
Towards Reuse of Business Processes Patterns to
Design Services

Veronica Gacitua-Decar and Claus Pahl

Abstract. Service Oriented Architecture is a promising architectural approach to solve
the integration problem originated by business process integration and automation re-
quirements. Defining the appropriate granularity and scope of services is a critical issue
to allow their reuse. Architecture abstractions, such as patterns, are a medium to capture
design knowledge and to allow the reuse of successful previous designs. The continual
rise of abstraction in software engineering approaches have been a central driver of this
work, placing the notion of patterns at business model level. In this paper we propose
a set of pattern-based techniques to define the scope and granularity of services based
on identified patterns in business process models. Graph-based pattern matching and
pattern discovery are proposed to recommend the scope and granularity of services on
process-centric description models. Matching of generalised patterns and hierarchical
matching are discussed.

Keywords. service oriented architecture, business process pattern, service design, ser-
vice identification, pattern matching, pattern discovery.

1. Introduction
Nowadays, evermore organizations are taking advantage of consolidating relations with
service provider companies in order to improve competitiveness. This involves the merg-
ing of internal processes from provided and provider companies into inter-organisational
processes shaped by a business chain value [3]. At technical level, business process in-
tegration creates an Enterprise Application Integration (EAI) problem. Service-Oriented
Architecture (SOA) has appeared as a promising architectural approach to solve the EAI
problem generated during processes integration and automation. Defining the scope and
granularity of services is a critical issue to benefit from the advantages of implementing
a SOA approach, in particular service reuse [9]. Defining the scope of services involves
the analysis of business models and the existing software support. Existing software sup-
port might already be implemented as services, but most frequently it still is provided as

co
py's

 au
thor

2 Veronica Gacitua-Decar and Claus Pahl

legacy applications. Thus, the identification of services involved in the architecture solu-
tion might consider the discovery of existing services, but most frequently, the definition
of new services.

Reuse of services within the limits of one organisation and its partners, providers
and clients in close cooperation can be exploited by planning in advance the services that
will be available. In this manner, reuse of services is emphasised at design time - be-
fore implementation. This is specially relevant for large organisations where overlapping
functionality offered by different services can rapidly grow, overshadowing the benefits
of service reuse.

Architecture abstractions like patterns and styles can capture design knowledge and
allow the reuse of successfully applied designs and improve the quality of software [7].
Abstraction in software engineering approaches is a central driver; at the business level
the reuse of successfully business designs is equally important. However, the abstraction
and reuse principles associated to patterns have not been exploited enough to design new
services based on patterns defined at business model level.

A number of contributions have addressed the problem of service identification.
High level guidelines to design new services such as in [9] are very useful, however they
require advances regarding formality and techniques that can be finally materialised as
tool support. There are approaches, such as [21] and [8], that have proposed techniques
to automate the discovery of services by matching process-centric descriptions - beyond
the matching of service signatures and effects. They base their solutions on the compari-
son of a requested process-centric description against descriptions of existing services in a
service repository. However, when defining new process-centric services, their boundaries
are defined over sections of business process models. These processes are often larger and
more complex than the description of single services. Additionally, several contributions
have investigated solutions to compare or to query process-centric model descriptions [2],
[4], [6]. They differ in focus, expected results and performance issues, and no one of them
has investigated the idea of defining the scope and granularity of process-centric services
based on identifying the occurrence of business process patterns in business process mod-
els.

In this paper we present a set of pattern-based techniques and algorithms focused on
the identification of business process pattern instances in process-centric models. These
instances are used to recommend the scope and granularity of new process-centric ser-
vices. Note that the discovery of existing services has not been directly addressed here,
however the proposed algorithms and related concepts could contribute to graph-based
techniques used to match service descriptions, such as for example the work in [10], and
to complement and to encourage the reuse of process patterns as is reinforced in [15].

• The definition of new process-centric services is addressed by means of a hybrid ap-
proach combining structural matching of business process patterns in business pro-
cess models, and the use of a controlled vocabulary - specific to business domains.
The later relaxes a pure syntactic matching for labels associated to process elements.
The latter is discussed in the paper as matching of generalised patterns. Hierarchi-
cal matching allows incremental levels of abstraction for matched patterns. Partial

co
py's

 au
thor

Towards Reuse of Business Processes Patterns to Design Services 3

pattern matching provides flexibility to the proposed techniques. Inexact pattern
matching is discussed.

