2003) protocol, the attacker may use invalid 
timestamps to disable tags temporarily or permanently. 
Other solutions use hierarchic key structures to speed up 
lookup time, but are consequently more vulnerable to 
key-exposure threats as the higher-level keys are shared 
among many tags. For instance, in the Molnar, Soppera 
and Wagner (2006) a tag is identified if the key of its 
sibling is compromised. The key of a parent will link it to 
one of two possible tags, and the key of a t-ancestor to one 
of 2t possible tags. Yet, other protocols require linear 
search among all issued keys to authenticate a response, 
an approach that is infeasible for large numbers of tags. 
An improvement over always requiring an exhaustive 
search is to employ an optimistic approach (Burmester, 
van Le and de Medeiros, 2006; van Le, Burmester and 
de Medeiros, 2007). In this case, the server is 
normally able to recognise the tag in constant time based 
on a pseudonym value, but when this value becomes 
de-synchronised, the server can recover the tag identity 
through linear search among the valid (issued) keys. All 
protocols that (in some circumstances) require a linear 
search suffer from scalability issues as the number of tags 
in the system increases. 

In what follows, we describe how to systematically 
modify RFID protocols to achieve constant-time effort to 
authenticate a tag, resolving scalability issues and 
reconciling privacy and availability requirements of RFID 
applications. 

3 A scalability-providing compiler 

In this section, we provide a high-level description of our 
approach, a compiler that can transform many challenge-
response RFID protocols to achieve scalability, supporting 
constant-cost for RFID key-lookup. 

3.1 A generic challenge-response RFIDs 
protocol 

Figure 1 illustrates a typical challenge-response RFID 
authentication protocol. In the first pass, the reader 
produces a challenge c that could include a timestamp, a 
random nonce, or other information as specified by the 
protocol. In the second pass, the tag evaluates and 
broadcasts the result of computing a function (k; , ) on 
the challenge and (possibly) on additional input r
generated by the tag. The value r could embed a tag nonce 
and either an identifier (if privacy is not a concern), or a 
(mutable) pseudonym to facilitate tag recognition without 
leaking its identity. The dotted line in Figure 1 indicates 
optional passes for added functionality, such as mutual 
authentication, key-update for forward-security, etc. 

The security and efficiency provided by such generic 
protocols are highly related to the choice of the function ,
which is keyed with a symmetric-key k unique to the tag 
and known to the back-end server (not depicted above). 
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Figure 1 A generic challenge-response RFID protocol 

Even restricting our attention only to protocols that 
provide privacy, there are many possibilities for 
implementation of the above protocol, providing different 
security guarantees. For instance, if unlinkable privacy is 
desired, the outputs of the function  must be 
indistinguishable from random. Protocols may further 
differ on the method for pseudonym update, and may 
provide for additional features – for instance, protocols 
may only support authentication when the reader has 
on-line access to the back-end server, or conversely, may 
be suitable for reader-server batch communication.1

In the following, we assume that we deal with a 
generic RFID protocol as in Figure 1 that suffers from 
lack of scalability of key-lookup. We also assume that the 
protocol must achieve privacy, since otherwise scalability 
may be easily achieved by having the tag reveal 
its identity to the server, thus allowing for immediate 
key-lookup. 

3.2 The compiler 

Let h( ) stand for a trapdoor one-way function, where 
the trapdoor t is known only to the back-end server 
(the Verifier). We fix the protocol in Figure 1 to achieve 
key-lookup scalability by changing the form of the tag’s 
response to 

(id, ), ( ; , )h r f k c r  (1) 

where  is as in Figure 1 and id is a tag identifier. Note 
that r in the original protocol is a random nonce, selected 
from {0,1}n uniformly at random, where n is a security 
parameter. When receiving the above response (relayed by 
the reader), the back-end server (the Verifier) can use its 
knowledge of the trapdoor to recover id. It may, then 
apply the steps of the (non-scalable) version of the 
protocol. 

In order for the compiler to preserve the security 
properties of the original protocol, the function h( , ) must 
satisfy the following property. 

Assumption 1 (Unlinkable anonymity). The probability 
ensembles 1 2{0,1} {0,1}{ (id , )} and{ (id , )}n nr rh r h r must be 

computationally indistinguishable, for any pair of 
identities id1, id2.

The need for Assumption 1 should be obvious, as 
otherwise it allows for distinguishing between two 

identities, breaking unlikable anonymity of the underlying 
protocol. 

It is possible to show that the compiled protocol 
provides at least the same anonymity and unforgeability 
guarantees as achieved by the initial protocol while 
guaranteeing constant key-lookup cost.2 In the following, 
we shall first describe a lightweight implementation of a 
one-way trapdoor function (Section 3.3), and then 
demonstrate the explicit efficiencies (Section 3.4) and 
security guarantees (Section 3.5) achieved by the compiler 
when applied to a family of protocols (Burmester, 
van Le and de Medeiros, 2006; van Le, Burmester and 
de Medeiros, 2007) that is secure under a very robust 
security model (universal composability). 

