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Control for and interaction with humanoid robots is often restrictive due to limi-
tations of the robot platform and the high dimensionality of controlling systems with
many degrees of freedom. We focus on the problem of providing a “skill-level interface”
for a humanoid robot. Such an interface serves as a 1) modular foundation for structuring
task-oriented control, i) parsimonious abstraction of motor-level control (e.g., PD-servo
control), and 1) means for grounding interactions between humans and robots through
common skill vocabularies. Our approach to constructing skill-level interfaces is two-fold.
First, we propose a representation for a skill-level interface as a “behavior vocabulary”,
a repertoire of modular exemplar-based memory models expressing kinematic motion.
A module in such a vocabulary encodes a flow field (or gradient field) in joint angle
space that describes the “flow” of kinematic motion for a particular skill-level behavior,
enabling prediction from a given kinematic configuration. Second, we propose a data-
driven method for deriving behavior vocabularies from time-series data of human motion
using spatio-temporal dimension reduction and clustering. Results from evaluating an
implementation of our methodology are presented along with the application of derived
behavior vocabularies as predictors towards on-line humanoid trajectory formation and
off-line motion synthesis.

Keywords: motion primitives; motion clustering; spatio-temporal dimension reduction;
motion segmentation; humanoid robotics.

1. Introduction and Motivation

Robotic humanoid agents are emerging in a variety of applications spanning several
domains. A common theme throughout is the desire to realize humanoid robots
as autonomous collaborators in human endeavors. However, current humanoids are
closer to unintuitive automatons requiring an abundance of manual supervision. To
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achieve the goal of collaboration, humanoid control and interaction methods must
address several key questions, including:

e Autonomous control: How can a humanoid robot autonomously control itself?

e External interaction: How can our intentions be communicated to a humanoid?

e Task structure: How can tasks be represented in a manner amenable to au-
tonomous humanoid control?

To illustrate the importance of these questions, consider the example of a human
user instructing a robot to clean a room or throw away a piece of trash. First, the
user must utilize some interaction modality to communicate to the robot the task
to perform and to provide task-specific information, such as “throw away object
X.” Such collaborations occur at the task-level, eventually to be realized as com-
mands for motor-level controllers (e.g., PD-servos). A motor-level controller trans-
lates commands indicating desired configurations for individual degrees of freedom
into forces for the actuators of the robot. A room cleaning robot requires the spec-
ification of motor commands such that its task-level objective of a clean room can
be achieved. The abstract nature of task directives and the specific nature of motor
commands are significantly disparate, making robot control nontrivial and often
restricted to specific tasks. In order to realize their role as human collaborators,
however, humanoid robots must be able to produce motor-level commands that
achieve task-level objectives autonomously for a variety of tasks. Additionally, such
humanoids may be required to perform tasks that were not explicitly programmed.

Internal Task-level

Planner Controller

Execute skills to
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Human Interact through Skill-level
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Fig. 1. Illustration of a skill-level interface as a vocabulary for bridging task and motor levels of
humanoid robots such as the NASA Robonaut and the dynamically simulated Adonis.
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Many of these issues can be addressed through planning-based approaches
and/or modularizing the space of robot control. Planning provides flexible auton-
omy for a variety of tasks, but alone is often too slow for on-line performance.
Faster approaches to robot control use modularity, employing a set of behaviors as
a repertoire of the robot’s capabilities. We refer to such modularity as a skill-level
interface (Figure 1) that bridges high-level task descriptions and lower-level motor
control. An interface of skills provides a parsimonious substrate for task-level opera-
tions (abstracting motor-level control and removing the need to specify joint angles
directly) and structure for motor-level control (as motor programs). Behaviors in
a skill-level interface are discretized to provide parsimonious spaces for planning,
learning control policies!, reacting?, and distributed behavior-based coordination.?
Such approaches to control effectively utilize modularity, but provide little insight
into how to modularize effectively.

We address the modularization problem in a data-driven fashion by extracting
structure from human motion data. In the same vein as learning from demonstra-
tion, we assume human motion is demonstrative of skills humans use to accomplish
tasks. By extracting structure from human motion, we bypass explicit model-based
presuppositions (e.g., domain knowledge).

In this paper, we describe our data-driven method, Performance-Derived Behav-
tor Vocabularies (PDBYV), for automatically extracting behaviors underlying human
motion data. Motion data acquired from human performance are used as input into
PDBYV to design and implement a repertoire of skills. A skill is either a primitive
or meta-level behavior, defined as follows:

e Primitive behavior: a predictive model of kinematic motion capable of providing
a gradient direction A, from a point z in joint angle (or configuration) space.

e Meta-level behavior: a sequential model specifying transition probabilities among
a set of primitive behaviors.

PDBYV derives such behaviors from kinematic time-series data of human motion
that are representative of multiple sequentially performed activities. Clusters in hu-
man motion data representative of behaviors are uncovered using spatio-temporal
Isomap (ST-Isomap)*. Primitive behaviors are an extension of Verbs and Adverbs®
behaviors; each cluster is a memory model® of motion trajectories generalized
through interpolation. Our primitives are speculatively evaluated to form nonlinear
dynamical systems in joint angle space. These models are predictive perceptual-
motor primitives’, useful for a variety of robot perception and control functions,
including motion synthesis, classification, and imitation.

The remainder of this paper is organized as follows. This section describes is-
sues and background work for representing and developing skill-level behaviors for
humanoids. Section 2 describes our PDBV method. Results from evaluating PDBV
and derived behavior vocabularies are presented in Section 3 and discussed in Sec-
tion 4. The paper is concluded in Section 5.
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1.1. Issues in developing humanoid skills

Several approaches to autonomous humanoid control and learning utilize skill-level
capabilities.238
ties are appropriate for learning mappings such as in inverse kinematics!? (mapping
end-effector coordinates to joint angles) and inverse dynamics!! (mapping actuation
forces to control commands). For modularization into behaviors, however, a fully
automated learning approach would need both a means to explore the space of pos-
sible modularizations and a metric to judge their quality. Given the complexity of
humanoids, exhaustive exploration of this space is likely to be intractable and the
metric for evaluation is difficult to characterize. Manual development of a skill-level
repertoire is an effective approach, but is complex and domain-specific due to the
need for repertoire design and controller implementation.

Any method (automatic or manual) is susceptible to producing a repertoire with
errors. Although errors are inevitable, scalable approaches to modularization allow
them to be corrected through rapid manual or automatic refinement. Scalability fac-
tors include the ease of adding new capabilities, removing unnecessary capabilities,

1.9 Fully automated or tabula raza approaches to learning capabili-

modifying existing capabilities, and rebuilding controllers from altered designs.
PDBYV is an automated method for initializing a scalable skill-level interface
amenable to manual refinement. Our approach to skill acquisition avoids biasing
a repertoire by leveraging behaviors inherent (but not immediately extractable) in
human motion data. Behaviors derived by PDBV are defined by exemplar motions
and, thus, are amenable to manual or automatic modification through changes to
these exemplars. An exemplar-based behavior is scalable in that its functionality
can be altered by modifying and automatically reevaluating constituent exemplars.