• The other technique presented here exploits the fundamental principle of reuse in the
scenario where a pattern repository does not exist and patterns can not be matched,
but rather, they need to be discovered. The intuitive idea is to find frequent process
substructures -named utility patterns- within large process models. Frequent set of
organised process steps might be supported by existing software components, which
can be rationalised, and subsequently encapsulated as reusable technical-centric ser-
vices.

The remainder of this paper is organised as follows. Section 2 introduces a graph-based
representation for process models, process patterns and their relation during pattern in-
stantiation. Section 3 describes the different aspects of the process pattern matching prob-
lem and our proposed solutions. Section 4 describes our proposal for finding utility pat-
terns in process models. Section 5 provides an evaluation of the proposed exact and partial
pattern matching techniques. Finally, in sections 6 and 7 a review of related work and con-
clusions is provided.

2. Graph-based representation of Business Process Models and
Business Process Patterns

Graphs emerge as a natural representation for process-centric models [11],[18]. Graphs
can capture both structure and behaviour, and allow abstractions such as patterns to be
related to process-centric models.

2.1. Structural Representation of Business Process Models as Graphs
In the context of this paper we use graphs to represent the structure of process models and
process patterns. Graph vertices represent process elements such as activities and control
flow elements. Graph edges represent the connectivity between process elements. Labels
and types of graph vertices represent names and types of process model elements. Section
8 (annex) provides an introductory background on graphs and the related notation used in
this section and along the rest of the paper.

Graph-based business process model.
Let the graph PM = (VPM,EPM, `VPM , `EPM) be a finite, connected, directed, labelled graph
representing a business process model. VPM is the set of vertices representing process
elements and EPM is the set of edges representing connectivity between process elements.
The function `VPM : VPM → LVPM is the function providing labels to vertices of PM, and
`EPM : EPM → LEPM is the function providing labels to edges of PM. LVPM and LEPM are
the sets of labels for vertices and edges, respectively. Note that in this paper, connectivity
between process elements is simplified by considering only the sequence flows between
activities since we emphasise the matching of structural relations between patterns and
process. The addition of input, output, pre and post condition information associated to
process steps could be captured on edges attributes, but this is not addressed in this here.

co
py's

 au
thor

4 Veronica Gacitua-Decar and Claus Pahl

FIGURE 1. Two example of process models annotated with BPMN and
related graph-based representations.

Fig. 1 provides an example of an intuitive graph-based representation of business
process models annotated with a well-known process modelling notation, i.e. Business
Process Modelling Notation1 (BPMN). An appropriate mapping function maps descrip-
tions of process elements to graph labels. Note that similar graph-based models can rep-
resent executable processes described, for instance, in the standard WS-BPEL language2,
however the latter requires additional considerations due to the block-based structure of
the language [20]. An example of a graph-based representation for a WS-BPEL process
is illustrated in Fig. 2.

2.2. Structural Representation of Business Process Patterns as Graphs
Business Process (BP) patterns are essentially common connectivity patterns in process
models. BP patterns can be operator-oriented, e.g. a multi-choice pattern that allows the
selection of a number of options instead of an exclusive selection based on the basic
choice operator. This kind of process patterns are know in the literature as workflow pat-
terns [1]. Other category of BP patterns consists of application context-oriented and often

1Available from http://www.bpmn.org/Documents/BPMN 1-1 Specification.pdf
2Available from http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

co
py's

 au
thor

Towards Reuse of Business Processes Patterns to Design Services 5

FIGURE 2. Excerpt of executable WS-BPEL process and a related
graph-based representation.

more complex patterns derived from and specific to the business context. This kind of BP
patterns can represent well-known process building blocks in reference models, abstract-
ing a set of connected activities required to reach some business goal [5],[12]. Application
context-oriented business process patterns can be reused as previously implemented and
successful designs and provide an integrated vision of processes among different partici-
pants. For instance, in the Fig. 1 the Use-AccessBankAccSystem process has at its core,
in gray colored vertices, a common set of account usage activities that can be represented
in the form of a application-context oriented process pattern.