3.3 A lightweight one-way trapdoor function 

The greatest challenge in making the above compiler 
practical is to design very efficient one-way trapdoor 
functions with the required properties. First, we point out 
that since the RFID tags never need to perform operations 
using the trapdoor – from the perspective of a tag, h is 
simply a one-way function – this asymmetry can be 
exploited to obtain more efficient schemes. There are 
several alternatives that could be used to implement the 
function efficiently. The most interesting approach is 
based on SQUASH, proposed by Shamir (2007, 2008). It 
is based on modular squaring (where the modulus N is
reasonably large, say 1,024 bits), and requires just a few 
hundred Gate-Equivalents (GEs) for computation and 
another several hundred GEs for readonly storage. 
Because only arithmetical operations are involved, this 
approach can be implemented very efficiently, while from 
a security point of view it is as hard as integer 
factorisation (Shamir, 1994). 

3.4 Applications and implementations 

The compiler can be applied to practically any anonymous 
RFID protocol to establish constant key-lookup. In 
particular, to the lightweight RFID protocols O-TRAP and 
O-FRAP presented in Burmester, van Le and de Medeiros 
(2006) and van Le, Burmester and de Medeiros (2007), for 
strong Universal Composability (UC) security with 
constant key-lookup. Next, we discuss efficiency aspects 
of implementing the protocols that result from application 
of the compiler to the O-TRAP scheme. 

The authenticator . In the O-TRAP/O-FRAP family of 
protocols,  is realised by a Pseudo-Random Function 
(PRF), which in practice can be implemented using a 
variety of well-known constructions. Efficiency vs. 
security trade-offs in this architecture are easily achieved, 
as key-size and pseudo-randomness (estimated as the 
logarithm of the PRF cycle) can be chosen to the 
granularity of individual bits. Here, we discuss two 
implementation strategies based on different PRF 
instantiations. 
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Using a well-known technique by Goldreich, Goldwasser 
and Micali (1986), it is possible to build a PRF that makes 
a call to a Pseudo-Random Number Generator (PRNG) 
per bit of input processed. In turn, a very efficient PRNG 
implementation can be achieved using linear feedback 
shift registers like the self-shrinking generator 
(Coppersmith, Krawczyk and Mansour, 1994). This 
results in a small number of bit operations per input and 
output bits. The entire footprint of this implementation has 
been estimated to require only 1,435 logic gates 
(within 517 clock cycles and 64B memory), achieving 
128-bit security (Lee and Hong, 2006). 

Block ciphers can similarly be used to implement 
PRFs through a number of standard constructions – their 
concrete security was analysed in Bellare et al. (1997). 
Recently, highly optimised implementations of the 
Advanced Encryption Standard (AES) block cipher 
(Daemen and Rijmen, 2002) have been achieved, and 
these are suitable for RFID architectures (Feldhofer, 
Wolkerstorfer and Rijmen, 2005). An RFID architecture 
using this implementation was proposed in Feldhofer, 
Dominikus and Wolkerstorfer (2004), with footprint equal 
to 3,400 GEs and mean current consumption equal to 
8 μA, assuming a clock rate of 100 kHz and within 1,032 
clock cycles. 

The obfuscator h. The Rabin (1979) cryptosystem is a 
public-key encryption scheme that uses modular squaring 
with composite modulus N, to encrypt data. The public 
key is N and the private key is the factorisation of N. In
particular, if x is the plaintext then the ciphertext is y = x2

mod N. To decrypt y the factors of N are used: there are 
four quadratic residues of y, one of which is x.

In Shamir’s adaptation, modular squaring is replaced with 
integer squaring: h (x) = x2 + kN where k a random number 
larger than N, e.g. log k – log N should exceed the security 
parameter (Shamir, 1994, 2007, 2008). It is not difficult to 
show that inverting h is as hard as factoring composite 
numbers (Shamir, 2007, 2008). 

Cost of obfuscating. Let x = Expand(id||r), where 
Expand(•) is an invertible Non-Linear Feedback Shift 
Register (NLFSR). The NLFSR is necessary to map id||r 
into a full-length N-residue, as the security proof of 
Rabin’s scheme is for full-length inputs. The NLFSR is 
also used for this purpose by the SQUASH construction. 
To compute h(x) = x2 + kN, for a 1,024-bit wide N, the 
square x2 and the product kN, are computed separately on-
the-fly, using a 128 bit register, and then combined (with 
carries buffered for the next iteration). To evaluate 
individual bits of x2 and kN, it is sufficient to convolute x
with itself, and k with N, using the 128 bit register, and 
invoke a PRNG to generate the bits of x and k on-the-fly. 
Nine invocations will be needed. The cost of 
implementing h is then: 

1 512 NOT gates for read-only storage of the 1,024-bit 
modulus N.

