
Int. J. Applied Cryptography, Vol. 1, No. 2, 2008 79

Copyright © 2008 Inderscience Enterprises Ltd.

Anonymous RFID authentication supporting
constant-cost key-lookup against active adversaries

M. Burmester*
Department of Computer Science,
Florida State University,
Tallahassee, FL 32306, USA
E-mail: burmester@cs.fsu.edu
*Corresponding author

B. de Medeiros
Google Inc., 1600 Amphitheatre Pkwy,
Mountain View, CA 94043
E-mail: breno@google.com

R. Motta
Department of Computer Science,
Florida State University,
Tallahassee, FL 32306, USA
E-mail: motta@cs.fsu.edu

Abstract: In the absence of sufficiently optimised public key constructions, anonymous
authentication for Radio-Frequency Identification Devices (RFIDs) requires state synchronisation
between tags and a trusted server. Active adversaries disrupt this synchrony, making a recovery
strategy necessary. In some protocols, tags recover by replaying previously used values, thus
compromising unlinkability of their transcripts; other schemes require servers to search through
the set of issued keys, incurring costs that are not constant with the number of legitimate tags.
This article describes an approach based on a lightweight trapdoor one-way function from
modular squaring. The solution exploits the fact that synchrony can be recovered even if tags are
endowed with only the ability to perform public-key operations, whilst the trusted server is
capable of trapdoor computations. The construction is provably secure and generic, transforming
any anonymous, challenge-response RFID authentication protocol into another that is robust
against active adversaries and supports constant key-lookup cost.

Keywords: anonymous authentication; lightweight cryptography; provably secure protocols;
Radio-Frequency Identification Devices; RFID; RFID security; scalable security; unlinkability.

Reference to this paper should be made as follows: Burmester, M., de Medeiros, B. and
Motta, R. (2008) ‘Anonymous RFID authentication supporting constant-cost key-lookup against
active adversaries’, Int. J. Applied Cryptography, Vol. 1, No. 2, pp.79–90.

Biographical notes: Mike Burmester is a Professor in the Department of Computer Science,
Florida State University. His main research interests are cryptography, network security, security
of pervasive/ubiquitous systems, MANETs and sensor networks.

Breno de Medeiros is a Software Engineer at Google Inc., and holds a courtesy appointment at
Florida State University. He has published research in applied cryptography, network security
and information privacy issues.

Rossana Motta is a PhD student in the Department of Computer Science, Florida State
University. She began her PhD in 2007. Her primary interests are RFID security and network
applications.

1 Introduction

Radio-Frequency Identification Devices or tags (RFIDs),
with their limited computational capabilities and
constrained power source, represent the extreme low-end
of computational devices that are both endued with

a native communication interface and used for
identification, verification, integrity and security
functions.

Embedded RFIDs enable objects to be identified by
radio waves, without physical contact and without need
for line-of-sight alignment. The flexibility of this

80 M. Burmester, B. de Medeiros and R. Motta

technology holds great promise for novel applications, and
increasingly RFID tags are being deployed in situations
where their proper operation must be assured to a medium
or high level of confidence. Well-known examples are the
use of RFIDs to harden identification documents against
forgery (in particular passports), or to provide access
control to physical resources and/or secure locations. The
deployment of RFIDs in consumer goods and
identification documents give rise to considerations of
privacy, in particular as the devices are designed to
operate in promiscuous mode and are able to communicate
wirelessly over distances that often exceed the ‘sphere of
personal privacy’. Thus, in addition to authenticity and
integrity requirements, it is often desirable, and sometimes
required, that RFIDs provide anonymised identification
services. This has motivated the design of lightweight
anonymous authentication protocols for RFIDs.

A considerable body of research has been developed to
provide solutions to the anonymous authentication
problem in RFID (Sharma, Weis and Engels, 2003;
Henrici and Müller, 2004; Avoine and Oechslin, 2005;
Burmester, van Le and de Medeiros, 2006; Molnar,
Soppera and Wagner, 2006; Tsudik, 2006). However,
currently available solutions either do not provide robust
security guarantees, or suffer from scalability issues when
the number of tags issued by the system is very large. The
principal reason leading to this conflict between
requirements is the small circuit footprint available on
RFID tags, which has so far limited implementation of
cryptography in tags to symmetric-key algorithms. In the
anonymous setting, symmetric-key approaches introduce
the difficulty that the server must first decide which tag
(and corresponding key) should be used to validate a tag’s
authentication transcript. This difficulty is worsened if the
system has a large number of tags, creating vulnerabilities
to denial-of-service attacks and potentially raising threats
to privacy through timing attacks.

In this article, we focus on the worst-case complexity
(time and computation) of identifying tags, by searching
for matches in the symmetric-key database of the
back-end server. More specifically, we consider the ratio
between the costs of:

1 authenticating the response of a tag against a single
tag identity

2 authenticating the response of a tag in an anonymous
interaction (when the identity of the tag is not known
a priori).

This ratio we call the ‘key-lookup cost’. In the worst case,
for anonymous RFID authentication, the key-lookup cost
is linear in the number of tags (the server has to exhaust
the symmetric-key database to find a match). Molnar,
Soppera and Wagner (2006) presented an anonymous
RFID protocol that achieves logarithmic key-lookup, by
using a binary tree of symmetric-keys (the tree of secrets),
and assigning to each tag the keys of a root-to-leaf path:
the response of a tag is then linked to this path, and this

link is used to identify the tag (only 2 log T checks are
needed, where T is the number of tags). Burmester, van Le
and de Medeiros (2006) use a different approach, in which
the key-lookup is constant for tags that have not been
previously interrogated by rogue readers (invoked by the
adversary), but otherwise it is linear.

1.1 New approach and results

In Burmester, de Medeiros and Motta (2008), we
introduce a new approach that leads to a reconciliation of
privacy and availability requirements in anonymous RFID
authentication: a generic compiler that maps each
challenge-response RFID authentication protocol into
another that supports key-lookup operations in constant-
cost. If the original protocol were to satisfy anonymity
requirements, the transformed one inherits these
properties. The compiler is described in detail in
Section 3.2; the result improves the prior best bound on
worst-case key-lookup cost of O (log n), by Molnar,
Soppera and Wagner (2006). The compiler never degrades
the security and privacy properties enjoyed by the original
protocol (compilee). It can be used to construct schemes
with constant-cost-key-lookup that do not require the use
of shared hierarchical keys (e.g. as in Molnar, Soppera and
Wagner (2006)) and that, therefore, do not suffer from
enhanced exposure to key leaks.