1.2. Issues in representing motion capabilities

We consider the primary form of humanoid expression to be rigid-body kinematic
motion, although other modes are plausible (e.g., speech, facial gestures). Methods
for representing motion capabilities fall into three non-mutually exclusive categories:

e motion mappings (e.g. inverse kinematics!'?);

e motion graphs (e.g., probabilistic roadmaps!®14)

15,16,17)'

e motion modules (e.g., behaviors
A motion mapping consists of two (or more) coordinate spaces, one of which
serves as a “control space”. The control space, a parsimonious and/or accessible
coordinate system, is combined with a mechanism to map into a “command space”,
from which actuator commands can be generated. Similar to Eigenfaces'® by Turk
et al., Fod et al.'® use Principal Components Analysis (PCA) to construct mo-
tion mappings between the space of joint angle trajectories and lower-dimensional
principal coordinates. A significant problem is the difficulty and overspecification
involved in producing a control space that is both parsimonious and accessible. Ad-
ditionally, Sidenbladh et al.?? present a similar PCA-based approach that creates a
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binary tree index structure for vision-based kinematic tracking. While this method
is used for both perception and control, they aim for enabling probabilistic search
rather than modularization for autonomy.

A motion graph is constructed in a humanoid’s configuration space to represent
possible valid motion trajectories. Graph nodes are valid configurations connected
by edges specifying a valid transition between configurations. Trajectories are spec-
ified as paths in the graph. Motion graphs can be constructed using a variety of
techniques. Tabula raza approaches use exploration to produce variations on prob-
abilistic roadmaps.'® They require no a priori knowledge, but become intractable
as the dimensionality of the configuration space increases. Alternatively, computer
animation approaches' avoid exponential exploration by augmenting nodes from
motion capture data with “splicing” transitions determined by a similarity metric.
Work by Choi et al.2! attempts to construct motion graphs in high dimensions using
motion capture as a starting point for exploration. A single motion graph, however,
is an inherently monolithic structure that: i) requires a potentially expensive search
for trajectory formation, i) is limited to control functions, and i) is not suitable
for non-deliberative control.

In contrast to monolithic motion graphs, motion capabilities for a humanoid
robot can be represented as a set of modules. Analogous to deliberation and
reaction®, motion graphs are suited for top-down search and motion modules are
suited for bottom-up coordination. Proposed approaches to modularization can be
characterized by different properties such as the scope and form of each module,
inter-module interaction, and repertoire design, construction, and functionality. We
discuss these issues with respect to the following characteristics (specified in italics).

Input feature specificity refers to techniques that modularize motion specific to

non-kinematic features extracted from human motion, such as points??, contours??,

and color blobs.?* Methods subject to overmodularization, such as movemes?*, are
specific to an individual rigid body, resulting in a large number of modules that
requiring explicit coordination across all bodies to represent motion. Overmodu-
larization becomes problematic when the difficulty in coordinating modules be-
comes significantly greater than a set of modules individually. In contrast, coarse
modularization is due to a small number of modules with overly broad parame-

ter spaces, such as discrete point-to-point motion?2%, rhythmic oscillation®”'7,

28

or
their combination.

Model specificity refers to methods that rely on specific hypotheses of human mo-
tion, such as EMOTE proposed by Chi et al.?? Methods for modularization subject
to heavy user supervision require significant manual interaction in behavior design
and/or implementation. These include the “control basis” approach®’, hand coded

32 33

behaviors®!, behaviors tailored from motion®?, vocabularies for user annotation®?,

and Verbs and Adverbs behaviors.?

Automated methods focused on generalizing a single behavior are restricted to
single class automation, such as associative memory 34, clustering®®36, and Hidden
Markov Models.3” Ijspeert et al.'”2% proposed a single class method that encodes
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a primitive module as a nonlinear attractor for a demonstrated trajectory. Collec-
tively, a set of such primitives can express a more general behavior, but the means
for grouping primitives into such collections is not provided. Recent work by Okada
et al.38
and realizing dynamical systems given a set of motions expressing the same skill.
This method utilizes an exemplar-based skill representation similar to Verbs and
Adverbs. As a potential extension, our PDBV method could be used to cluster
motion into behaviors that are individually generalized by Okada’s more specific
mechanism.

In contrast to batch processing in PDBV, methods for incremental
modularization34%4! exist. Such methods suffer from limited correspondence ability
in that two motions that do not currently appear similar may be similar given future
motions. Additionally, methods that modularize through clustering, such as Fod et
al.!?, are subject to limited correspondence when proximity in the input space is
not indicative of underlying structural similarity. Methods such as motion textures'®
yield modules with limited interpretation. Motion textures represents modules as
linear dynamical systems, providing an elegant framework for modularization, but
are difficult to use without complex controllers.

Our PDBV methodology is based on establishing spatio-temporal correspon-
dences in motion data. Similar in spirit, Ilg et al.*? presented Spatio- Temporal
Morphable Models (STMMs) as a means to automatically extract primitives as
prototypical motion trajectories. STMMs use dynamic time warping to establish
spatio-temporal correspondences between input motion data and prototypes. Simi-

proposes a technique for automatically constructing interpolation spaces

lar to work by Ijspeert et al.!”, the STMM approach works well when training data
are sparse and represent a primitive behavior with respect to a single motion tra-
jectory. Consequently, combinations of such primitives are likely to represent style
variations on a single behavior rather than a complete repertoire.

Recent work by Kovar and Gleicher®? utilizes a similar approach to PDBV
for corresponding motions using spatio-temporal relationships. Kovar and Gleicher
present a new spatio-temporal distance metric utilized to construct manifold-like
match webs across a set of motion data. Match webs, however, is a generaliza-
tion of their motion graphs work aimed towards query-based search for producing
highly controlled animations. In contrast, motion modules extracted by PDBV are
expressed as dynamical systems for use with various autonomous perception and
control functions.

The PDBV methodology we present is a modularization of motion into exemplar-
based behaviors. PDBV establishes pairwise spatio-temporal correspondences be-
tween motion examples in the input data. These correspondences allow a module
to internally span across stylistic variations of an underlying behavior. Variations
on each module are indexable through a motion mapping between the space of mo-
tion trajectories and a lower-dimensional “exemplar space”. Though not explicitly
discussed in this paper, PDBV provides a generalization of motion data amenable
to motion graph construction.
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2. Performance-Derived Behavior Vocabularies

Performance-Derived Behavior Vocabularies (PDBV) (Figure 2) is a methodology
for automatically deriving modular skills from kinematic motion data. PDBV takes
as input a single continuous time-series of kinematic configurations. As output,
PDBV produces a behavior vocabulary of kinematic motion modules composing a
repertoire of primitive and meta-level behaviors. Primitive behaviors are exemplar-
based memory models that generalize clusters of motion extracted from an input
motion into dynamical systems in joint angle space. The essence of a primitive
behavior B is the ability to provide prediction in the form of:

where x is a point in joint angle space and A, is vector direction from z. Meta-
level behaviors are sequential models of transitioning between a set of primitives.
More specifically, a meta-level behavior M is an W x W matrix specifiying the tran-
sition probabilities between a set of W primitives. Each element M; ; specifies the
probability of a primitive B; producing motion once another primitive B; reaches
completion. Assuming a demonstrated input motion is representative of all motion
encountered by a system, M can be stated as a first-order Markov model**:

M, j = P(by, = B;|by—1 = Bj) (2)

where B is a set of behaviors and b is a sequential list specifying the sequence
of performed behaviors with respect to a motion.