2 A PRNG and buffers for the computations. 

Using an estimate of several hundred GEs for an 
optimised SQUASH implementation (Shamir, 2007, 
2008), the circuit complexity of h is less than 1,000 GEs. 

A difference between the above scheme and SQUASH 
is that Shamir proposes not to store N, but to keep simply 
the seed to reconstruct it from a small-footprint PRNG. To 
construct such N, one must try several seeds, evaluate the 
corresponding value for N, and then perform some 
factorisation and primality tests to ascertain with high 
confidence that N is a product of two large primes. 
However, this method does not lead to the factorisation of 
N (the trapdoor) and can only be used as a one-way 
function. Instead, we propose to generate N in the usual 
manner (e.g. as for use with an RSA cryptosystem). The 
observation is that we can compress the storage 
requirement for N by half, because the 1-valued bits can 
be implemented as straight-through wires. 

In addition, in Shamir’s (2007, 2008) description, as 
the SQUASH function is used to implement a MAC 
algorithm, it is not necessary to generate or transmit all the 
bits of h(x), but simply a sufficiently wide window 
containing the middle bits of the result. However, for our 
purposes it is necessary to evaluate and transmit all the 
bits of h( ). This modification has no impact in the size of 
the circuit footprint. However, it does require a larger 
number of clock cycles for evaluation: the middle bits in 
the evaluation of a square are affected only by the lower 
n/2 blocks, so require only approximately 1/4 of the effort 
to evaluate all the bits. 

Total cost of scheme. In total, assuming a 
PRG based implementation of f, the cost is  1,435 + 
1,000 = 2,435 GEs. In practice, this evaluation may be 
pessimistic, because some of the building block in the 
implementation of SQUASH, e.g. the NLFSR, might in 
practice share some circuit sub-routines with the 
implementation of the PRF for the O-TRAP protocol 
family. Using a non-modular implementation, it may be 
possible to reach a more compact implementation than 
reflected in the above estimates. 

3.5 The security proof for the compiler 
In this section, we prove the result for the case where the 
generic challenge-response RFID protocol in Figure 1 
realises one-way authentication with strong (unlinkable) 
privacy in the UC framework. 

3.5.1 Overview of the Universal Composability 
model

The UC framework defines the security of a protocol  in 
terms of the interactive indistinguishability between 
real-and ideal-world simulations of executions of 
(Canetti, 1995, 2000, 2001). Simulated protocol runs 
include a polynomial number of participants, each of 
which (either honest or adversarial) is represented by a 
Probabilistic Polynomial-Time (PPT) machine.3

In the real-world executions, honest parties are 
represented by PPT machines that execute the protocol as 
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specified. These honest parties are fed private inputs at the 
beginning of the simulation, where also a unique ‘session 
identifier’ sid is assigned. Adversarial parties are also 
represented by PPTs, but can deviate from the protocol in 
an arbitrary fashion. 

The adversarial parties are controlled by a PPT 
adversary A that has full knowledge of their state, controls 
the communication channels of all parties (honest and 
adversarial), and interacts with the environment in an 
arbitrary way, and in particular eavesdrops on all 
communications. is itself a PPT, but at the start of a 
protocol run simulation, it is fed as input a non-uniform 
advice string. This input represents ’s ability to capture 
state from concurrent sessions of other protocols 
(or the same protocol). Indeed, as an unbounded length 
string can encode Turing machines representing arbitrary 
protocols, can simulate any polynomial number of 
sessions of other protocols concurrently. 

Also, because ’s advice is non-uniform and is not 
under control of the simulator, and the interaction between 
A and is arbitrary, it is not possible to ‘re-wind’ the UC 
model executions (as the context of the execution, 
represented by the subset of ’s input string that is 
sampled, cannot be reproduced). 

Note that the UC framework itself controls the 
assignment of session identifiers and prevents any part 
with session identifier sid'  sid from communicating with 
a party with session identifier sid. This guarantees 
isolation of sessions, while capturing interaction between 
sessions through the non-uniform advice that the 
environment receives at the beginning of simulation, as 
explained above. 

The honest parties in ideal-world executions are 
controlled by an ideal functionality , a trusted party that 
guarantees the correct execution of the protocol – in 
particular, emulates all honest parties. The ideal-world 
adversary is controlled by to reproduce as faithfully as 
possible the behaviour of the real adversary. 

We say that  realises in the UC framework, or 
UC-realises , if no PPT environment can distinguish 
(with better than negligible probability) real- from 
ideal-world protocol runs. 