In order to instantiate the protocol, we make use of a
lightweight one-way trapdoor function. Until recently, it
was not believed that trapdoor functions could be
implemented within the limitations of current tag
architectures. Recently, Shamir demonstrated a
construction of a one-way function based on modular
squaring (and provably as secure as factoring), called
SQUASH (for ‘SQUaring hASH’). SQUASH is fully
amenable to implementation in RFIDs (Shamir, 2007,
2008). We observe that, at a moderate additional cost, it is
possible to implement a variant of SQUASH that supports
trapdoor functionality (Section 3.3). This trapdoor variant
is the tool that makes practical realisations of the compiler
possible.

A security proof of the compiler is provided in
Section 3.5.2. We also show that any RFID authentication
protocol that simultaneously provides guarantees of
privacy protection and of worst-case constant-cost
key-lookup must also imply ‘public-key obfuscation’, at
least when the number of tags is asymptotically large
(Section 4).

We also consider relaxations of the privacy
requirements and show that, if limited linkability is to be
tolerated, then simpler approaches can be pursued to
achieve constant key-lookup cost (Section 5).

2 Privacy at odds with availability
Fundamental requirement of all practical systems are
robustness and availability. Indeed, the need to provide
minimal guarantees of continuity of service and to tolerate

Anonymous RFID authentication supporting constant-cost key-lookup 81

denial-of-service attacks often trumps other security
requirements at a functional level, including privacy
concerns.

There are several attack strategies against RFID
systems that target availability. For instance, jamming
attacks seek to overwhelm the communication medium
with noise; such attacks can be detected and mitigated by
mechanisms at the physical layer (Sharma, Weis and
Engels, 2003). In this article, we focus instead on
mechanisms that support availability at the protocol level
(RFID application layer). A related threat (at the protocol
level) to availability in wireless communication protocols
is represented by network storms, when the number of
transmissions exceeds the capacity of the system to
process them, thus restricting availability. Storms are
typically a result of design and protocol failures, e.g. if a
system relies on network flooding for message
transmission, this can result in storms if the local node
density is high. In an RFID system, readers may not be
able to process all tag responses, when the number of tags
in the vicinity is too large.

In terms of adversarial threats, an attack may exploit
the complexity of a key-lookup operation by having a
rogue tag make faulty responses on behalf of several
‘virtual’ tags. It may not be easy to detect such attacks,
because they cannot be distinguished from non-adversarial
faulty responses. If the back-end server spends more
resources trying to disambiguate fake responses than the
adversary spends on generating them, then the RFID
system is inherently flawed. Note that the cost of
triggering such an ‘RFID storm’ is restricted to the cost of
selecting EPC channels (EPC Global), one for each
response, since the faulty response can be generated by
simply updating a counter (or some similar mechanism).
Furthermore, the rogue tag is not subject to the usual tag
constraints (e.g. it can have its own power supply).
Therefore, it is important to design RFID systems with
scalable key-lookup, as systems with large number of tags
may require a constant-cost of key-lookup to achieve
resilience against attacks that target availability (denial-of-
service attacks).

In devising a scheme to reduce the cost to key-lookup,
one should not overlook a (in some ways complementary)
class of attacks against availability, termed disabling
attacks, which target state synchronisation requirements.
More precisely, strong authentication (in the symmetric-
key setting) requires that RFID tags and the back-end
server share secrets (e.g. keys and other state information).
In the case of privacy-preserving protocols, mutable
information (e.g. a changing pseudonym) must be used by
the back-end server to recognise the tag in the absence of
fixed identification values. These represent shared
dynamic states that must be maintained in synchrony by
tags and the back-end server. Disabling attacks seek to
break this synchronicity.

Among RFID protocols that provide strong privacy
guarantees, some have limited ability to tolerate attacks

against availability. For instance, in the Ohkubo–Suzuki–
Kinoshita (2003) protocol, the attacker may use invalid
timestamps to disable tags temporarily or permanently.
Other solutions use hierarchic key structures to speed up
lookup time, but are consequently more vulnerable to
key-exposure threats as the higher-level keys are shared
among many tags. For instance, in the Molnar, Soppera
and Wagner (2006) a tag is identified if the key of its
sibling is compromised. The key of a parent will link it to
one of two possible tags, and the key of a t-ancestor to one
of 2t possible tags. Yet, other protocols require linear
search among all issued keys to authenticate a response,
an approach that is infeasible for large numbers of tags.
An improvement over always requiring an exhaustive
search is to employ an optimistic approach (Burmester,
van Le and de Medeiros, 2006; van Le, Burmester and
de Medeiros, 2007). In this case, the server is
normally able to recognise the tag in constant time based
on a pseudonym value, but when this value becomes
de-synchronised, the server can recover the tag identity
through linear search among the valid (issued) keys. All
protocols that (in some circumstances) require a linear
search suffer from scalability issues as the number of tags
in the system increases.

In what follows, we describe how to systematically
modify RFID protocols to achieve constant-time effort to
authenticate a tag, resolving scalability issues and
reconciling privacy and availability requirements of RFID
applications.

3 A scalability-providing compiler

In this section, we provide a high-level description of our
approach, a compiler that can transform many challenge-
response RFID protocols to achieve scalability, supporting
constant-cost for RFID key-lookup.

3.1 A generic challenge-response RFIDs
protocol

Figure 1 illustrates a typical challenge-response RFID
authentication protocol. In the first pass, the reader
produces a challenge c that could include a timestamp, a
random nonce, or other information as specified by the
protocol. In the second pass, the tag evaluates and
broadcasts the result of computing a function (k; ,) on
the challenge and (possibly) on additional input r
generated by the tag. The value r could embed a tag nonce
and either an identifier (if privacy is not a concern), or a
(mutable) pseudonym to facilitate tag recognition without
leaking its identity. The dotted line in Figure 1 indicates
optional passes for added functionality, such as mutual
authentication, key-update for forward-security, etc.

The security and efficiency provided by such generic
protocols are highly related to the choice of the function ,
which is keyed with a symmetric-key k unique to the tag
and known to the back-end server (not depicted above).

82 M. Burmester, B. de Medeiros and R. Motta

Figure 1 A generic challenge-response RFID protocol

Even restricting our attention only to protocols that
provide privacy, there are many possibilities for
implementation of the above protocol, providing different
security guarantees. For instance, if unlinkable privacy is
desired, the outputs of the function must be
indistinguishable from random. Protocols may further
differ on the method for pseudonym update, and may
provide for additional features – for instance, protocols
may only support authentication when the reader has
on-line access to the back-end server, or conversely, may
be suitable for reader-server batch communication.1

In the following, we assume that we deal with a
generic RFID protocol as in Figure 1 that suffers from
lack of scalability of key-lookup. We also assume that the
protocol must achieve privacy, since otherwise scalability
may be easily achieved by having the tag reveal
its identity to the server, thus allowing for immediate
key-lookup.