PDBV extracts primitive and meta-level behaviors from free-space motion data
on the assumption that these data are structured by an underlying spatio-temporal
process. This assumption allows us to equate the problem of behavior extraction
to finding spatio-temporal structure in data. For behavior extraction, we use seg-
mented ST-Isomap* to uncover spatio-temporal structure with the following four-
step PDBV procedure:

(1) Motion preprocessing (Section 2.1): producing time-normalized motion seg-
ments from the input motion data;

(2) Exemplar grouping (Section 2.2): clustering motion segments into behaviors
based on common spatio-temporal signatures;

(3) Behavior generalization (Section 2.3): forming nonlinear dynamical systems for
behaviors from grouped exemplars;

(4) Meta-level behavior grouping (Section 2.4): grouping exemplars of lower-level
behavior based on higher-level spatio-temporal signatures.

Each step is described in detail.
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Fig. 2. Performance-Derived Behavior Vocabularies consist of four main steps: motion preprocess-
ing, exemplar grouping, behavior generalization, and meta-level behavior grouping. Preprocessing
produces a data set of motion segments from real-world human performance. Exemplar grouping
uses ST-Isomap to cluster motion variations of the same underlying behavior. Exemplars of a be-
havior are generalized through interpolation and eager evaluation. Common sequences of primitives
in an input motion are found as meta-level behaviors using additional ST-Isomap iterations.

2.1. Motion preprocessing

The first step in PDBYV is the preprocessing of an input motion m(t) = [0;...0yoor] €
O to produce a data set of motion segments with constant dimensionality. Prepro-
cessing consists of segmentation followed by time normalization.

The result from any segmentation method (manual or automatic) is a sequential
set of segments of various lengths ;. The dimensionality of the i*" segment is d; =
I; x NP where [; is the length of segment i and NP is the number of regarded
DOF. Dimension reduction techniques considered in this work require data points
of equal dimensionality. Thus, each segment of S is normalized to a constant length
[ by constructing a cubic spline and interpolating for [ uniformly spaced samples.

The result from preprocessing is a sequential set of motion segments S. Each
segment S; € O represents a d, = I, x NP dimensional point in the space of joint
angle trajectories Op.

2.1.1. Kinematic Centroid Segmentation

Kinematic Centroid Segmentation (KCS), illustrated in Figure 3, is our heuristic
method for automatically segmenting free-space motion (i.e., without external ob-
ject or environment interactions). Based on assumptions similar to those of Cutting
and Profitt*>, KCS performs “swing detection” by treating a kinematic substructure
of a performer as a pendulum, placing segment boundaries at the beginning and end
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of pendulum swings. A kinematic substructure is a set of DOF that are always in
coordination for a common purpose, such as an arm, that can work in coordination
with or independently of other substructures. The rationale for swing segmentation
is that the revolute joints and joint limits of a human restrict the reachable space of
a kinematic substructure. Due to these constraints, the distance a substructure can
achieve from its initial position is bounded. Thus, a substructure moving away from
its initial position must eventually reach a local extreme and move back toward its
initial position. KCS is an alternative to common “stop detection” techniques, such
as the z-function of Fod et al.'?, that search for velocity zero crossings across the
DOFs and are best suited for segmenting discrete point-to-point motion.

KCS iteratively segments one kinematic substructure at a time in a greedy
fashion. Segmentation of a single substructure abstracts the kinematic configuration
as a centroid feature, the average location of features along the arm, with respect
to a base feature. KCS is described in the following procedure:

(1) Initialize the list of segment boundaries S as the input motion m;

(a) 5= {1,|ml};
(2) Tterate over each kinematic substructure k:
(a) i=1;

(b) Iterate over each segment S; in the current set of segments S:
i. while (Si 7é Sj+1)
A. Set current segment s; to the first frame of Sj;

B. Compute distance between centroid at s; and the centroid at every
subsequent frame ¢t upto Sj41;

md(t) = dj-Stc(”ncentroid;€ (t) — Mpasey, (t)a Mecentroidy (51) — Mpasey, (51))
(3)
C. Find first local maximum s;4; in centroid distance function;
Si+1 = min(tp) : (4)
ma(ty) —ma(si) > 7ima(ty) > malts), Vt, — exes < ts < th + excs
D.i=i+1,;
(c) Update the segment list S « s; Clear s

(3) Remove last segment boundary from S;

The above instantiation of KCS assumes the following: S is initialized as a single
segment from the beginning to the end of input motion m, mg4(t) is the value of the
centroid distance function at time ¢, dist. is the metric for computing distances
between centroids (Euclidean as default), mcentroia(t) and mpase(t) = Msnoutder (t)
are the Cartesian positions of the centroid and base for the kinematic substructure
at a given time ¢, a local maximum in my(t) is greater than some threshold 7 and
maximal across a temporal window of length (2-excs)+1 (to avoid issues with noise).
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Mecentroia(t) is N0t resticted to a specific definition, but we used the following in our
implementation for arm motion:

wris t e owt shoulder t
mcentroid(t) = = t( ) S = 3( ) T o ( ) - mbase(t> (5)

+ bvhOSeq:299

s

Centroid distance

300
Frame number

Fig. 3. Hlustration of Kinematic Centroid Segmentation for a two-arm reaching motion. (Left)
A plot of the kinematic centroid distance over 500 frames from the beginning of the reach. A
horizonal line is placed to mark the “significant motion” threshold 7. The segment boundary is
noted by the dot in the middle of the plot. (Right) The dotted trajectories are shown for the base
(shoulder), centroid, and hand of the right arm. The segment boundary is highlighted by a larger
sphere in the centroid trajectory.

2.2. Exemplar grouping into primitives

Exemplar grouping is the process of clustering motion segments such that each
group contains variations on a common theme. For behavior extraction, each group
contains motion variations with a common spatio-temporal structure, representative
of an underlying behavior. For this purpose, we use ST-Isomap to transform a
data set of motion segments into clusterable feature groups. We consider a motion
segment as a point in a NP% x [ dimensional segment input space, where NP ig
the number of regarded performer DOF and [ is the number of frames in a motion
segment. For instance, a motion segment of 20 DOF containing 50 frames is a
point in a 1000-dimensional input space. In the remainder of this section, we briefly
describe Sequentially Segmented ST-Isomap and its use for clustering motion data.