Beyond the previous types of BP patterns, a third category represent frequent pro-
cess connectivity structures that are not specific to a business domain. They often relate to
some standard technology solution, for instance an authentication and authorisation pro-
cess to access a system. We name these pattern utility patterns, borrowing the name from

co
py's

 au
thor

6 Veronica Gacitua-Decar and Claus Pahl

the definition of utility services in [9]. In the rest of the paper we will refer to application
context-oriented business process patterns only as patterns. Workflow patterns are not ad-
dressed here. Utility patterns are the focus of Section 4.

Graph-based business process pattern.
Let the graph PP = (VPP,EPP, `VPP , `EPP) be the finite, connected, directed, labelled graph
representing a business process pattern model. Elements of VPP represent process pattern
roles and elements in EPP represent connectivity between pattern roles. Note that the
graph-based representation for business patterns, utility patterns and business processes
is structurally the same.

2.3. Instantiation of Process Patterns in Process Models
Process patterns have been described in the same way as process models. Now, we discuss
the relation between process patterns and process models. In particular, we are interested
in the abstraction that patterns represent for process models and concretely, in the notion
of instantiation of process patterns in process models.

Pattern Instantiation in a concrete model indicates that the structural relations de-
scribed in the pattern hold in the model. The structural preserving relations that graph
homomorphisms represent help us to capture the notion of pattern instantiation. In partic-
ular, instantiation of a BP pattern in a process model can be captured by the definition of
a locally surjective graph homomorphism [13] between a subgraph PMS of the graph pro-
cess model PM and the pattern graph PP, i.e. PMS

S→ PP. Surjection allows that several
process elements (vertices of PM) can play the role of one pattern element (vertex of PP)
- see illustration3 in the Fig. 3. Moreover, model elements can belong to more than one
pattern when considering this approach.

3. Process Pattern Matching
We have discussed in Section 1 the potential that discovering instances of patterns in con-
crete models can provide to the definition of new services. Matching a pattern in a con-
crete model involves the identification of instances of that pattern in the concrete model.
In this manner, as was previously explained in general terms, the process pattern match-
ing problem can be referred as the detection of a graph homomorphism between the graph
representing a concrete model and the graph representing the pattern.

3.1. Exact, Inexact and Partial Pattern Matching
In realistic scenarios where an exact match of a pattern is unlikely, partial and inexact
matching become relevant. Inexact pattern matching provides good, but not exact solu-
tions to the matching problem. In this case, pattern instances can incorporate additional
elements not described in the pattern, nevertheless they must not affect the structural
properties of the pattern. Partial pattern matches identify exact but incomplete matches
of patterns. Partial instances of patterns might exist due to modifications or evolution of

3Note that we have used the notation from the previous section and the Annex.

co
py's

 au
thor

Towards Reuse of Business Processes Patterns to Design Services 7

FIGURE 3. Illustration of several instances (Vote, Excuse, Invalidate)
of a pattern role (Action) in a concrete process model.

previously instantiated patterns. However, when patterns have not previously considered
as part of the design, partial matches might indicate an opportunity to improve the design
by means of incorporating the whole pattern. Partial and inexact matches are also impor-
tant due to the fact that process models and their implementations as services might be
highly similar but not exactly the same from organisation to organisation and to identify
commonalities can save costs and encourage reuse. Fig. 4 illustrates examples of exact,
partial and inexact pattern instances that can potentially be matched.

In order to formalise and later on to implement our proposed techniques as concrete
tool support, we will define exact, partial and inexact pattern matching in terms of the
graphs representing processes and patterns and their structural relations. Formalisation
can provide guaranties of correctness and improve the confidence in tools.

Exact Pattern Matching. An exact pattern match of a specific pattern PP in an arbitrary
process model PM refers to the detection of a surjective subgraph homomorphism, i.e.
PMS

S→ PP, where PMS ⊆ PM. The mapping function ϕ defines an individual instantia-
tion of the pattern PP in the process model PM, where ϕ : VPMS →VPP satisfying that for
all u ∈ VPMS : ϕ(NPMS(u)) = NPP(ϕ(u)), and with the mapping λS : LVPMS

→ LVPP
a bi-

jective function indicating a semantic correspondence between the labels of two mapped
vertices. Note that in Fig. 4, the example of an exact pattern instance (A) not only illus-
trates a semantic correspondence between the labels in the pattern and the process model,
but also a syntactical one. The example showing an inexact pattern instance in Fig. 4(C)
considers a case where semantic correspondence holds, but not a syntactical one, i.e. the
case between the Lodge and Deposit activities.

co
py's

 au
thor

8 Veronica Gacitua-Decar and Claus Pahl

FIGURE 4. Exact, partial and inexact pattern instances.