3.2 The compiler

Let h() stand for a trapdoor one-way function, where
the trapdoor t is known only to the back-end server
(the Verifier). We fix the protocol in Figure 1 to achieve
key-lookup scalability by changing the form of the tag’s
response to

(id,), (; ,)h r f k c r (1)

where is as in Figure 1 and id is a tag identifier. Note
that r in the original protocol is a random nonce, selected
from {0,1}n uniformly at random, where n is a security
parameter. When receiving the above response (relayed by
the reader), the back-end server (the Verifier) can use its
knowledge of the trapdoor to recover id. It may, then
apply the steps of the (non-scalable) version of the
protocol.

In order for the compiler to preserve the security
properties of the original protocol, the function h(,) must
satisfy the following property.

Assumption 1 (Unlinkable anonymity). The probability
ensembles 1 2{0,1} {0,1}{ (id ,)} and{ (id ,)}n nr rh r h r must be

computationally indistinguishable, for any pair of
identities id1, id2.

The need for Assumption 1 should be obvious, as
otherwise it allows for distinguishing between two

identities, breaking unlikable anonymity of the underlying
protocol.

It is possible to show that the compiled protocol
provides at least the same anonymity and unforgeability
guarantees as achieved by the initial protocol while
guaranteeing constant key-lookup cost.2 In the following,
we shall first describe a lightweight implementation of a
one-way trapdoor function (Section 3.3), and then
demonstrate the explicit efficiencies (Section 3.4) and
security guarantees (Section 3.5) achieved by the compiler
when applied to a family of protocols (Burmester,
van Le and de Medeiros, 2006; van Le, Burmester and
de Medeiros, 2007) that is secure under a very robust
security model (universal composability).

3.3 A lightweight one-way trapdoor function

The greatest challenge in making the above compiler
practical is to design very efficient one-way trapdoor
functions with the required properties. First, we point out
that since the RFID tags never need to perform operations
using the trapdoor – from the perspective of a tag, h is
simply a one-way function – this asymmetry can be
exploited to obtain more efficient schemes. There are
several alternatives that could be used to implement the
function efficiently. The most interesting approach is
based on SQUASH, proposed by Shamir (2007, 2008). It
is based on modular squaring (where the modulus N is
reasonably large, say 1,024 bits), and requires just a few
hundred Gate-Equivalents (GEs) for computation and
another several hundred GEs for readonly storage.
Because only arithmetical operations are involved, this
approach can be implemented very efficiently, while from
a security point of view it is as hard as integer
factorisation (Shamir, 1994).

3.4 Applications and implementations

The compiler can be applied to practically any anonymous
RFID protocol to establish constant key-lookup. In
particular, to the lightweight RFID protocols O-TRAP and
O-FRAP presented in Burmester, van Le and de Medeiros
(2006) and van Le, Burmester and de Medeiros (2007), for
strong Universal Composability (UC) security with
constant key-lookup. Next, we discuss efficiency aspects
of implementing the protocols that result from application
of the compiler to the O-TRAP scheme.

The authenticator . In the O-TRAP/O-FRAP family of
protocols, is realised by a Pseudo-Random Function
(PRF), which in practice can be implemented using a
variety of well-known constructions. Efficiency vs.
security trade-offs in this architecture are easily achieved,
as key-size and pseudo-randomness (estimated as the
logarithm of the PRF cycle) can be chosen to the
granularity of individual bits. Here, we discuss two
implementation strategies based on different PRF
instantiations.

Anonymous RFID authentication supporting constant-cost key-lookup 83

Using a well-known technique by Goldreich, Goldwasser
and Micali (1986), it is possible to build a PRF that makes
a call to a Pseudo-Random Number Generator (PRNG)
per bit of input processed. In turn, a very efficient PRNG
implementation can be achieved using linear feedback
shift registers like the self-shrinking generator
(Coppersmith, Krawczyk and Mansour, 1994). This
results in a small number of bit operations per input and
output bits. The entire footprint of this implementation has
been estimated to require only 1,435 logic gates
(within 517 clock cycles and 64B memory), achieving
128-bit security (Lee and Hong, 2006).

Block ciphers can similarly be used to implement
PRFs through a number of standard constructions – their
concrete security was analysed in Bellare et al. (1997).
Recently, highly optimised implementations of the
Advanced Encryption Standard (AES) block cipher
(Daemen and Rijmen, 2002) have been achieved, and
these are suitable for RFID architectures (Feldhofer,
Wolkerstorfer and Rijmen, 2005). An RFID architecture
using this implementation was proposed in Feldhofer,
Dominikus and Wolkerstorfer (2004), with footprint equal
to 3,400 GEs and mean current consumption equal to
8 μA, assuming a clock rate of 100 kHz and within 1,032
clock cycles.

The obfuscator h. The Rabin (1979) cryptosystem is a
public-key encryption scheme that uses modular squaring
with composite modulus N, to encrypt data. The public
key is N and the private key is the factorisation of N. In
particular, if x is the plaintext then the ciphertext is y = x2

mod N. To decrypt y the factors of N are used: there are
four quadratic residues of y, one of which is x.

In Shamir’s adaptation, modular squaring is replaced with
integer squaring: h (x) = x2 + kN where k a random number
larger than N, e.g. log k – log N should exceed the security
parameter (Shamir, 1994, 2007, 2008). It is not difficult to
show that inverting h is as hard as factoring composite
numbers (Shamir, 2007, 2008).

Cost of obfuscating. Let x = Expand(id||r), where
Expand(•) is an invertible Non-Linear Feedback Shift
Register (NLFSR). The NLFSR is necessary to map id||r
into a full-length N-residue, as the security proof of
Rabin’s scheme is for full-length inputs. The NLFSR is
also used for this purpose by the SQUASH construction.
To compute h(x) = x2 + kN, for a 1,024-bit wide N, the
square x2 and the product kN, are computed separately on-
the-fly, using a 128 bit register, and then combined (with
carries buffered for the next iteration). To evaluate
individual bits of x2 and kN, it is sufficient to convolute x
with itself, and k with N, using the 128 bit register, and
invoke a PRNG to generate the bits of x and k on-the-fly.
Nine invocations will be needed. The cost of
implementing h is then:

1 512 NOT gates for read-only storage of the 1,024-bit
modulus N.

2 A PRNG and buffers for the computations.

Using an estimate of several hundred GEs for an
optimised SQUASH implementation (Shamir, 2007,
2008), the circuit complexity of h is less than 1,000 GEs.