2.2.1. Sequentially Segmented Spatio-temporal Isomap

ST-Isomap? is our spatio-temporal extension of Isomap?® nonlinear dimension re-
duction. ST-Isomap is an unsupervised method for uncovering structure in seg-
mented or continuous data with i) potentially high input dimensionality, i) spatial
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nonlinearity, and éii) temporal ordering. For PDBV, we focus on Sequentially seg-
mented ST-Isomap for segmented data, where data points are intervals of the input
and temporally adjacent data points are not necessarily spatially proximal.
Isomap is a method for nonlinear dimension reduction through constructing a
full shortest-path distance matrix that is embedded through eigendecomposition.
We paraphrase the general framework of Isomap from Tenenbaum et al.® as follows:

(1) Create a sparse |S|x|S| matrix D™ nonzero elements representing edges between
local neighbors:

diSt(Si, S) if S; e nbhd(SZ-)
DY; = { ! ’ (6)

00 otherwise

(2) Complete D into a full shortest-path distance matrix such that:

D}; 9=0
D, = { ! (7)

min(DY;H, DI+ DI g =1

(3) Perform multidimensional scaling (MDS) to embed into d.-dimensional coor-
dinates that preserve the pairwise distance relationships in D such that the
following error is minimized:

E =|DY9 — Dg|p2 (8)

where dist () is the distance between two segments (typically Euclidean dis-
tance), nbhd () are the local neighbors of given segment (typically K-nearest neigh-
bors or an e-radius), D, is the matrix of Euclidean distances in the embedding,
and ||A| is the L? matrix norm of a given matrix A. It is crucial to note that the
essence of Isomap is that shortest-path distances are assumed to be reflective of
the distances with respect to the underlying topology of the data. The MDS step
serves to translate shortest-path distances into coordinates. Thus, we can think of
Isomap as preserving distances indicative of the underlying topology while removing
configuration-specific nonlinearity.

ST-Isomap retains the general framework of spatial Isomap for constructing a
full distance matrix that is embedded through eigendecomposition. However, ST-
Isomap takes into consideration temporal dependencies between sequentially adja-
cent points for:

e proximal disambiguation of spatially proximal data points in the input space
that are structurally different;

e distal correspondence of spatially distal data points in the input space that share
common structure.

Figure 4 illustrates our approach to the problems of proximal disambiguation
and distal correspondence using three arm waving motions. The two low waving
motions are relatively proximal in joint angle space but are structurally different
due to moving in opposite directions. The low and high motion waving the same
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Fig. 4. An illustration of proximal disambiguation and distal correspondence. (Top left) Three
waving motions with hand trajectories shown as a dotted trail. The beginning of each trajectory
is marked with a large sphere. (Top right) A set of exemplars connected the low and high waving
motions through similarly structured motions. (Bottom left) A diagram of disambiguating two
proximal points of S; using LSCTN(). S; has a spatio-temporal correspondence with S; and not
Sk. (Bottom right) A diagram of corresponding two distal points, S; and Sy, through transitivity
using the definition of SCTN().

direction are structurally corresponding but are distal in joint angle space. By es-
tablishing correspondences between structurally similar waving motions, the high
and low waving can be distally corresponded through transitivity, as illustrated in
Figure 4.

Sequentially segmented ST-Isomap (heretofore referred to as simply ST-Isomap)
consists of the following five steps, with our enhancements of Isomap in bold:

(1) segment preprocessing: partition input data into intervals, replacing
input data with |S| higher dimensional segments;

(2) compute sparse distance matrix D! from local neighborhoods nbhd(.S;) about
each segment S; as K-nearest neighbors using Euclidean distance;

(3) identify local segmented common temporal neighbors LSCTN(S;) of
each segment S;;

Sj S nbhd(Si) and Sj+1 S nbhd(SiH) <~ Sj S LSCTN(Si) (9)

(4) reduce distances in DlSi-,Sj between points with common and adjacent
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temporal relationships

ngi’sj/(cCTNcATN) lf S] (S LSCTN(SZ) and J =1 + 1

0 Dg, s, /com if S; € LSCTN(S;)
Dsi,sj/CATN ifj=i+1
Dgi .S otherwise

(5) complete DY into full all-pairs shortest-path distance matrix D = D9 (Dijkstra’s
algorithm), such that g > |S];
(6) embed D into d.-dimensional embedding space through MDS.

Described later in this section, cery and cyry are user defined constants for scaling
distances between data pairs with temporal relationships.

The initial step in ST-Isomap is the abstraction of the pose-atomic input mo-
tion data into segment-atomic motion intervals through segmentation. Because the
Isomap framework is relatively insensitive to high-dimensional data, ST-Isomap is
better equipped to handle the input data as a smaller number of higher dimensional
segments rather than a large number of lower dimensional samples. Our framework
for ST-Isomap is not specific to any particular segmentation mechanism, boundary
event definition, or time normalization. In order to produce a structurally appropri-
ate embedding, however, segments produced from input samples must be consistent
(i.e., similar input intervals produce similar segments) and atomic (i.e., the user
considers each segment to contain a conceptually and/or meaningfully indivisible
subsequence of the input data). Mutually exclusive segments (i.e., not overlapping
in time) are recommended, but not required.

After preprocessing the input data, hard spatio-temporal correspondences are
found between motion segments as segmented common temporal neighbors (SCTN).
Local segmented common temporal neighbors (LSCTN) are found as local neighbors
that temporally transition to the same neighborhood. The idea behind SCTN is that
two segments that share a common spatio-temporal structuring A will be followed
by segments from a different spatio-temporal structure B. By corresponding LSCTN
locally, global components of SCTN with distal correspondences will be extracted
via shortest-path computation and embedded into clusterable proximity. Clusterable
proximity results from our consideration of common temporal correspondences as
locally symmetric and globally transitive:

Sj € LSCTN(SZ‘) =4 Sj (S LSCTN(SZ') (11)

S; € LSCTN(S;) and Sy € LSCIN(S;) = S; € SCTN(S;) (12)

As the value of cery increases, the distance between two points with a SCTN rela-
tionship decreases. Thus, the shortest-path distance between any SCTN-connected
pair Dgh s, will be significantly smaller than the distance between any non-SCTN-
connected pair Dgi) s, for a significantly large value of ccrn. A set of points with
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all-pairs SCTN paths forms a CTN component. CTN components could be extracted
without embedding via MDS, but we use embeddings as a means for visualization.
Clusterable proximity is more formally stated as:

S; € SCTN(S;) and Sy & SCTN(S;) = Dghsj < D§ g, (13)

Members of a cluster for A are found implicitly using the members of a tempo-
rally adjacent cluster B. Consequently, a clustered embedding provides a structure
like A — B — C, where A, B, and C are clusters. This structure is indicative of
spatial variations within each cluster and temporal transitions between clusters. In
Section 2.4, we also reduce distances between adjacent temporal neighbors (ATN)
to extract higher-level modules from previously extracted exemplar groups, such as
a single cluster ABC from multiple A — B — C clusters.