Partial pattern matching. Partial matches restrict the matching problem allowing in-
complete matches. Incomplete pattern matches maps elements from PM to a reduced
number of elements considered in the original codomain (VPP). In this manner, the origi-
nal function ϕ defined for exact matching is now restricted to the function
ϕPART IAL : VPMS∗ →VPPPART IAL satisfying that for all u ∈VPMS∗
ϕPART IAL(NPMS∗ (u)) = NPPPART IAL(ϕPART IAL(u)) where PPPART IAL ⊆ PP and PMS∗ ⊆ PMS.

Inexact pattern matching. Inexact pattern matching relaxes the definition of neighbor-
hood for vertices in a graph. The Annex (Section 8) provide more details. The set of
neighbors vertices to a vertex u is now considered as N∗

PMS
(u) allowing other vertices not

only in the original neighborhood of u (NPMS(u)) but also in the path between u and v
with ϕ(u) adjacent with ϕ(v) and ϕ : VPMS → VPP. Borrowing the name from [19], we
call these vertices - the vertices that are not in the original neighborhood - intermediate
vertices. An example of an intermediate vertex is illustrated with the CheckClient activity
in Fig. 4(C).

Algorithm for Exact and Partial Matching. We propose an algorithm for exact and
partial process pattern matching. The pseudo-code of the proposed algorithm is described
in Table 1 (ALGORITHM 1 - uEP-PMA). The algorithm starts matching each vertex in VPP
with vertices in VPM such that the labels in LVPP semantically correspond to labels in LVPM .
Semantic correspondence in uEP-PMA refers to a one to one (bijective) mapping λ. The
mapping λ is a mapping between a subset of labels in LVPM and labels in LVPP . The subset
in LVPM correspond to labels of matched vertices in VPM . Each initial match is considered
a temporal pattern match defining a (temporal) subgraph in PM that we denote as tPM.

co
py's

 au
thor

Towards Reuse of Business Processes Patterns to Design Services 9

FIGURE 5. Matching expansion steps. One exact match and two partial
matches are found.

Subsequently, tPM is expanded until all its neighbors that hold a structural relation defined
by ϕ or at least ϕPART IAL are added. Fig. 5 illustrates the expansion steps from the initial
set of tPM, in this case, vertices labelled as T 4,T 7,T 8 and G3. The algorithm terminates
when no more expansion steps can be done. The result is a score vector. Each vertex in
PM has a score that indicates the number of vertices of the matched pattern to which it
belongs.

Note that several exact or partial instances of PP in PM might exist. If different pat-
tern instances share edges in PM, we say that there are overlaps of the pattern PP in PM.
The uEP-PMA algorithm identifies the connected subgraphs in PM containing overlaps
as a one single subgraph PMO. The score of the vertices in the overlap is the number of
vertices in PMO. Additionally, in order to consider the directionality of the graphs rep-
resenting concrete models and patterns, the uEP-PMA algorithm can also be performed
on the undirected version of PM and PP, which is indicated with a u in ALGORITHM 1
(Table 1). In this manner, matches not only considers vertices, but also arcs.

According to [14], for a connected simple graph H, the problem of detecting a lo-
cally surjective homomorphism between an arbitrary graph and H is solvable in poly-
nomial time if and only if H has at most two vertices. In all other cases the problem
is NP-complete. The complexity of the latter problem, which is directly related to the
pattern matching problem, made us aware of performance issues. In Section 5 we show
a preliminary evaluation where instances of specific graph patterns are identified on ar-
bitrary random graphs. The results show that the time required to solve the problem is
quadratic in relation to the size of the random graphs and it has a small constant that con-
veniently modulates the response time for small and medium size graphs. Scalability, in
terms of processing several patterns over one or more target graphs, could be addressed
by implementing a refined version of the algorithms to allow parallel processing for each
pattern.

co
py's

 au
thor

10 Veronica Gacitua-Decar and Claus Pahl

———————————————————————————————
ALGORITHM 1: uEP-PMA.
———————————————————————————————
Input: Target Graph (PM), Pattern Graph (PP)
Output: Score Vector (score).