A difference between the above scheme and SQUASH
is that Shamir proposes not to store N, but to keep simply
the seed to reconstruct it from a small-footprint PRNG. To
construct such N, one must try several seeds, evaluate the
corresponding value for N, and then perform some
factorisation and primality tests to ascertain with high
confidence that N is a product of two large primes.
However, this method does not lead to the factorisation of
N (the trapdoor) and can only be used as a one-way
function. Instead, we propose to generate N in the usual
manner (e.g. as for use with an RSA cryptosystem). The
observation is that we can compress the storage
requirement for N by half, because the 1-valued bits can
be implemented as straight-through wires.

In addition, in Shamir’s (2007, 2008) description, as
the SQUASH function is used to implement a MAC
algorithm, it is not necessary to generate or transmit all the
bits of h(x), but simply a sufficiently wide window
containing the middle bits of the result. However, for our
purposes it is necessary to evaluate and transmit all the
bits of h(). This modification has no impact in the size of
the circuit footprint. However, it does require a larger
number of clock cycles for evaluation: the middle bits in
the evaluation of a square are affected only by the lower
n/2 blocks, so require only approximately 1/4 of the effort
to evaluate all the bits.

Total cost of scheme. In total, assuming a
PRG based implementation of f, the cost is 1,435 +
1,000 = 2,435 GEs. In practice, this evaluation may be
pessimistic, because some of the building block in the
implementation of SQUASH, e.g. the NLFSR, might in
practice share some circuit sub-routines with the
implementation of the PRF for the O-TRAP protocol
family. Using a non-modular implementation, it may be
possible to reach a more compact implementation than
reflected in the above estimates.

3.5 The security proof for the compiler
In this section, we prove the result for the case where the
generic challenge-response RFID protocol in Figure 1
realises one-way authentication with strong (unlinkable)
privacy in the UC framework.

3.5.1 Overview of the Universal Composability
model

The UC framework defines the security of a protocol in
terms of the interactive indistinguishability between
real-and ideal-world simulations of executions of
(Canetti, 1995, 2000, 2001). Simulated protocol runs
include a polynomial number of participants, each of
which (either honest or adversarial) is represented by a
Probabilistic Polynomial-Time (PPT) machine.3

In the real-world executions, honest parties are
represented by PPT machines that execute the protocol as

84 M. Burmester, B. de Medeiros and R. Motta

specified. These honest parties are fed private inputs at the
beginning of the simulation, where also a unique ‘session
identifier’ sid is assigned. Adversarial parties are also
represented by PPTs, but can deviate from the protocol in
an arbitrary fashion.

The adversarial parties are controlled by a PPT
adversary A that has full knowledge of their state, controls
the communication channels of all parties (honest and
adversarial), and interacts with the environment in an
arbitrary way, and in particular eavesdrops on all
communications. is itself a PPT, but at the start of a
protocol run simulation, it is fed as input a non-uniform
advice string. This input represents ’s ability to capture
state from concurrent sessions of other protocols
(or the same protocol). Indeed, as an unbounded length
string can encode Turing machines representing arbitrary
protocols, can simulate any polynomial number of
sessions of other protocols concurrently.

Also, because ’s advice is non-uniform and is not
under control of the simulator, and the interaction between
A and is arbitrary, it is not possible to ‘re-wind’ the UC
model executions (as the context of the execution,
represented by the subset of ’s input string that is
sampled, cannot be reproduced).

Note that the UC framework itself controls the
assignment of session identifiers and prevents any part
with session identifier sid' sid from communicating with
a party with session identifier sid. This guarantees
isolation of sessions, while capturing interaction between
sessions through the non-uniform advice that the
environment receives at the beginning of simulation, as
explained above.

The honest parties in ideal-world executions are
controlled by an ideal functionality , a trusted party that
guarantees the correct execution of the protocol – in
particular, emulates all honest parties. The ideal-world
adversary is controlled by to reproduce as faithfully as
possible the behaviour of the real adversary.

We say that realises in the UC framework, or
UC-realises , if no PPT environment can distinguish
(with better than negligible probability) real- from
ideal-world protocol runs.

3.5.2 The proof

We shall show that if a challenge-response protocol of the
form in Figure 1 realises one-way authentication with
strong privacy in the UC framework, as defined for
instance, in van Le, Burmester and de Medeiros (2007),
then the compiled protocol will maintain the same security
level.

Let be the compiled protocol, with pre- the original
protocol as in Figure 1. We shall assume that pre-
UC-realises anonymous one-way authentication. As

observed earlier, a session identifier sid is created for each
protocol simulation; this captures the state of the trusted
server’s database, i.e. the set of valid keys assigned to
honest tags and moreover binds tag identities to keys:
idi ki , where ki is used by the Verifier (trusted server) to
authenticate tag with identity idi (see also van Le,
Burmester and de Medeiros, 2007).

In this article, we consider only non-adaptive security,
i.e. the set of honest keys remains constant throughout the
execution of the protocol. This allows us to consider
simpler and more efficient protocols. However, we note
that at a moderate increase in complexity it is possible to
consider variants of the protocols that achieve forward-
security in the presence of dynamic corruption. For more
details, see, van Le, Burmester and de Medeiros (2007).

Each honest party (tag) also receives its key (shared
with the trusted server) as part of its private input at the
beginning of a protocol simulation. In addition, takes
the following actions in the idealised protocol executions:

generates perfect random challenges (c) for honest
readers on behalf of the trusted server

receives challenges on behalf of honest tags

generates responses on behalf of honest tags

decides which tag responses are authentic on behalf
of the Verifier.

In the real world, the protocol is instantiated with (, ,),
which must satisfy the cryptographic definition of a PRF.
This follows from the assumption that pre- is UC-secure
in the sense of van Le, Burmester and de Medeiros (2007).
By construction, recall that h(,) satisfies Assumption 1.

To prove that is secure we show that each behaviour
securely provided by can also be achieved in the
real-world through . That is, we simulate the operation of

 with access to by the real-world operation of the
protocol that does not rely on . We summarise the key
features of , that represent the real-world protocol runs:

the challenges of the Verifier are received through a
reader

the responses of the tags are mediated by a reader,
that may be adversarial

the adversary controls the adversarial readers and
may, modify or interrupt any channels at will – but
cannot temper with the contents of the channels
connecting honest readers to the Verifier.