2.2.2. Ezemplar grouping using ST-Isomap and bounding box clustering

An embedding produced by ST-Isomap places motion segments with a common
spatio-temporal structure into clusterable proximity. Such embeddings for primitive
behaviors are produced by setting cery to some significantly large value (100 for our
validation results), adjusted through manual tuning, and cyry = 1.

Given an embedding of significant dimensionality d., such clusters K of motion
exemplar groups will be separable through a variety of methods*7.

To avoid issues in estimating cluster cardinality | K|, we perform clustering using
the “sweep-and-prune” technique*® from the collision detection literature. Sweep-
and-prune partitions data based on axis-aligned bounding boxes, using a partition
threshold distance egpp rather than an a priori estimate for |K|. The partitioning
procedure begins with a single cluster and iteratively divides this cluster based
on projections of the data onto an individual axis of the embedding. For a given
projection, an existing cluster is sorted along the axis and partitioned when the
distance between two adjacent points is greater than egyp.

Once clustering is performed, the points of a single cluster are identified as a
primitive feature group. Because of their spatio-temporal correspondence, motion
segments in each primitive feature group are assumed to be a specific instantia-
tion (or exemplar) of an underlying primitive behavior. The spatial signature of
exemplars in a group may vary significantly in the input space of motion segments.
Together, however, the exemplars of a group are indicative of an infinite span of
variations that are structurally common to a single behavior.

2.3. Generalizing exemplars into predictive flow fields

Primitive behaviors in PDBV are similar to and inspired by verb behaviors proposed
by Rose et al. for Verbs and Adverbs vocabularies.® Similar to a primitive behavior,
a verb behaviors is defined by a set of exemplar motion trajectories K; and gener-
alized through interpolation. For both primitive and verb behaviors, each exemplar
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group K; has a one-to-one correspondence with points in a lower dimensional exem-
plar space R;, or adverb space. For our implementation, the coordinates for points
in R; are taken directly from a given cluster K; in the primitive ST-Isomap embed-
ding. However, the location of points in R; could be specified through a variety of
other methods (e.g. manually®, model fitting®, dimension reduction through PCA,
Isomap, etc.). This correspondence serves to define mappings G; for primitive B;
between its exemplar space R; and the space of joint angle trajectories Or:

Gi : Ri = @T (14)

The motion mapping G; expresses an infinite span of motion variations, or
motion support volume, for a primitive behavior B;. Although we use Shepard’s
interpolation® to approximate G; and G; ! the specific mapping mechanism be-
tween input and exemplar spaces is methodologically independent.

Unlike PDBV-derived primitive behaviors, verb behaviors enjoy a manually de-
fined R;, and thus human-intuitive parameterization. For a verb behavior, exemplars
are manually positioned in an exemplar space such that the parameterization of the
behavior is intuitive. Consequently, a human user can reliably produce desired mo-
tions through lazy evaluation (i.e., evaluation when needed) of a motion mapping
G, avoiding complicated or exhaustive search procedures.

By virtue of their automatic derivation, primitive behaviors are not guaranteed
to have human-intuitive parameterizations. To uncover useful parameterizations,
we employ speculative (or eager) evaluation (i.e., evaluation in advance) on G; to
approximate an explicit mapping between a primitive’s exemplar space and resulting
motion trajectories in joint space. Similar to Isomap*®, we make a motion manifold
assumption that the span of motion trajectories for a primitive behavior actually lies
on a low-dimensional manifold in joint angle space ©. We term this manifold as the
primitive motion manifold. Speculative evaluation of G;, without this assumption,
is likely to be infeasible due to an exponential increase in necessary samples.

For speculative evaluation of G;, a set of Ngyy points V' are randomly placed
within an exemplar space R;. They are evaluated for the set of trajectories V that
will represent the primitive motion manifold p:

Vi = Gi(Vj) (15)

An example of a primitive motion manifold produced through speculative eval-
uation is shown in Figure 5.

To enable prediction, we treat primitive motion manifolds as flow /gradient fields.
We frame prediction using Jordan’s formalism!! for a dynamical system as a next-
state and an output equation:

z[n +1] = f(x[n], u[n]) (16)
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Fig. 5. A primitive flow field in joint space for a horizontal arm waving behavior, shown with
respect to its first two principal components PC1 and PC2. The flow field moves forward along
the trajectories, roughly from left to right. Exemplars from the input motion are shown in bold.
Motion for selected exemplars of this primitive are shown on the right.

y[n] = g(x[n]) (17)

where z[n] and z[n + 1] are the current and desired kinematic states at time
n, u[n] is control input, f is a function predicting the next state from the current
state, and g is a function mapping states to observations y[n]. For simplicity, we
consider observations in joint angle space and, thus, the output equation is an
identity function xz[n] = g(x[n]). However, observations are not required to be in
joint angle space, as in the case of using Cartesian endeffector observations with
our primitives®®.

Fitting with Jordan’s description, a primitive motion manifold By, provides next-
state prediction with respect to (a potentially nonlinear) manifold within some
volume of support on z[n]:

z[n +1] = fi(z[n], uln]) = x[n] + uln] - Bi.(z[n]) (18)

The volume of support for By, is defined by its component trajectories in joint

angle space V. More specifically, By, is comprised of a set of kinematic configurations
follows

p; with sequential relationships p;y1 ——— p; & p; € Vi and Dit1 € V. In most

cases P41 ZLollows, p; have a sequential relationship; although, for some samples

Pit1 does mot follow, P & p; € Vk and p;11 € VJ such that k # j. In other words, p;
is at the end of a trajectory and p;11 is the start of a new trajectory. The sequential
relationships are reflective of the dynamics of a primitive demonstrated in an input

or generalized motion trajectory:
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nbhd (x)

Fig. 6. A illustration of a gradient A for a point z on a primitive flow field using neighboring
samples of p and their gradients.

foll
Di+1 SR, Pi = Dit+1 = U; - Bk(pi) (19)

where u; is the velocity magnitude. Because time normalization is performed
after segmentation, such magnitudes have been skewed. Thus, we leave u[n] (i.e.,
step length) as a user parameter. Beyond the scope of this paper, u; from the
input motion m can be reintroduced as a separate field or through variable length
gradients at each p;. Through their sequential relationships, we phrase the normal-
length gradient A, (or direction of displacement) for each sample p; as:

Pi+1 — Di
Br(pi) = A, = Lt~ P 20
k(p) Di ||pi+1 _piH ( )

Mlustrated in Figure 6, we phrase the normalized gradients A, for a point z on
the flow field through the weighted average of gradients from neighboring trajectory
samples nbhd (x):

_ Zyenbhd(m) wy Ay
| ZyEnbhd(w) wy A ||

Bi(z) = A, (21)

where w, is the weight for neighboring point y with respect to x. In our imple-
mentation, we specified w, using the reciprocal distance or a Gaussian radial basis
function:
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— )2
Wy = exp (—@02)> (22)
For prediction, fj(z[n],u[n]) is used to dynamically step from z[n] by length
u[n]. A primitive By can be traversed from z[1] by stepping to x[2] followed by
z[3] and so on up to some z[l]. However, a primitive does not necessarily rely on
x[n + 1] being achieved immediately after z[n]. In the context of robot control, a
predicted x[n + 1] may not be achieved from z[n]. The robot may instead achieve
#[n+1], which we assume will roughly follow A,,;. A primitive will use the robot’s
current configuration to resume prediction as fi(&[n + 1], u[n]). Similar to Ijspeert
et al.'”, this incremental prediction ability is beneficial for added robustness for
autonomous control. Similar to rigid body dynamics®', however, our method of
incremental prediction is prone to instability for large u[n] step lengths.