3.5.2 The proof 

We shall show that if a challenge-response protocol of the 
form in Figure 1 realises one-way authentication with 
strong privacy in the UC framework, as defined for 
instance, in van Le, Burmester and de Medeiros (2007), 
then the compiled protocol will maintain the same security 
level. 

Let  be the compiled protocol, with pre-  the original 
protocol as in Figure 1. We shall assume that pre-
UC-realises anonymous one-way authentication. As 

observed earlier, a session identifier sid is created for each 
protocol simulation; this captures the state of the trusted 
server’s database, i.e. the set of valid keys assigned to 
honest tags and moreover binds tag identities to keys: 
idi ki , where ki is used by the Verifier (trusted server) to 
authenticate tag with identity idi (see also van Le, 
Burmester and de Medeiros, 2007). 

In this article, we consider only non-adaptive security, 
i.e. the set of honest keys remains constant throughout the 
execution of the protocol. This allows us to consider 
simpler and more efficient protocols. However, we note 
that at a moderate increase in complexity it is possible to 
consider variants of the protocols that achieve forward-
security in the presence of dynamic corruption. For more 
details, see, van Le, Burmester and de Medeiros (2007). 

Each honest party (tag) also receives its key (shared 
with the trusted server) as part of its private input at the 
beginning of a protocol simulation. In addition, takes 
the following actions in the idealised protocol executions: 

generates perfect random challenges (c) for honest 
readers on behalf of the trusted server 

receives challenges on behalf of honest tags 

generates responses on behalf of honest tags 

decides which tag responses are authentic on behalf 
of the Verifier. 

In the real world, the protocol is instantiated with ( , , ), 
which must satisfy the cryptographic definition of a PRF. 
This follows from the assumption that pre-  is UC-secure 
in the sense of van Le, Burmester and de Medeiros (2007). 
By construction, recall that h( , ) satisfies Assumption 1. 

To prove that  is secure we show that each behaviour 
securely provided by can also be achieved in the 
real-world through . That is, we simulate the operation of 

 with access to by the real-world operation of the 
protocol that does not rely on . We summarise the key 
features of , that represent the real-world protocol runs: 

the challenges of the Verifier are received through a 
reader

the responses of the tags are mediated by a reader, 
that may be adversarial 

the adversary controls the adversarial readers and 
may, modify or interrupt any channels at will – but 
cannot temper with the contents of the channels 
connecting honest readers to the Verifier. 

The main difference between the real- and ideal-world is 
that the values produced by are generated as truly 
random, as opposed to pseudo-random. More precisely, at 
the beginning of the simulation, chooses a special 
identity id* among the set of all possible identities. Later, 
whenever  produces a response on behalf of the tag with 
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identity id, and on input the challenge c, the functionality 
generates a random value r, and checks if it has an entry 

(function_value; id, c, (r, F)) in its database, for some F in 
the output space of f. If so, sets F. If not, it selects a 
new value F at random (in the output space of f), and sets 

F, entering (function_value; id, c, (r, F)) into its 
database. Then, it selects H according to the probabilistic 
ensemble {h(id*; )}, and enters the record (identity, id, r)
in its database (but not the value H). Finally, it returns the 
values ,H as the tag’s response in the ideal-world. 

A value ( ,H) is authentic in the ideal world, against 
challenge c, if there is a record of it in the database 
maintained by ; more precisely, if H can be inverted to 
find values id*,r", where the entries (identity,id ,r ) and 
(function_value; id', c', (r', F')), with id = id', r" = r',
c = c', and = F'. Observe that this specification of 
makes several security guarantees self-evident: 

Unforgeability is guaranteed because entries in the 
database are added by , not the adversary. 

Freedom from replays follows from the fact that 
generates new challenges with either protocol, with 
overwhelming probability. Therefore, an earlier 
answer will have a negligible probability of validating 
against the new challenge (i.e. the probability that 
will re-create the same random value with two 
distinct entries). 

Privacy (unlinkable anonymity): Indeed, all the 
tag values are produced according to the same 
distribution, irrespective of tag identity. So the 
adversary can at best guess the identity of an 
honest tag. 

In the real world, since the compiled protocol  may fail in 
a variety of ways we must ensure that no combination of 
such failures may enable the environment to distinguish 
between real and ideal protocol runs (with non-negligible 
probability). Note that the real and ideal-world protocols 
could differ as follows: 

1 A match (valid response) occurs in the real-world, 
while in the ideal-world the match is unsuccessful. 

2 A mismatch (invalid response) occurs in the 
real-world, while in the ideal-world the match is 
successful. 

3 The adversary is able to distinguish tag identities in 
the real-world, while that is clearly impossible in the 
ideal-world. 