The main difference between the real- and ideal-world is
that the values produced by are generated as truly
random, as opposed to pseudo-random. More precisely, at
the beginning of the simulation, chooses a special
identity id* among the set of all possible identities. Later,
whenever produces a response on behalf of the tag with

Anonymous RFID authentication supporting constant-cost key-lookup 85

identity id, and on input the challenge c, the functionality
generates a random value r, and checks if it has an entry

(function_value; id, c, (r, F)) in its database, for some F in
the output space of f. If so, sets F. If not, it selects a
new value F at random (in the output space of f), and sets

F, entering (function_value; id, c, (r, F)) into its
database. Then, it selects H according to the probabilistic
ensemble {h(id*;)}, and enters the record (identity, id, r)
in its database (but not the value H). Finally, it returns the
values ,H as the tag’s response in the ideal-world.

A value (,H) is authentic in the ideal world, against
challenge c, if there is a record of it in the database
maintained by ; more precisely, if H can be inverted to
find values id*,r", where the entries (identity,id ,r) and
(function_value; id', c', (r', F')), with id = id', r" = r',
c = c', and = F'. Observe that this specification of
makes several security guarantees self-evident:

Unforgeability is guaranteed because entries in the
database are added by , not the adversary.

Freedom from replays follows from the fact that
generates new challenges with either protocol, with
overwhelming probability. Therefore, an earlier
answer will have a negligible probability of validating
against the new challenge (i.e. the probability that
will re-create the same random value with two
distinct entries).

Privacy (unlinkable anonymity): Indeed, all the
tag values are produced according to the same
distribution, irrespective of tag identity. So the
adversary can at best guess the identity of an
honest tag.

In the real world, since the compiled protocol may fail in
a variety of ways we must ensure that no combination of
such failures may enable the environment to distinguish
between real and ideal protocol runs (with non-negligible
probability). Note that the real and ideal-world protocols
could differ as follows:

1 A match (valid response) occurs in the real-world,
while in the ideal-world the match is unsuccessful.

2 A mismatch (invalid response) occurs in the
real-world, while in the ideal-world the match is
successful.

3 The adversary is able to distinguish tag identities in
the real-world, while that is clearly impossible in the
ideal-world.

Case 1. This occurs when the adversary in the real-world
is able to modify some values in the channels
(via reflection, reply, modification, etc.) forcing the
Verifier to accept responses not produced by tags.
However, since the outputs of observed by the adversary
are pseudo-random, the adversary can only have a

negligible probability of forcing such an outcome without
re-using the outputs of . It is possible for the adversary to
re-use the outputs of f with different values for H.
However, by re-using -values, the adversary
(with overwhelming probability) commits to the inputs of
 : k (an unknown value, and hence the tag identity id,

through the Verifier’s binding), c and r. This is because as
 is pseudo-random, any modification of the inputs would

result in a value that, to the adversary, appears completely
unrelated to the original value . Since, the values c and r
completely characterise the transcript from the perspective
of the honest parties – as it binds the never repeated inputs
generated by the tag and the Verifier – then, the entire
transcript, as well as each of its individual components, is
not re-playable.

Remark. We do not claim that the transcript is non-
malleable. In particular, it may be possible for the
adversary to produce, from (id,), valueH h r a H H so
that the inverse of H' also equals the pair (id, r). This does
not allow the attacker to replay the transcript (because the
values c and r are unchanged and bound in F = f (k; c||r)),
nor to re-use parts of it. (As id is bound to k, and r is the
common value committed in both F and H.)

Case 2. This occurs when the randomly generated values
in the ideal-world, corresponding to the evaluations of
h(·,·) and (·; ·, ·) on different inputs, lead to a coincidental
match. Since, the values generated by are random and
independent, the chance of coincidence is negligible.

Case 3. If this were to occur, consider a partially idealised
world, wherein idealises – i.e, substitutes evaluation
of by recording of entries (function_value; id, c, (r, F))
as above – but evaluates h(,) as in the real protocol. No
adversary A could distinguish this partially idealised world
from the real-world, because if such an adversary existed,
it is straightforward to show that it could be used to
distinguish outputs of from random values, violating the
assumption that f is pseudo-random. Similarly, no
adversary A could exist that distinguishes this partially
idealised world from the ideal-world above. Otherwise,
such an adversary could be easily shown to distinguish
between distributions 1 {0,1}{ (id ,)} nrh r and 2 {0,1}{id ,)} nrr ,

for distinct identities id1 and id2, with non-negligible
probability. Indeed, the difference between the partially
idealised and the ideal-world is that in the partially
idealised world, the released H values are sampled on the
distributions corresponding to the true tag identities, while
in the ideal-world, they are all sampled from the
distribution corresponding to the fixed identity id*. Such
an adversary would violate Assumption 1.

It follows that when the challenge-response protocol
UC-realises one-way authentication with strong privacy,
then the compiled protocol will maintain this security
level. We get scalable key-lookup because the server can
invert the function h.

86 M. Burmester, B. de Medeiros and R. Motta

4 Implications of constant key-lookup
We show that when the number of tags T is large,
anonymous, unlinkable RFID authentication with constant
key-lookup implies public-key obfuscation. To achieve
this, we clarify in greater detail what we mean by
constant-cost of key-lookup.

The security parameter n serves as a natural constraint
on algorithmic efficiency. More specifically, a feasible
algorithm is characterised by having its cost factor
dominated by some polynomial p(n). Let DB(n) be the
number of tags in the server database, in some instance of
the RFID scheme, with security parameter n. We require
that the algorithm that lists all entries in DB(n) be feasible,
since the database must be constructible – hence, the size
of DB(n) is bound above by some polynomial pDB(n).
Note that the cost to the (honest) server to invalidate an
answer from the adversary, by exhaustion in the database,
is O(DB(n) × val(n)), where val(n) is the cost to
authenticate an honest tag, if the server knows its identity
in advance. Therefore, if the strategy (in the worst-case) is
to use exhaustive search for the key, then the key-lookup
cost lookup(n) is O(DB(n)) and it is only constant when
DB(n) is constant. By contrast, our definition of scalable
key-lookup requires that the lookup cost lookup(n) is
constant whenever the size of DB(n) is bounded by a
polynomial in n.

To simplify our argument, we make the following
assumptions on the obfuscator h and the authenticator f:
1 h (id, r), as in Section 3
2 f (k; c, r) is pseudo-random.
where r is randomly selected from {0,1}n.