1 : For each vertex m in VPM do
2 : For each vertex p in VPP do
3 : If λ◦ `VPM (m) = `VPP (p) == true then
4 : tPM(m)← initial temporal match centred in vertex m ∈ PM
5 : score← 1 (score for vertices in tPM(m))
6 : end if
7 : end for
8 : end for
9 : Do while ExpansionCondition == true

10 : For each vertex i ∈ tPM(m) do
11 : If `−1

VPP
◦λ◦ `VPM (NtPM(m)(i)) = NPP(`−1

VPP
◦λ◦ `VPM (i)) && NtPM(m)(i) /∈ tPM(m) then

12 : Expand tPM(m) with NtPM(m)(i)
13 : score← score + 1
14 : ExpansionCondition← true
15 : Else if
16 : ExpansionCondition← false
17 : end else if
18 : end if
19 : end for
20 : end do while
———-

TABLE 1. uEP-PMA - (undirected) Exact and Partial - Pattern Matching Algorithm.

3.2. Matching of Generalised Patterns

Considering a restricted vocabulary for different vertical business domains can add addi-
tional benefits to the practical use of BP pattern matching solutions. There are cases where
descriptions of process elements (or pattern elements) have the same syntax, but differ-
ent semantics and vice versa. Moreover, processes and patterns might be described with
different structures, while they behave in the same way [2]. Regarding the vocabulary
used to describe process and pattern elements, we have extended the uEP-PMA algo-
rithm with the uG-PMA algorithm allowing semantic correspondence beyond the one to
one mapping (λ) previously considered. The structure of the algorithm remains relatively
invariant, but the functions `VPM , `VPP and λ are modified. Labels in the taxonomy refer to
concepts from a particular business domain. The extension modifies the two `(·) functions
in order to map vertices from VPM to labels that are organised in a tree-like structured tax-
onomy. Labels in LVPM can be mapped to specialisations of or equivalent labels in LVPP . In
this manner, generalised patterns are considered as families of patterns where the parent
pattern contains the roots of tree-structured taxonomies for business concepts in specific
domains. Child patterns contains one or more child concepts connected to root concepts

co
py's

 au
thor

Towards Reuse of Business Processes Patterns to Design Services 11

in the hierarchy defined by the taxonomy. Note that using the uG-PMA algorithm re-
quires the existence of an implemented taxonomy in which the algorithm can search for
semantically corresponding terms.

3.3. Hierarchical Pattern Matching
In the previous sections we have addressed the exact and partial matching problem on flat
process models (and patterns). However, processes and patterns are commonly composed
by more fine-grained process-centric structures. In this section we outline a solution to
the problem of pattern matching considering different levels of abstraction.

Algorithm for hierarchical pattern matching. The pseudo code of the proposed algo-
rithm named uH-PMA is described in ALGORITHM 2. The algorithm starts matching
different patterns (PPj) from a set of patterns (setPP) at a certain level of granularity on a
target model PM. Note that the index j identifies an specific pattern in setPP. After per-
form the initial matches, PM is transformed to an abstracted representation PMi, where i
represents a particular level of abstraction. In a particular PMi, subgraphs in the previous
level of abstraction (PMi−1) that are associated to matches of a PPj are replaced by ver-
tices p j whose type is ’pattern’4. Thus, the complexity of a matched subgraph is hidden
in a vertex p j whose type is pattern. Note that representative labels are assigned to pattern
vertices. Once the target model is abstracted by replacing matches with pattern vertices
at a specific level of abstraction, new patterns at a higher level might appear. In this way,
the abstraction process can be performed iteratively, abstracting a process graph PMi into
a process graph PMi+1 which is one level of abstraction up, and so on. The algorithm ter-
minates when no more matches are found or when the process graph has only one vertex.
Note that this process requires graphs excluding overlaps.

Fig. 6 illustrates the idea of hierarchical pattern matching. It uses the process model
from Fig. 1 and shows two patterns, BankAccUsage and Access-UseSystem which are
consecutively matched at two different levels of abstraction. The pattern BankAccUsage
describes a set of common bank account usage activities and the pattern Access-Use
System represents a typical -simplified- set of steps to access a generic system. Note
that BankAccUsage is focused on the banking industry, however the Access-UseSystem
pattern can be valid across different industries since it has a technology-oriented and
business-agnostic nature [12]. The result of the hierarchical pattern matching process is a
single vertex representing the access and use of a system.