Case 1. This occurs when the adversary in the real-world 
is able to modify some values in the channels 
(via reflection, reply, modification, etc.) forcing the 
Verifier to accept responses not produced by tags. 
However, since the outputs of  observed by the adversary 
are pseudo-random, the adversary can only have a 

negligible probability of forcing such an outcome without 
re-using the outputs of . It is possible for the adversary to 
re-use the outputs of f with different values for H.
However, by re-using -values, the adversary 
(with overwhelming probability) commits to the inputs of 
 : k (an unknown value, and hence the tag identity id, 

through the Verifier’s binding), c and r. This is because as 
 is pseudo-random, any modification of the inputs would 

result in a value that, to the adversary, appears completely 
unrelated to the original value . Since, the values c and r
completely characterise the transcript from the perspective 
of the honest parties – as it binds the never repeated inputs 
generated by the tag and the Verifier – then, the entire 
transcript, as well as each of its individual components, is 
not re-playable. 

Remark. We do not claim that the transcript is non-
malleable. In particular, it may be possible for the 
adversary to produce, from (id, ), valueH h r a H H  so 
that the inverse of H' also equals the pair (id, r). This does 
not allow the attacker to replay the transcript (because the 
values c and r are unchanged and bound in F = f (k; c||r)),
nor to re-use parts of it. (As id is bound to k, and r is the 
common value committed in both F and H.)

Case 2. This occurs when the randomly generated values 
in the ideal-world, corresponding to the evaluations of 
h(·,·) and (·; ·, ·) on different inputs, lead to a coincidental 
match. Since, the values generated by are random and 
independent, the chance of coincidence is negligible. 

Case 3. If this were to occur, consider a partially idealised 
world, wherein idealises  – i.e, substitutes evaluation 
of  by recording of entries (function_value; id, c, (r, F))
as above – but evaluates h( , ) as in the real protocol. No 
adversary A could distinguish this partially idealised world 
from the real-world, because if such an adversary existed, 
it is straightforward to show that it could be used to 
distinguish outputs of  from random values, violating the 
assumption that f is pseudo-random. Similarly, no 
adversary A could exist that distinguishes this partially 
idealised world from the ideal-world above. Otherwise, 
such an adversary could be easily shown to distinguish 
between distributions 1 {0,1}{ (id , )} nrh r  and 2 {0,1}{id , )} nrr ,

for distinct identities id1 and id2, with non-negligible 
probability. Indeed, the difference between the partially 
idealised and the ideal-world is that in the partially 
idealised world, the released H values are sampled on the 
distributions corresponding to the true tag identities, while 
in the ideal-world, they are all sampled from the 
distribution corresponding to the fixed identity id*. Such 
an adversary would violate Assumption 1. 

It follows that when the challenge-response protocol 
UC-realises one-way authentication with strong privacy, 
then the compiled protocol will maintain this security 
level. We get scalable key-lookup because the server can 
invert the function h.
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4 Implications of constant key-lookup 
We show that when the number of tags T is large, 
anonymous, unlinkable RFID authentication with constant 
key-lookup implies public-key obfuscation. To achieve 
this, we clarify in greater detail what we mean by 
constant-cost of key-lookup. 

The security parameter n serves as a natural constraint 
on algorithmic efficiency. More specifically, a feasible 
algorithm is characterised by having its cost factor 
dominated by some polynomial p(n). Let DB(n) be the 
number of tags in the server database, in some instance of 
the RFID scheme, with security parameter n. We require 
that the algorithm that lists all entries in DB(n) be feasible, 
since the database must be constructible – hence, the size 
of DB(n) is bound above by some polynomial pDB(n).
Note that the cost to the (honest) server to invalidate an 
answer from the adversary, by exhaustion in the database, 
is O(DB(n) × val(n)), where val(n) is the cost to 
authenticate an honest tag, if the server knows its identity 
in advance. Therefore, if the strategy (in the worst-case) is 
to use exhaustive search for the key, then the key-lookup 
cost lookup(n) is O(DB(n)) and it is only constant when 
DB(n) is constant. By contrast, our definition of scalable 
key-lookup requires that the lookup cost lookup(n) is 
constant whenever the size of DB(n) is bounded by a 
polynomial in n.

To simplify our argument, we make the following 
assumptions on the obfuscator h and the authenticator f:
1 h (id, r), as in Section 3 
2 f (k; c, r) is pseudo-random. 
where r is randomly selected from {0,1}n.

The proof is straightforward. Let T stand for the 
number of valid tags, where T = T(n) is an increasing 
(at most polynomial) function of the security parameter n.
Suppose that a tag’s response h (k, r), f (k; c, r), to the 
server’s challenge c identifies the tag to the server with 
overwhelming probability, say 1 – , where is negligible 
(in n). Then, it is easy to see that the obfuscator h will 
identify the tag to the server with non-negligible 
probability. Indeed, the contribution of the authenticator f
to the identification of the tag in constant key-lookup time 
is asymptotically smaller than 1 by a non-negligible 
amount. More specifically, if the server can only check the 
authenticator of a constant number l of tags for a possible 
match, then it will succeed with probability bounded 
by / T . It follows that the obfuscator h will identify 
the tag to the server independently of f with probability 
bounded below by 1 or 1 / T  which is 
non-negligible if n is large enough, since / T must 
eventually approach 0 – as is constant, and T is not, as 
functions of n.