The proof is straightforward. Let T stand for the
number of valid tags, where T = T(n) is an increasing
(at most polynomial) function of the security parameter n.
Suppose that a tag’s response h (k, r), f (k; c, r), to the
server’s challenge c identifies the tag to the server with
overwhelming probability, say 1 – , where is negligible
(in n). Then, it is easy to see that the obfuscator h will
identify the tag to the server with non-negligible
probability. Indeed, the contribution of the authenticator f
to the identification of the tag in constant key-lookup time
is asymptotically smaller than 1 by a non-negligible
amount. More specifically, if the server can only check the
authenticator of a constant number l of tags for a possible
match, then it will succeed with probability bounded
by / T . It follows that the obfuscator h will identify
the tag to the server independently of f with probability
bounded below by 1 or 1 / T which is
non-negligible if n is large enough, since / T must
eventually approach 0 – as is constant, and T is not, as
functions of n.

Since, we are assuming that every RFID tag in our
challenge-response protocol can obfuscate its identity, but
only the back-end server can disambiguate it, h must be a
public-key one-way function (it must have a trapdoor that
only the back-end server possesses).

5 Mitigating privacy for availability
In this section, we weaken the requirement for unlinkable
privacy while maintaining scalability for the back-end
server. We first observe that for tag responses to be linked
certain patterns must be detectable. This can happen in
different ways. For example, the adversary may succeed in
detecting patterns after having corrupted some tags.
Alternatively, the adversary may destabilise tags so that
they cannot be recognised by the back-end server in
scalable time, thus forcing them into using responses with
detectable patterns (e.g. re-using pseudonyms), or forcing
the server into a linear key-lookup search.

The Molnar–Soppera–Wagner (2006) protocol
discussed earlier is an example of an anonymous RFID
protocol for which tag responses may be linked if some
tags get corrupted. Most of the other anonymous RFID
protocols proposed in the literature rely on state
synchronisation (see, e.g. Ohkubo, Suzuki and Kinoshita,
2003; Henrici and Müller, 2004; Juels, 2004; Dimitriou,
2005; Burmester, van Le and de Medeiros, 2006; Tsudik,
2006; van Le, Burmester and de Medeiros, 2007). State
synchronisation protocols require an extra pass to confirm
state changes, and are subject to the well-known ‘two
generals’ ‘attack’ problem: the server (tag) can never be
certain of the next state of the tag (server) when the
adversary controls the communication channels. These
protocols are prone to disabling attacks. In the worst case,
tags cannot be directly recognised by the server, which
must then run a linear search through the key-lookup
database for each disabled tag. To mitigate this DoS
attack, tags may re-use earlier pseudonyms (if these are
still recognisable), or as a last resort, reveal their identity
(not their secret key).

A desirable privacy compromise is to minimise the
loss of privacy. For example, to restrict linkability to those
periods when the tag is attacked. One of the most effective
disabling attacks is the entrapment attacks, in which the
tag is prevented from communicating with authorised
readers and can only be interrogated by the adversary.
Entrapment is not necessarily physical although it does
imply the ability to locate or track, since tags
communicate autonomously in wireless mode.

Attacks of this kind on privacy prompt us to revisit the
definition of identification. The traditional cryptographic
approach is to define identification as entity authentication
(Menezes, van Oorschot and Vanstone, 1996). However,
in more general applications it is clear that identification
has a broader scope and interpretation. Entities are
typically identified by their attributes, which may not
involve authentication. For example, for a criminal
anonymity means not being visually identified by a
witness: if the criminal is visually identified then he/she
will most likely be found guilty in a court of law even
though the witness may not have checked the criminal’s
ID while the crime was committed. Therefore, it is
necessary to interpret RFID privacy in the context of its
application.

Anonymous RFID authentication supporting constant-cost key-lookup 87

5.1 An anonymous RFID authentication protocol
with constant key-lookup

We present a scalable solution for RFID authentication in
which anonymity is established by synchronising states.
Our solution will allow a determined adversary to link
tags during an entrapment attack, but this will not extend
beyond such attacks. More specifically, although the
adversary may succeed in linking tags during an
entrapment session, this information will be independent
for each entrapment session, thus minimising the loss of
privacy.

The protocol is described in Figure 2, and has three
passes. It is based on O-FRAP, a protocol proposed by
van Le, Burmester and de Medeiros (2007), which is an
optimistic, forward-secure RFID authentication protocol.
To simplify the description of our protocol in this article,
we shall drop the requirement for forward-secrecy:
however, the required changes to recapture this
functionality are straightforward (and are discussed in
Section 5.5).

Figure 2 An anonymous RFID authentication protocol that
supports constant key-lookup

5.2 Trusted setup and key-lookup database

Each tag is initially assigned a unique tuple (k; r, q) of
random values of bit-length n, the security parameter, that
is stored in non-volatile memory: k is its secret key, r a
one-time pseudonym and q a seed for generating
entrapment pseudonyms. The tag is also given a boolean
variable mode and a cyclic counter ctr that takes c distinct
values, c a small constant. The protocol uses an
appropriate PRF g to generate values for the pseudonyms,
the authenticators and for confirmation. For each tag,
the server stores in a key-lookup database DB a tuple:

1(; ; ; , ,), {old, cur}bk r q q q ii i i with q a seed and j
iq ,

0 j b, pseudonyms used during entrapment attacks.
Initially: q = q0, r = ri = r0, and 0 (; || || ())j

iq g k q IV ctr j ,
{old, cur}i , 1 j b, where q0, r0 are random values, IV

is an initial vector and ctr(j) is the j th value of ctr. The
server stores pairs (old, cur) of values in DB to maintain
state coordination with the tags. We assume that DB is
indexed by each of the 2c + 2 pseudonyms so that the cost
of disambiguating a pseudonym is constant.

The state of each tag is controlled by the variable
mode: if the tag is subject to an attack mode = 1,
otherwise mode = 0. More specifically, mode 1
whenever the tag fails to receive confirmation to its
response from a challenge, while mode 0 when
confirmation has been received. When in mode = 1, the
tag employs entrapment pseudonyms computed on-the-fly
by evaluating (; || ||)g k q IV ctr . Since, there is only a
constant number of such values (eventually they recycle)
the tag has to defend itself against fly-by attacks by rogue
readers that seek to exhaust these values. The simplest
defense is to use a time-delay mechanism as described in
van Le, Burmester and de Medeiros (2007). This will
extend the recycle time by a few orders and thwart such
attacks, but may fail to deal with entrapment attacks, for
which eventually the tag responses will be linked.
However, un-linkability will be restored the moment the
tag gets mutually authenticated by the server: on receiving
confirmation from the back-end server the tag will update
its seed q.

5.3 Protocol description

We refer to Figure 2. In the first pass, the tag is challenged
by the server with a random c. If the tag received
confirmation in its previous interaction (mode = 0) then, it
will update its pseudonym ps r and compute three values

0, 1 and 2 by inputting (k, ps, c) to the PRF g: 0 is kept
for later use as a pseudonym update; 1 = auth is an
authenticator and 2 = conf is used for confirmation. The
tag responds with ps||auth. If the tag has not previously
received confirmation (mode = 1) then, it uses a different
pseudonym in its response, computed on-the-fly with
seed q.