Note that we have not addressed the problem of overlaps yet, i.e. how to abstract
two matches that share vertices and edges in the target model? Our basic representation of
processes and patterns as graphs restricts the possibility of representing two overlapped
matched patterns as two different pattern vertices. One idea that we are exploring is the
representation of matched patterns as hyperedges of a hypergraph. The vertices of the
hypergraph are the same vertices of the graph representing the process model.

4Typed graphs hold a complete mapping to a set of types. Mappings for typed graphs can consider vertices and
edges. The mapping function for p j is a global surjective function from the set of graph vertices to a set of types
that classify patterns, and whose parent type is ’pattern’.

co
py's

 au
thor

12 Veronica Gacitua-Decar and Claus Pahl

FIGURE 6. Hierarchical pattern matching.

———————————————————————————————
ALGORITHM 2: uH-PMA.
———————————————————————————————

Input: Target Graph (PM), Set setPP of n pattern graphs (setPP = {PP1, ...,PPn})
Output: scoreMatrix5.

1 : Do while IterationCondition&&change == true
2 : For each pattern PPj ∈ setPP do
3 : uEP-PMA(PMi,PPj) (or uG-PMA if generalised pattern matching is desired)
4 : If score(u) = |VPPj | with u ∈ PMi

S j
&& exact match == true then

5 : PMi
S j
← p j

6 : change← true
7 : If |VPMi |<= 1 then
8 : IterationCondition← false
9 : end if

10 : end if
11 : Else if
12 : change← false
13 : i← i+1
14 : end for
15 : end do while
———-

TABLE 2. uEP-PMA - (undirected) Hierarchical - Pattern Matching Algorithm.

4. Discovering Frequent Utility Patterns in Process Models
Previous sections described techniques for identifying services based on the matching of
known application context-oriented process patterns in process models. In this section
we are interested in discovering frequently occurring substructures on large scale busi-
ness process models. Process steps might be supported by existing software components

co
py's

 au
thor

Towards Reuse of Business Processes Patterns to Design Services 13

and identifying reoccurring connected process steps provide a medium to define potential
reusable software components as encapsulated services. The idea is to exploit the basic
principle of reuse in SOA. Finding frequent -not necessarily known- utility patterns in
large process models can help to the definition of reusable technical-centric services.

There are two distinct problem formulations for frequent pattern discovery in graphs:
graph-transaction setting and single-graph setting [17]. The latter refers to the discovery
of subgraphs that occur multiple times in a single input graph. The other refers to the
discovery of subgraphs that occur frequently across a set of small graphs. We present an
algorithm focused on the single-graph setting scenario for pattern discovery in graphs.

Algorithm for Pattern Discovery. The aim of the proposed algorithm is to find frequent
-exact and partial- occurrences of subgraphs in a single input graph PM. A discovered
frequent subgraph -utility pattern- is an induced subgraph PPU homomorphic to all oc-
currences of a frequent subgraph in PM. Homomorphism detection in the proposed algo-
rithm (named uEP-FPDA) relies on the pattern matching algorithm (uEP-PMA) described
in Section 3.1. The pseudo code of uEP-FPDA is described in Table 3.

The size of the induced subgraphs and a parameter that relaxes the way of counting
the frequency of the induced subgraphs are parameterised by k and T h, respectively. The
constant k refers to the amount of times that an initial subgraph in PM will be expanded
and compared to other subgraphs in PM in order to check for homomorphisms. T h refers
to a threshold for the ratio between the number of vertices of two non exact occurrences
of PPU . If T h is equal to one, the occurrences must be isomorphic between them.

The output of uEP-FPDA are two matrices, score and FreqM. Rows in the score
matrix represent each vertex u in PM. Columns represent the results of the algorithm for
different pattern sizes6. If u belongs to a highly frequent subgraph in PM of size j then
score(u, j) will be also high. FreqM is a matrix with |VPM| rows and k columns, where
each cell indicates the frequency of a discovered pattern. The row index indices where
the pattern is centred, i.e. a vertex in VPM . The column index (k) indicates the size of the
discovered pattern.