Since, we are assuming that every RFID tag in our 
challenge-response protocol can obfuscate its identity, but 
only the back-end server can disambiguate it, h must be a 
public-key one-way function (it must have a trapdoor that 
only the back-end server possesses). 

5 Mitigating privacy for availability 
In this section, we weaken the requirement for unlinkable 
privacy while maintaining scalability for the back-end 
server. We first observe that for tag responses to be linked 
certain patterns must be detectable. This can happen in 
different ways. For example, the adversary may succeed in 
detecting patterns after having corrupted some tags. 
Alternatively, the adversary may destabilise tags so that 
they cannot be recognised by the back-end server in 
scalable time, thus forcing them into using responses with 
detectable patterns (e.g. re-using pseudonyms), or forcing 
the server into a linear key-lookup search. 

The Molnar–Soppera–Wagner (2006) protocol 
discussed earlier is an example of an anonymous RFID 
protocol for which tag responses may be linked if some 
tags get corrupted. Most of the other anonymous RFID 
protocols proposed in the literature rely on state 
synchronisation (see, e.g. Ohkubo, Suzuki and Kinoshita, 
2003; Henrici and Müller, 2004; Juels, 2004; Dimitriou, 
2005; Burmester, van Le and de Medeiros, 2006; Tsudik, 
2006; van Le, Burmester and de Medeiros, 2007). State 
synchronisation protocols require an extra pass to confirm 
state changes, and are subject to the well-known ‘two 
generals’ ‘attack’ problem: the server (tag) can never be 
certain of the next state of the tag (server) when the 
adversary controls the communication channels. These 
protocols are prone to disabling attacks. In the worst case, 
tags cannot be directly recognised by the server, which 
must then run a linear search through the key-lookup 
database for each disabled tag. To mitigate this DoS 
attack, tags may re-use earlier pseudonyms (if these are 
still recognisable), or as a last resort, reveal their identity 
(not their secret key). 

A desirable privacy compromise is to minimise the 
loss of privacy. For example, to restrict linkability to those 
periods when the tag is attacked. One of the most effective 
disabling attacks is the entrapment attacks, in which the 
tag is prevented from communicating with authorised 
readers and can only be interrogated by the adversary. 
Entrapment is not necessarily physical although it does 
imply the ability to locate or track, since tags 
communicate autonomously in wireless mode. 

Attacks of this kind on privacy prompt us to revisit the 
definition of identification. The traditional cryptographic 
approach is to define identification as entity authentication 
(Menezes, van Oorschot and Vanstone, 1996). However, 
in more general applications it is clear that identification 
has a broader scope and interpretation. Entities are 
typically identified by their attributes, which may not 
involve authentication. For example, for a criminal 
anonymity means not being visually identified by a 
witness: if the criminal is visually identified then he/she 
will most likely be found guilty in a court of law even 
though the witness may not have checked the criminal’s 
ID while the crime was committed. Therefore, it is 
necessary to interpret RFID privacy in the context of its 
application. 
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5.1 An anonymous RFID authentication protocol 
with constant key-lookup 

We present a scalable solution for RFID authentication in 
which anonymity is established by synchronising states. 
Our solution will allow a determined adversary to link 
tags during an entrapment attack, but this will not extend 
beyond such attacks. More specifically, although the 
adversary may succeed in linking tags during an 
entrapment session, this information will be independent 
for each entrapment session, thus minimising the loss of 
privacy. 

The protocol is described in Figure 2, and has three 
passes. It is based on O-FRAP, a protocol proposed by 
van Le, Burmester and de Medeiros (2007), which is an 
optimistic, forward-secure RFID authentication protocol. 
To simplify the description of our protocol in this article, 
we shall drop the requirement for forward-secrecy: 
however, the required changes to recapture this 
functionality are straightforward (and are discussed in 
Section 5.5). 