The server uses the key-lookup database DB to
disambiguate ps, and then checks auth. If correct, it sends
conf to the tag. Then, the server proceeds with pseudonym

88 M. Burmester, B. de Medeiros and R. Motta

updates, that have to be synchronised with those of
the tag: curps r corresponds to the case when the tag

is not under attack; oldps r and ps j
iq , {old, cur}i ,

correspond to cases when the tag did not receive
confirmation, with the last one indicating that the tag was
(also) previously interrogated by an unauthorised reader
(an entrapment attack). In this case, the server will use a
new seed q 0 to update the pseudonyms qcur, to support
unlinkability between entrapment attacks.

If the tag receives confirmation, then it will update the
pseudonym r if in mode = 0, otherwise it updates the seed
q. What distinguishes this protocol from O-FRAP
(van Le, Burmester and de Medeiros, 2007) is that, at all
times in this protocol, the values r, q stored by the tag in
its non-volatile memory are synchronised with those
stored by the server in DB. Consequently, the tag can be
identified with constant key-lookup.

5.4 Security considerations

The protocol in Figure 2 addresses disabling attacks by
weakening the requirement for unlinkable privacy.
However, linkability is restricted to entrapment attacks in
which the tag is either physically restricted or closely
tracked. During such attacks, it is reasonable to assume
that the tag is monitored and therefore, to some extend,
already identified or located.

Our protocol is based on O-FRAP (van Le, Burmester
and de Medeiros, 2007) that is proven secure in the UC
framework. From a security point of view, the main
difference with our protocol is its functionality: it uses
entrapment pseudonyms that will eventually recycle.
However, these pseudonyms remain pseudo-random until
they get exhausted.

Theorem 1. Let m be the maximum number of
uninterrupted interrogations that the adversary can make
to a tag.

1 If m is constant then: when b m, the protocol in
Figure 2 realises one-way authentication with strong
privacy in the UC framework and supports constant
key-lookup.

2 If m is unbounded then: the protocol in Figure 2
realises one-way authentication with linkable
privacy in the UC framework and supports constant
key-lookup.

The proof is straightforward and is based on the proof for
O-FRAP that realises anonymous RFID authentication
with strong privacy in the UC framework
(van Le, Burmester and de Medeiros, 2007). We only need
to show that during an entrapment attack no PPT
environment can distinguish real – from ideal-world
protocol executions. During such attacks, in the real-world
the pseudonyms of a tag are pseudo-random, provided the
number of uninterrupted adversarial interrogations does
not exceed the threshold b, which is the case when b m.

In the ideal-world, the functionality generates random
pseudonyms. So the environment cannot distinguish
between these.

As pointed out in Section 3.5.2 protocols in the UC
framework may fail in a variety of ways so we must
ensure that no combination of failures will enable the
environment to distinguish between real and ideal
protocol runs. Again, the significant ways that could cause
the real-and ideal-world protocols to differ involve the
possibility of a match (valid response) in the real-world
while in the ideal-world the match is unsuccessful, or a
mismatch (invalid response) in the real-world, while in the
ideal-world the match is successful. The first case occurs
when the adversary in the real-world is able to modify
some values in the channels, forcing the Verifier to
accept responses not produced by tags. However, since
the protocol flows observed by the adversary are
pseudo-random, the adversary can only have a negligible
probability of forcing such an outcome without
re-using flows. By re-using flows the adversary commits
(with overwhelming probability) to an unknown value of
the key k (and hence the other private tag values). Since,
we are assuming that it is hard to invert g (g is a PRF), the
probability of succeeding is negligible. The second case
occurs when the randomly generated values in the
ideal-world that correspond to parsings of evaluations of

(·;·,·)g on different inputs in the real-world lead to a
coincidental match. Since, the values generated by are
random and independent, the chance of coincidence is
negligible. It follows that the protocol realises one-way
authentication with strong privacy in the UC framework
when b m, m constant.

Next, suppose that m is not constant. Then, whenever
the number of uninterrupted adversarial interrogations
exceeds the period of the counter ctr, the pseudonyms will
be linkable. However, this is restricted to the particular
entrapment session. As soon as the adversarial
interrogation is interrupted, the tag will update the seed q
and the pseudonyms will become pseudo-random.

5.5 Implementation and extensions

Our protocol requires only the use of a PRF which
as pointed out in Section 3.4 can be implemented
with a PRNG. This allows for very efficient
implementations. In particular, the protocol can be
adapted to conform with the EPC Gen2 standards
EPC Global /www.epcglobalinc.org/standards/EPCglobal.
However, this protocol does not support forward-secrecy.
To capture this functionality, we can adapt it so that as in
O-FRAP (van Le, Burmester and de Medeiros, 2007) the
key is updated whenever the pseudonym is. The tag will
require additional non-volatile memory for key update
storage, but otherwise the same basic circuit can be used.
One can also capture key-exchange, by using O-FRAKE
(van Le, Burmester and de Medeiros, 2007), which is a
key-exchange extension of O-FRAP.

Anonymous RFID authentication supporting constant-cost key-lookup 89

6 Conclusions
In order for RFID systems that support strong security and
privacy to become a reality, a well-rounded practical
solution that also considers threats to availability, and
which supports scalability, is needed. In this article, we
have introduced a scalability compiler that transforms a
challenge-response RFID authentication protocol into a
similar RFID protocol that shares the same functionality
and security as well as provides scalability for the
back-end server (constant lookup time even in the
presence of active adversaries).

We have described a particular instantiation of the
compiler and illustrated its application to a family of
authentication protocols with strong security features. In
particular, we have shown how to achieve security and
privacy with constant lookup cost within the universally
composable security model. The compiler requires only
several hundred additional GEs of circuit area. Moreover,
the compiler preserves other properties like suitability for
batch authentication with delayed verification by the
trusted server.

We have also proven that one-way trapdoor functions
have to be used to obfuscate identifiers, in RFID
authentication protocols that support anonymity with
constant lookup cost. Finally, by weakening the restriction
on unlinkable privacy, we have described a provably
secure anonymous RFID authentication protocol that
supports scalable lookup and minimises the loss of privacy
due to linkability.

References
Avoine, G. and Oechslin, P. (2005) ‘A scalable and provably

secure hash-based RFID protocol’, Paper presented in the
Proceedings of the IEEE International Conferences on
Pervasive Computing and Communications (PerCom 2005),
pp.110–114, IEEE Press.