The uEP-FPDA algorithm starts defining an arbitrary vertex u from the target graph
PM as the first temporal pattern (pivot pattern or PPpivot(u,1)) and then it matches
PPpivot(u,1) against the rest of the target graph. The matrices score and FreqM are ini-
tialised and the results of the first matches (for patterns with size equal to 1) are anno-
tated. The next steps are repeated for each vertex in PM. The first matched vertices are
called seeds(u,1). The subgraph PPpivot(u,1) and each of the previously matched vertices
are expanded with their neighbors. The algorithm continues the expansion of PPpivot by
checking if a homomorphism between the expanded PPpivot and subgraphs in PM holds.
The expansion process continues for k times -external parameter- or until no more ho-
momorphisms are detected. The results contained in score and FreqM indicate the set of
induced subgraphs PPU and they represent the discovered utility patterns.

6Size of a pattern is considered as the number of vertices in that pattern

co
py's

 au
thor

14 Veronica Gacitua-Decar and Claus Pahl

———————————————————————————————
ALGORITHM 3: uEP-FPDA.
———————————————————————————————

Input: Target Graph - undirected version (uPM), Threshold (T h), number of expansion steps (k)
Output: score, FreqM

1 : For each vertex u in uPM do
2 : PPpivot(u,1) ← u
3 : seeds(u,1) ←uEP-PMA(PM,PPpivot(u,1))
4 : score(u,1) ← seeds(u,1)
5 : For each i in seeds(u,1) do
6 : If score(u,1)(i)/|PPpivot(u,1)|>= T h then
7 : cnt(u,1) ← cnt(u,1) +1
8 : end if
9 : end for

10 : FreqM(u,1)← cnt(u,1)/|PPpivot(u,1)|
11 : If k >= 1 do
12 : For j : 2→ k
13 : PPpivot(u, j) ← expand(PPpivot(u, j−1))
14 : seeds(u, j) ←uEP-PMA(PM,PPpivot(u, j))
15 : score(u, j) ← seeds(u, j)
16 : For each i in seeds(u, j) do
17 : If score(1)(u, j)/|PPpivot(u, j)|>= T h then
18 : cnt(u, j) ← cnt(u, j) +1
19 : end if
20 : end for
21 : FreqM(u, j)← cnt(u, j)/|PPpivot(u, j)|
22 : end for
23 : end if
24 : end for
———-

TABLE 3. uEP-FPDA - (undirected) Exact and Partial - Frequent Pattern Discovery Algorithm.

Based on the results obtained in a preliminary evaluation (see Section 5), where the
uEP-PMA algorithm exhibits a complexity of quadratic order, it is expected that for uEP-
FPDA the complexity will grow up to O(kV 3), where V is the the number of vertices in
the target graph (undirected version), and k is the number of times the temporal patterns
in uEP-FPDA are expanded.

5. Evaluation
We have performed a preliminary evaluation for the exact and partial matching algo-
rithm (uEP-PMA). The experiments consider seven specific patterns over arbitrary ran-
dom graphs with approximate sizes of 60, 450, 1300, 1800, 3200 and 5000 vertices. The
experiments were run on a Intel machine 2 GHz and 2GB RAM on WinXP-SP3. In pat-
terns and random graphs three different types of labels were considered, A, B or C. The

co
py's

 au
thor

Towards Reuse of Business Processes Patterns to Design Services 15

FIGURE 7. Average response time of uEP-PMA on arbitrary random
graphs for different pattern structures (left side) and different pattern
sizes (right side).

considered patterns encompassed four close-walks of 2, 3, 4 and 6 vertices; two line-like
patterns of 3 and 4 vertices and a star-like pattern of 4 vertices.

Fig. 7 (top) shows the average response time of uEP-PMA when matching three
patterns with different structures and the same number of vertices. The line-like pattern
requires less time in comparison to the star-like and close-walk patterns. It indicates that
the structure of matched patterns influences the response time. Fig. 7 (bottom) shows the
average response time of uEP-PMA for patterns with the same structure (close-walk in
this case) and different number of vertices. The number of vertices in the pattern also
influence the time response. In order to visualise the time response trend more clearly,
we divided the time required by the algorithm to compute a solution by the ratio between
the number of vertices in the random graph (target graph) and the number of vertices
in the pattern. Fig. 8 (left side) illustrates the trend of the normalised response time for

co
py's

 au
thor

16 Veronica Gacitua-Decar and Claus Pahl

FIGURE 8. Average response time of uEP-PMA algorithm on arbitrary
random graphs for matching a star-like pattern, a line-like pattern and a
pattern with a close-walk structure.