Figure 2 An anonymous RFID authentication protocol that 
supports constant key-lookup 

5.2 Trusted setup and key-lookup database 

Each tag is initially assigned a unique tuple (k; r, q) of 
random values of bit-length n, the security parameter, that 
is stored in non-volatile memory: k is its secret key, r a 
one-time pseudonym and q a seed for generating 
entrapment pseudonyms. The tag is also given a boolean 
variable mode and a cyclic counter ctr that takes c distinct 
values, c a small constant. The protocol uses an 
appropriate PRF g to generate values for the pseudonyms, 
the authenticators and for confirmation. For each tag, 
the server stores in a key-lookup database DB a tuple: 

1( ; ; ; , , ), {old, cur}bk r q q q ii i i with q a seed and j
iq ,

0  j  b, pseudonyms used during entrapment attacks. 
Initially: q = q0, r = ri = r0, and 0  ( ; || || ( ))j

iq g k q IV ctr j ,
{old, cur}i , 1  j  b, where q0, r0 are random values, IV

is an initial vector and ctr(j) is the j th value of ctr. The 
server stores pairs (old, cur) of values in DB to maintain 
state coordination with the tags. We assume that DB is 
indexed by each of the 2c + 2 pseudonyms so that the cost 
of disambiguating a pseudonym is constant. 

The state of each tag is controlled by the variable 
mode: if the tag is subject to an attack mode = 1,
otherwise mode = 0. More specifically, mode 1
whenever the tag fails to receive confirmation to its 
response from a challenge, while mode 0 when 
confirmation has been received. When in mode = 1, the 
tag employs entrapment pseudonyms computed on-the-fly 
by evaluating ( ; || || )g k q IV ctr . Since, there is only a 
constant number of such values (eventually they recycle) 
the tag has to defend itself against fly-by attacks by rogue 
readers that seek to exhaust these values. The simplest 
defense is to use a time-delay mechanism as described in 
van Le, Burmester and de Medeiros (2007). This will 
extend the recycle time by a few orders and thwart such 
attacks, but may fail to deal with entrapment attacks, for 
which eventually the tag responses will be linked. 
However, un-linkability will be restored the moment the 
tag gets mutually authenticated by the server: on receiving 
confirmation from the back-end server the tag will update 
its seed q.

5.3 Protocol description 

We refer to Figure 2. In the first pass, the tag is challenged 
by the server with a random c. If the tag received 
confirmation in its previous interaction (mode = 0) then, it 
will update its pseudonym ps r and compute three values 

0, 1 and 2 by inputting (k, ps, c) to the PRF g: 0 is kept 
for later use as a pseudonym update; 1 = auth is an 
authenticator and 2 = conf is used for confirmation. The 
tag responds with ps||auth. If the tag has not previously 
received confirmation (mode = 1) then, it uses a different 
pseudonym in its response, computed on-the-fly with 
seed q.

The server uses the key-lookup database DB to 
disambiguate ps, and then checks auth. If correct, it sends 
conf to the tag. Then, the server proceeds with pseudonym 
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updates, that have to be synchronised with those of 
the tag: curps r corresponds to the case when the tag 

is not under attack; oldps r and ps j
iq , {old, cur}i ,

correspond to cases when the tag did not receive 
confirmation, with the last one indicating that the tag was 
(also) previously interrogated by an unauthorised reader 
(an entrapment attack). In this case, the server will use a 
new seed q 0 to update the pseudonyms qcur, to support 
unlinkability between entrapment attacks. 

If the tag receives confirmation, then it will update the 
pseudonym r if in mode = 0, otherwise it updates the seed 
q. What distinguishes this protocol from O-FRAP 
(van Le, Burmester and de Medeiros, 2007) is that, at all 
times in this protocol, the values r, q stored by the tag in 
its non-volatile memory are synchronised with those 
stored by the server in DB. Consequently, the tag can be 
identified with constant key-lookup. 

5.4 Security considerations 

The protocol in Figure 2 addresses disabling attacks by 
weakening the requirement for unlinkable privacy. 
However, linkability is restricted to entrapment attacks in 
which the tag is either physically restricted or closely 
tracked. During such attacks, it is reasonable to assume 
that the tag is monitored and therefore, to some extend, 
already identified or located. 

Our protocol is based on O-FRAP (van Le, Burmester 
and de Medeiros, 2007) that is proven secure in the UC 
framework. From a security point of view, the main 
difference with our protocol is its functionality: it uses 
entrapment pseudonyms that will eventually recycle. 
However, these pseudonyms remain pseudo-random until 
they get exhausted. 

Theorem 1. Let m be the maximum number of 
uninterrupted interrogations that the adversary can make 
to a tag. 

1 If m is constant then: when b m, the protocol in 
Figure 2 realises one-way authentication with strong 
privacy in the UC framework and supports constant 
key-lookup. 

2 If m is unbounded then: the protocol in Figure 2 
realises one-way authentication with linkable 
privacy in the UC framework and supports constant 
key-lookup. 

The proof is straightforward and is based on the proof for 
O-FRAP that realises anonymous RFID authentication 
with strong privacy in the UC framework 
(van Le, Burmester and de Medeiros, 2007). We only need 
to show that during an entrapment attack no PPT 
environment  can distinguish real – from ideal-world 
protocol executions. During such attacks, in the real-world 
the pseudonyms of a tag are pseudo-random, provided the 
number of uninterrupted adversarial interrogations does 
not exceed the threshold b, which is the case when b m.