2.4. Meta-level exemplar grouping

Given primitive feature groups described in Section 2.2, we now describe using ad-
ditional iterations of ST-Isomap to group exemplars of meta-level behaviors. To re-
state, meta-level behaviors are sequential models of transitions (like Markov chains)
between lower-level behaviors, indicative of higher-level patterns in motion. Prim-
itive feature groups found in the embedding space have a spatial and temporal
relationship that forms an A — B — C structure of clusters. This structure can
be viewed as a l-manifold of behavior nodes with edges weighted by transition
probabilities. In deriving meta-level behaviors, our intention is to collapse primitive
behaviors with strong transitional connections (e.g., A — B — () into a single
higher-level behavior (e.g., ABC). Similar to primitive behaviors, meta-level be-
haviors are derived through extracting meta-level feature groups using ST-Isomap.

Meta-level feature groups are found as clusters within a ¢**-level embedding
space, where ¢ > 1. A meta-level behavior Mf]k for the kP feature group describes
the probability of transitioning from one lower-level behavior M9~ 1% to another
Ma—1i,

M{F = P(Siz1 € K975 and Spyq1 € K%F[S) € K9 and S, € K%F)  (23)

where K% is the k' feature group for the ¢**

-level embedding. Meta-level be-
haviors are complimented by the transition probability matrix qu ; between all

feature groups of an embedding;:

NE. = P(S;41 € K99|8, € Ko7 (24)

]

While no meta-level behaviors occur at the primitive level ¢ = 1, M, does contain
transition probabilities between all primitives with respect to an input motion.
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An (q + 1)*M-level embedding is produced by applying ST-Isomap to the data
in the ¢*P-level embedding, such that the ¢*P-level features are preserved. Thus,
higher-level embeddings must i) preserve the integrity of lower-level features by
retaining their clusterable proximity and #) merge lower-level features with strong
spatio-temporal relationships indicated by transitions between feature groups.

Lower-level feature groups are preserved in higher-level embeddings by con-
structing local neighborhoods to include only points from a single established fea-
ture group. Such neighborhoods are constructed using an e-radius based on the
bounding radius of the corresponding feature group at the previous level. Thus, the
neighborhood function for the (g + 1) -level embedding is:

nbhd,1(S;) = {S; : [|Si — 85l < 74} (25)

where 7, is the bounding radius of the largest cluster in the ¢*P-level embedding.

Assuming group integrity and an appropriately large value for cyry, lower-level
feature groups are collapsed into clusterably proximal higher-level feature groups
by reducing distances between ATNs of feature groups with strong transitions. The
strength of transition from one feature group to another is given by the number of
ATNs expressing the transition.

3. Validation Results

We evaluated our methodology for deriving behavior vocabularies through an imple-
mentation of PDBV in MATLAB. This system was applied to three multi-activity
input motions. Results from deriving behavior vocabularies from these input mo-
tions in various contexts are presented. We discuss the appropriateness of these
results, from manual observation, given a priori knowledge about the motions.

3.1. Input motions and preprocessing

Each input motion®* m;(t), individually referred to as Input Motion 4, was col-
lected from a human subject performing a series of scripted activities centered
around upper-body movement. Input Motions 1 and 2, containing 22,549 and 9,145
frames, respectively, were scripted to contain multiple activities, including punching,
dancing, and arm waving. Input Motion 3, containing 9,394 frames, was scripted
to contain a single two-arm reaching activity between a zero-posture and various
Cartesian locations in the subject’s reachable space. The input motions consisted
of 42 kinematic DOF. The original performer motion contained 69 DOF, but less
relevant DOF were removed to avoid DOF weighting issues and minimize kine-
matic mismatches with a humanoid robot. The streams are available for viewing at
http://robotics.usc.edu/~cjenkins /motionmodules/.

aMotion data used in this paper were obtained using a Vicon optical motion capture system and
were graciously provided by Jessica Hodgins and her motion capture group at Carnegie Mellon
University.
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The input motions were segmented using three different methods: manual, z-
function'®, and KCS. Manual segmentation was performed to place segment bound-
aries at the end of perceived strokes. Because the definition of a stroke can vary®?2,
manual segmentation was constrained such that linear interpolation between seg-
ment boundaries would produce a coarse approximation of the input motion. Each
segment was normalized to 100 frames and ST-Isomap was applied using cery = 100.
As shown in Tables 1 and 2, the number of motion segments and derived behaviors
produced from using KCS exhibits greater resemblance to manual segmentation
than z-function segmentation. These tables illustrate that the z-function is more
prone to missing true negative segments in dynamic motion (as with Input Motions
1 and 2) and detecting false positive segments in discrete point-to-point motion.

Table 1. Motion segmentation statistics.

num. segments mean  st. dev. min. max.

input motion 1 (manual) 250 90.19  113.72 15 970
input motion 1 (KCS) 226 99.30  127.93 17 1017
input motion 1 (z-function) 62 329.85  539.02 6 2778
input motion 2 (manual) 210 44.73 20.95 10 194
input motion 2 (KCS) 148 62.05 23.95 20 153
input motion 2 (z-function) 64 141.55  127.30 25 950
input motion 3 (manual) 73 125.12 41.88 6 200
input motion 3 (KCS) 64 142.45 40.44 7 261
input motion 3 (z-function) 84 104.52 48.02 5 259

Note: Statistics about the segments produced by each segmentation method for
each input motion without global position and orientation, showing the number
of segments produced, mean segment length, standard deviation of the segment
lengths, minimum segment length, and maximum segment length.

Table 2. Numbers of derived primitives per in-
put motion.

manual KCS  z-function

Input Motion 1 84 78 32
Input Motion 2 62 37 20
Input Motion 3 7 5 10

Note: Number of primitives derived for each in-
put motion and each segmentation procedure.

3.2. Humanoid robot control and motion feedback

We evaluated the feasibility of PDBV-derived behavior vocabularies for on-line and
off-line robot control through the use of a basic task-level arbitration mechanism.
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Fig. 7. Plots of KCS applied to Input Motion 1. (Top) The kinematic centroid distance over the
frames of the input motion for the first kinematic substructure, the right arm. Segment boundaries
are shown as dots in the plot. The centroid distance is zeroed after each segment boundary.
(Bottom) The kinematic centroid distance for the second kinematic substructure, the left arm.
Segment boundaries remaining from the right arm are shown as dots in the plot. New segments
introduced by the left arm are shown as stars.