Bellare, M., Desai, A., Jokipii, E. and Rogaway, P. (1997)
‘A concrete security treatment of symmetric encryption’,
Paper presented in the Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS 1997), IEEE
Computer Society Press.

Burmester, M., de Medeiros, B. and Motta, R. (2008) ‘Robust,
anonymous rfid authentication with constant key-lookup’,
Paper presented in the Proceedings of the ACM Symposium
on Information, Computer and Communications Security
(ASIACCS’08).

Burmester, M., van Le, T. and de Medeiros, B. (2006) ‘Provably
secure ubiquitous systems: universally compos-able RFID
authentication protocols’, Paper presented in the
Proceedings of the 2nd IEEE/CreateNet International
Conference on Security and Privacy in Communication
Networks (SE-CURECOMM 2006), IEEE Press.

Canetti, R. (1995) Studies in Secure Multiparty Computation and
Application. Rehovot 76100, Israel: PhD Thesis, Weizmann
Institute of Science.

Canetti, R. (2000) ‘Security and composition of multiparty
cryptographic protocols’, Journal of Cryptology, Vol. 13,
pp.143–202.

Canetti, R. (2001) ‘Universally composable security: a new
paradigm for cryptographic protocols’, Paper presented in
the Proceedings of the IEEE Symposium on Foundations of
Computer Science (FOCS 2001), pp.136–145, IEEE Press.

Coppersmith, D., Krawczyk, H. and Mansour, Y. (1994) ‘The
shrinking generator’, Paper presented in the Proceedings of
the Advances in Cryptology (CRYPTO 1993), LNCS,
pp.22–39, Springer.

Daemen, J. and Rijmen, V. (2002) The design of Rijndael.
Secaucus, NJ: Springer-Verlag, New York, Inc.

Dimitriou, T. (2005) ‘A lightweight RFID protocol to protect
against traceability and cloning attacks’, Paper presented in
the Proceedings of the IEEE International Conference on
Security and Privacy in Communication Networks
(SECURECOMM 2005), IEEE Press.

EPC Global. EPC tag data standards, vs. 1.3. Available at:
//www.epcglobalinc.org/standards/EPCglobal_Tag_Data_
Standard_TDS_Version_1.3.pdf.

Feldhofer, M., Dominikus, S. and Wolkerstorfer, J. (2004)
‘Strong authentication for RFID systems using the AES
algorithm’, Paper presented in the Proceedings of the
Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2004), Vol. 3156 of LNCS, Springer.

Feldhofer, M., Wolkerstorfer, J. and Rijmen, V. (2005) ‘AES
implementation on a grain of sand’, IEE Proceedings on
Information Security, Vol. 152, pp.13–20.

Goldreich, O., Goldwasser, S. and Micali, S. (1986) ‘How to
construct pseudorandom functions’, Journal of the ACM,
Vol. 33, pp. 792–807.

Henrici, D. and Müller, P.M. (2004) ‘Hash-based enhancement
of location privacy for radio-frequency identification
devices using varying identifiers’, Paper presented in the
Proceedings of the IEEE International Conference on
Pervasive Computing and Communications, pp.149–153.

Juels, A. (2004) ‘Minimalist cryptography for low-cost RFID
tags’, Paper presented in the Proceedings of the
International Conference on Security in Communication
Networks (SCN 2004), Vol. 3352 of LNCS, pp.149–164,
Springer.

Lee, H. and Hong, D. (2006) ‘The tag authentication scheme
using self-shrinking generator on RFID system’,
Transactions on Engineering, Computing, and Technology,
Vol. 18, pp.52–57.

Menezes, A., van Oorschot, P. and Vanstone, S. (1996)
Handbook of Applied Cryptography. New York, NY: CRC
Press.

Molnar, D., Soppera, A. and Wagner, D. (2006) ‘A scalable,
delegatable pseudonym protocol enabling ownership
transfer of RFID tags’, Paper presented in the Proceedings
of the Workshop on Selected Areas in Cryptography
(SAC 2005), Vol. 3897 of LNCS, Springer.

Ohkubo, M., Suzuki, K. and Kinoshita, S. (2003) ‘Cryptographic
approach to ‘privacy-friendly’ tags’, Paper presented in the
Proceedings of the RFID Privacy Workshop.

Rabin, M.O. (1979) Digitalized Signatures and Public-key
Functions as Intractable as Factorization. Technical Report
TR-212. Cambridge, MA: Massachusetts Institute of
Technology.

Shamir, A. (1994) ‘Memory efficient variants of public-key
schemes for smart card applications’, EURO-CRYPT,
Vol. 1, pp.445–449.

90 M. Burmester, B. de Medeiros and R. Motta

Shamir, A. (2007) ‘SQUASH: a new one-way hash function with
provable security properties for highly constrained devices
such as RFID tags’, In Invited Talk, International
Conference on RFID Security (RFIDSec’07).

Shamir, A. (2008) ‘SQUASH – a new MAC with provable
security properties for highly constrained devices such as
RFID tags’, Paper presented in the Proceedings of the
Workshop on Fast Sofware Encryption (FSE’08), Springer.

Sharma, S., Weis, S. and Engels, D. (2003) ‘RFID systems and
security and privacy implications’, Paper presented in the
Proceedings of the Workshop on Cryptographic Hardware
and Embedded Systems (CHES 2002), LNCS, pp.454–470,
Springer.

Tsudik, G. (2006) ‘YA-TRAP: yet, another trivial RFID
authentication protocol’, Paper presented in the Proceedings
of the IEEE International Conference on Pervasive
Computing and Communications (PerCom 2006), IEEE
Press.

van Le, T., Burmester, M. and de Medeiros, B. (2007)
‘Universally composable and forward-secure RFID
authentication and authenticated key exchange’, Paper
presented in the Proceedings of the ACM Symposium on
Information, Computer, and Communications Security
(ASIACCS 2007), ACM Press.

Notes
1In this case, the tag validation may be delayed until the next
batch interaction (e.g. Tsudik, 2006), or may be immediate with
(limited) delegation by the back-end server to the reader
(Molnar, Soppera and Wagner, 2006).

2Strictly speaking, the compiler introduces the risk that
compromise of the trapdoor invalidates forward-security
properties (that might be enjoyed by the protocol
pre-compilation). However, as commonly done in RFID
authentication research, we do not consider security threats
against the trusted server.

3The UC model allows to capture security notions for the case
when the computational power of parties is described by other
complexity classes, however we restrict ourselves to security
definitions that can be expressed in the complexity class BPP:
The adversary must have a success probability bounded away
from 0 by 1/p(t), where p is some polynomial and t is the
complexity parameter as some natural function of input length.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