In the ideal-world, the functionality generates random 
pseudonyms. So the environment  cannot distinguish 
between these. 

As pointed out in Section 3.5.2 protocols in the UC 
framework may fail in a variety of ways so we must 
ensure that no combination of failures will enable the 
environment  to distinguish between real and ideal 
protocol runs. Again, the significant ways that could cause 
the real-and ideal-world protocols to differ involve the 
possibility of a match (valid response) in the real-world 
while in the ideal-world the match is unsuccessful, or a 
mismatch (invalid response) in the real-world, while in the 
ideal-world the match is successful. The first case occurs 
when the adversary in the real-world is able to modify 
some values in the channels, forcing the Verifier to 
accept responses not produced by tags. However, since 
the protocol flows observed by the adversary are 
pseudo-random, the adversary can only have a negligible 
probability of forcing such an outcome without 
re-using flows. By re-using flows the adversary commits 
(with overwhelming probability) to an unknown value of 
the key k (and hence the other private tag values). Since, 
we are assuming that it is hard to invert g (g is a PRF), the 
probability of succeeding is negligible. The second case 
occurs when the randomly generated values in the 
ideal-world that correspond to parsings of evaluations of

(·;·,·)g  on different inputs in the real-world lead to a 
coincidental match. Since, the values generated by are
random and independent, the chance of coincidence is 
negligible. It follows that the protocol realises one-way 
authentication with strong privacy in the UC framework 
when b m, m constant. 

Next, suppose that m is not constant. Then, whenever 
the number of uninterrupted adversarial interrogations 
exceeds the period of the counter ctr, the pseudonyms will 
be linkable. However, this is restricted to the particular 
entrapment session. As soon as the adversarial 
interrogation is interrupted, the tag will update the seed q
and the pseudonyms will become pseudo-random. 

5.5 Implementation and extensions 

Our protocol requires only the use of a PRF which 
as pointed out in Section 3.4 can be implemented 
with a PRNG. This allows for very efficient 
implementations. In particular, the protocol can be 
adapted to conform with the EPC Gen2 standards 
EPC Global /www.epcglobalinc.org/standards/EPCglobal. 
However, this protocol does not support forward-secrecy. 
To capture this functionality, we can adapt it so that as in 
O-FRAP (van Le, Burmester and de Medeiros, 2007) the 
key is updated whenever the pseudonym is. The tag will 
require additional non-volatile memory for key update 
storage, but otherwise the same basic circuit can be used. 
One can also capture key-exchange, by using O-FRAKE 
(van Le, Burmester and de Medeiros, 2007), which is a 
key-exchange extension of O-FRAP. 
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6 Conclusions 
In order for RFID systems that support strong security and 
privacy to become a reality, a well-rounded practical 
solution that also considers threats to availability, and 
which supports scalability, is needed. In this article, we 
have introduced a scalability compiler that transforms a 
challenge-response RFID authentication protocol into a 
similar RFID protocol that shares the same functionality 
and security as well as provides scalability for the 
back-end server (constant lookup time even in the 
presence of active adversaries). 

We have described a particular instantiation of the 
compiler and illustrated its application to a family of 
authentication protocols with strong security features. In 
particular, we have shown how to achieve security and 
privacy with constant lookup cost within the universally 
composable security model. The compiler requires only 
several hundred additional GEs of circuit area. Moreover, 
the compiler preserves other properties like suitability for 
batch authentication with delayed verification by the 
trusted server. 

We have also proven that one-way trapdoor functions 
have to be used to obfuscate identifiers, in RFID 
authentication protocols that support anonymity with 
constant lookup cost. Finally, by weakening the restriction 
on unlinkable privacy, we have described a provably 
secure anonymous RFID authentication protocol that 
supports scalable lookup and minimises the loss of privacy 
due to linkability. 
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Notes 
1In this case, the tag validation may be delayed until the next 
batch interaction (e.g. Tsudik, 2006), or may be immediate with 
(limited) delegation by the back-end server to the reader 
(Molnar, Soppera and Wagner, 2006). 

2Strictly speaking, the compiler introduces the risk that 
compromise of the trapdoor invalidates forward-security 
properties (that might be enjoyed by the protocol 
pre-compilation). However, as commonly done in RFID 
authentication research, we do not consider security threats 
against the trusted server. 

3The UC model allows to capture security notions for the case 
when the computational power of parties is described by other 
complexity classes, however we restrict ourselves to security 
definitions that can be expressed in the complexity class BPP: 
The adversary must have a success probability bounded away 
from 0 by 1/p(t), where p is some polynomial and t is the 
complexity parameter as some natural function of input length. 
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