For control, we assume a behavior vocabulary is accompanied by a task-level con-
troller and a motor-level interface. The motor-level interface provides reliable DOF
proprioception and translation of desired configurations to actuator forces. The
task-level controller indexes into behaviors of a vocabulary to output motor-level
configuration commands. Several task-level control mechanisms for purposeful con-
trol exist, such as behavior-based methods proposed by Nicolescu and Matarié¢.® We
used a simple random walk arbitration mechanism, for simplicity, using a Markov
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model described in Section 2. Additionally, motion produced from control is fed back
as input into PDBYV to test for derivation consistency. Regardless of the task-level
control mechanism, PDBV-derived behavior vocabularies can be used to synthesize
motion for off-line or on-line trajectory formation.

For our random walk arbitrator, a single primitive is initially activated to drive
the control process. It continually updates the current motor-level configuration
desireds in time through prediction with a fixed gradient magnitude. When the
activated primitive approaches completion, the arbitrator switches activation to
another primitive on transition probabilities among a set of primitives or a meta-
level behavior.

Fig. 8. Snapshots from (Top) on-line right-arm control of a “cabbage patch” dance by a simulated
Robonaut and (Middle) off-line trajectory synthesized for a punching behavior. (Bottom) Postures
from off-line trajectory formation using derived vocabularies for (right to left) the “cabbage patch”
dance, horizontal arm waving and combined jab and uppercut punching.

Using the random walk arbitrator, we were able to autonomously control Ro-
boSIM, a simulation of the NASA Robonaut,?® on-line. The same client /server in-
terface is used to control both Robonaut and RoboSIM. We used various behavior
vocabularies to control the right arm of RoboSIM, including vocabularies for ver-
tical arm waving, jab punching, and the “cabbage patch” (illustrated in Figure 8),
over several executions of the activity without user intervention. Similar to Pollard

et al.?

, adapting motion produced by human-based behaviors required significant
manual tuning to deal with the kinematic mismatch between the robot and human
performer.

Additionally, we used the same control mechanism to synthesize motion off-line

in an incremental fashion for several derived vocabularies. The synthesis procedure
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Fig. 9. (Top left) Postures from off-line trajectory formation for jab punching. Results from
feeding back jab synthesized motion into PDBV as the resulting distance matrix (top right),
clustered embedding (bottom left), and cluster assignments to motion segments (bottom right).
Darker elements in the distance matrix indicate segments with greater similarity. The embedding
is shown as a branching 1-manifold. Thicker lines indicate higher a transition probability between
clusters on the manifold. The intensity of an elements in the cluster assignment matrix indicates
the cluster associated with each motion segment.

came to completion at the specified number of frames for horizontal arm waving
(3000 frames), jabbing (5000 frames), and “cabbage patch” (20000 frames) vo-
cabularies, shown in Figure 8. The synthesis process for these vocabularies was
manually stopped, but could continue for a theoretically infinite duration. How-
ever, this motion synthesis procedure is susceptible to premature termination for
behavior vocabularies with limited support volumes. Selected motions synthesized
off-line were actuated by a dynamical humanoid simulation, Adonis,?® a 20-DOF
humanoid torso containing joints for the waist, neck, shoulders, elbows, and wrists.
Applicable DOF from the synthesized motion were used to drive Adonis by setting
moving desired postures for low-level PD-servos. Snapshots of its performance of a
synthesized punching motion are shown in Figure 8.

Conceptually, synthesized motion should be structurally similar to the origi-
nal input motion. Thus, the feedback property should hold such that a behavior
vocabulary derived from synthesized motion should be similar to the originally de-
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rived vocabulary. To evaluate this property, we fed motion synthesized from the
“jab” vocabulary (chosen for its simplicity) back into PDBV. Figure 8 shows a
checkerboard distance matrix and alternating feature groups with one meta-level
behavior produced from feedback. These visuals illustrate structural similarity to
the original input motion through the alternation between two primitives. However,
the alternation pattern applies only on submatrix blocks along the diagonal. This
partitioning is due to the divergence in the motion synthesis mechanism towards
a “downward punch”. Even with this divergence, the motion alternates between
“jab” and “return” primitives.

3.3. Feature extraction and eremplar grouping

PDBYV was applied to each of the three input motions, producing separable clusters
of motions. For brevity, we focus on the results for Input Motion 1 at various stages
in the PDBV procedure, shown in Figure 10. Data pairs (of motion segments) within
the same CTN component are visualized in the pre-embedding distance matrix
as dark elements. Square submatrix blocks of CTN components can be visualized
along the diagonal of the distance matrix. For activities with temporal relationships
between two or more primitives, these blocks are visualized as checkerboard-like
patterns indicating structural transitions between CTN components. For example,
the activity with alternating primitives is visualized as a block checkerboard. A
checkerboard pattern results from the waving activity, performed by alternating
between “waving outward” and “waving inward” primitives. Although the waving
activity was performed over two non-adjacent intervals (segments 60-75 and 105-
120), these motions were clustered together, as indicated by the off-diagonal blocks
in the distance matrix. Similar to the primitive-level, second-level feature groups
formed separable clusters in the second-level embedding, visualized in Figure 10.

3.4. Primitive speculative evaulation

For PDBV, we assume that a family of motion variations is a low dimensional
manifold in the joint space of the capture subject. We are able to visualize these
primitive motion manifolds by applying PCA and viewing the projection onto its
first 3 principal components (PCs). Figures 12-19 illustrate meta-level behaviors
and primitive motion manifolds derived from Input Motions 1 and 3. These mani-
folds required no more than 3 PCs (or ECs meaning Embedding Components) for
accurate viewing and typically formed bordered 2-manifolds in joint angle space. In
this case, ECs are equivalent to PCs.

We observed from these visualizations that speculative evaluation through sam-
pling provides a representative realization of a primitive’s span of variation, even
when using basic Shepard’s interpolation. Through manual inspection, we deter-
mined that PDBV appropriately extracted and generalized primitive behaviors for
activities from Input Motion 1 including: arm waving (Figures 12 and 13), punching
(Figure 14), and dancing the “Cabbage Patch” (Figure 15). Additionally, the single
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Fig. 10. Results of primitive-level (top), second-level (middle), and isolated waving activity (bot-
tom) exemplar grouping for Input Motion 1. The left image in each row are embeddings produced
as a 1-manifold (the dark line) connecting the sequence of motion segments and clusters (bounding
spheres). On the right, distance matrices (dark elements indicate greater similarity) produced by
ST-Isomap are shown for each embedding.

activity in Input Motion 3, reaching (Figure 16), was appropriately extracted and
generalized. However, our implementation of PDBV demonstrated some artifacts
in the extraction process, as shown for hand circling with the left arm (Figure 17)
and dancing “the Twist” (Figure 18) activities. The “swing up” primitive for hand
circling inappropriately merged exemplars for circling with the left and right arms.
While the primitive generalizes appropriately and is not a practical problem, the
modularization is not consistent. The “twist left” primitive inappropriately merged
an exemplar performing “the Swim”. This merge is an artifact from only one perfor-
mance of dancing “the Swim” in Input Motion 1. Additionally, a single performance
of the “Itsy Bitsy Spider” occurred during Input Motion 1, yielding a single primi-
tive (Figure 19). While not practical as a primitive behavior, the “spider” primitive
represents an appropriate modularization that should also happen for a “The Swim”
primitive.
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Fig. 11. A magnified view of the primitive-level distance matrix for Input Motion 1, which illus-
trates the off-diagonal blocks that correspond non-adjacent performances of the same primitive
behavior.

4. Discussion

The quality of structures derived by PDBYV is dependent on the preprocessing mech-
anism and appropriateness of parameters used for ST-Isomap. Preprocessing of an
input motion prepares data for dimension reduction and, thus, has a direct impact
on ST-Isomap. The user-defined parameters of ST-Isomap define the manner in
which spatio-temporal structure and underlying behaviors are uncovered from mo-
tion segments. We discuss these two critical issues in the remainder of this section.

4.1. Consistency and sensibility in motion preprocessing

The aim in motion preprocessing is to provide an ordered set of motion segments
amenable to discovering underlying structure in the motion. The heuristic used for
segmentation should provide a division of the motion that is both consistent and
sensible. Consistency, in this context, means similar intervals of motion yield similar
motion segments. Sensibility means that each segment is ) a significant expression
of motion that can be intuitively labeled by a human user and i) considered by a
human user to consist of an indivisible, atomic performance of some behavior.

To illustrate our concept of sensible segmentation, segments that are too short in
duration may not express any useful behavior. Together, a set of “short segments”
may express an intuitive behavior, but not individually, and would be similar to
overfitting using motion textures.'® In contrast, “long segments” may contain be-
haviors that are specific to a sequence of sub-behaviors, providing a more modular
description. However, such segments that are structurally similar may be difficult
to place into clusterable proximity due to greater, potentially more distal spatial
signatures and sparseness between common temporal neighbors. Sensible segments
are in the middle ground between short and long segments, large enough to describe
meaningful motion but small enough to provide modularization.
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Fig. 12. Illustration of the “vertical waving” meta-level behavior from Input Motion 1. Vertical
waving consists of two primitives for “wave up” (top) and “wave down” (bottom).

4.2. Parameter tuning for ST-Isomap and exemplar grouping

Parameter tuning is a significant issue for ST-Isomap and clustering motion seg-
ments with a common spatio-temporal structuring. ST-Isomap parameters are par-
ticularly important because they define the local neighborhood of each point, and
consequently define distal spatio-temporal correspondences. Ideally, we would pre-
fer for the local neighborhood of each point to consist only of exemplars with the
same underlying behavior. Modularization in this case would be simpler because
exemplars of another behavior will never be CTN with this point. Consequently,
merging artifacts would not occur in feature groups because inter-behavior data
pairs would never be included in the same CTN component. Instead, local neigh-
borhoods are selected by k nearest neighbors, potentially producing a mixture of
exemplars from different behaviors in a given neighborhood. The potential for such
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Fig. 13. Illustration of the “horizontal waving” meta-level behavior from Input Motion 1. Hori-
zontal waving consists of two primitives for “wave inward” (top) and “wave outward” (bottom).
The motion manifold for each primitive is shown with respect to a kinematic figure in Cartesian
space (left) and its first 3 ECs in joint angle space. Each manifold is illustrated with exemplars
in bold and interpolations in small dots. The Cartesian figure marks the beginning of exemplars
with a large sphere.

nonrepresentative local spatial neighborhoods is at the root of merging artifacts, but
also plays a role in splitting artifacts. These occur when exemplars of a single un-
derlying behavior are placed into multiple CTN components. Splitting artifacts are
due to underrepresentation and sparseness of exemplars for a particular underlying
behavior. Specifically, splitting occurs when a data point has no other exemplars of
the same behavior in proximity or there is a large gap between subsets of exemplars
of the same behavior.

Behavior splitting occurs in two forms: split instances and split behavior con-
texts. Split instances of an underlying behavior are uncovered as multiple CTN com-
ponents. Simply, there exists two instances not connected to each other through the
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Fig. 14. Tlustration of the “punching” meta-level behavior from Input Motion 1. Punching consists
of three primitives for “retract from ready posture” (top), “punch” (middle), and “return to ready
posture” (bottom).

neighborhoods of other instances in the CTN component, typically due to exemplar
sparseness. The problem of split behavior contexts occurs when instances of the same
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Fig. 15. Illustration of the “Cabbage Patch” meta-level behavior from Input Motion 1. The Cab-

bage Patch is a dance consisting of two primitives for “swing inward” (top) and “swing outward”
(bottom).

behavior appear in the temporal context of two different behaviors. For example,
exemplars of behavior C' may appear in temporal contexts such as A — C — D,
A—C — E,or B— C — F. In this situation, PDBV will appropriately separate
exemplars into feature groups based on these different temporal contexts, a direct
result from the definition of common temporal neighbors.

We do not propose PDBV as a replacement for human judgment or effort, but
rather as a means for automated initialization. Because our method is model-free
and exemplar-based, every step in the PDBV process is easily amenable to manual
refinement and postprocessing.
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Fig. 16. Illustration of the single meta-level behavior from Input Motion 3. This behavior is for
reaching and consists of two primitives for “reach to position” (top) and “return to rest posture”
(bottom).

5. Conclusion

We have presented Performance-Derived Behavior Vocabularies (PDBV) as a
methodology for automatically deriving behavior vocabularies to serve as skill-level
interfaces for autonomous humanoids. Modular behavior vocabularies derived by our
methodology are substrates for endowing humanoids with autonomy for a variety
of functions, such as those used in constructing perceptual-motor algorithms. Our
methodology derives these skills from motion data of human performance, lever-
aging the structure underlying human motion in a data-driven manner. Behaviors
underlying human motion data are uncovered through unsupervised learning, using
our extension of Isomap for spatio-temporal data dependencies. Behavior vocab-
ularies are realized as a modular set of exemplar-based behaviors. The nonlinear
dynamics of each behavior are expressed as a primitive flow field in the joint space
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Fig. 17. Illustration of the “hand circle” meta-level behavior from Input Motion 1. Circling consists
of two primitives for “circle up” (top) and “circle down” (bottom).

of the human. In future work, we will investigate the use of attractors as a means
of incorporate user constraints with our primitive flow fields.

The PDBV methodology provides an automated data-driven means for modu-
larizing motion into behaviors. We currently limit the scope of PDBV to free-space
motion, allowing us to disregard issues of i) incorporating sensory information and
i1) handling potential physical interactions between a humanoid and its environ-
ment. One area for future research is determining what types of information could
be included in the derivation process to produce skills that address these issues,
similar in aim to work by Peters et al.?®
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