all different patterns considered in the experiment. The right side of Fig. 8 illustrates the
trend of the normalised time response for two patterns with different number of vertices.
The trend lines in Fig. 7 indicate that the time to solve the problem increases quadratically
with the number of vertices in the target graph. The constant 6−7 suggest advantageous
performance characteristics regarding the response time of the algorithm for small and
medium size graphs. Note that the performed experiments are preliminary, in the sense
that they consider simple labels for graphs vertices. Moreover, highly structured graphs
such as the case for process models have not been considered yet and only a set of seven
fixed patterns have been taken into account. Based on the obtained results in these initial
experiments we expect a reasonable performance for more realistic scenarios. Together
with expanding the experiments for the exact and partial matching algorithm, we expect
to carry out a set of experiments for the generalised and hierarchical pattern matching
algorithms - only outlined in this paper.

6. Related work
A number of publications have addressed the problem of service discovery, service de-
sign, process model comparison and querying process descriptions. They differ in scope,
focus and the medium to reach their objectives. Service discovery is close to our approach
in cases where service requests are defined in the form of process centric descriptions
and they are matched against descriptions of available services, such as in [21],[8],[10].
Pattern-based service design methodologies provide a context to our approach, and when
automation is a core concept, our solutions can play an important role. Solutions to com-
pare and to query process models are close to our pattern matching solutions. Because
we focus on a business process pattern centric service design, solutions helping to find
pattern occurrences in process models are relevant related work, for example the work
presented in [2],[4],[6].

co
py's

 au
thor

Towards Reuse of Business Processes Patterns to Design Services 17

In [8] a technique for partial matching on behavioral models is presented. The pro-
posal provides measures of semantic distance between resultant matches and user require-
ments. Several issues regarding complexity of the proposed algorithm are reported to be
improved. However, experimental results indicate a response time of approximately thirty
seconds for a target graph of fifty vertices, which can be prohibitive for large processes. In
[4] a method to measure structural distance between process definitions associated to web
services is presented. The method relies on a distance measure of normalised matrices
representing graph-based process models. Improvements on the data structure for matri-
ces could provide more flexibility to represent processes and improve performance. In
[10] various types of structural matches for BPEL processes supporting dynamic binding
of services are defined. BPEL processes are modelled as process trees, where each tree
node is an interaction. Activities which are not interactions are abstracted into internal
steps and can not be matched. Duplicate interaction activities are not allowed in the tree.
Plugin matching is presented as an approach based on a process simulation notion, how-
ever such as the authors indicate, the proposal requires further semantic analysis to decide
if a process can replace another after a matching. In [6], the authors propose a query lan-
guage for BPEL process descriptions based on Context Free Graph Grammars (CFGG) -
which in general are not closed under intersection. Replacement in the considered CFGG
involves isomorphic relations between graphs. In our approach, structural relations be-
tween processes and patterns (queries) involves surjective graph homomorphisms. In [6],
process queries are graphical queries annotated in the same way as process descriptions.
Activities can be zoomed-in by means of graph refinement. Cycles in process graphs and
during graph refinements containing recursion are handled by representing compacted
graph structures. Many fork and joins constructs could lead to a exponential number of
paths in query’s results. Labels in a query and a query answer require syntactical equiva-
lence. Extensions to consider label predicates and regular path expressions are discussed.
In [2] the authors propose a way to compare two process models based on their observed
behavior. Observed behavior relies on the information extracted from logs of process ex-
ecutions. Mining techniques are applied over sequences of process steps. Our focus is
rather on graphs representing process models, this might include the results of mining
techniques that obtain graph-based models representing sets of process executions.

7. Conclusion
In this paper we have discussed the benefits, the concerns and some possible solutions
to automatically recommend the scope and granularity of services based on identified
patterns in business process models. At the core, the approach uses a set of graph match-
ing algorithms. We discussed some concerns and proposed solutions for exact, inexact,
partial, generalised and hierarchical pattern matching. These includes semantic matches
beyond syntactic equivalence and consideration of matches at different level of abstraction
in process models.

Additionally, we proposed a solution to discover frequent patterns -named utility
patterns- in process models. Utility patterns, together with an appropriate traceability

co
py's

 au
thor

18 Veronica Gacitua-Decar and Claus Pahl

support relating software components to process steps, can provide recommendations to
define the scope and granularity of reusable technical-centered services.

Our initial motivation in this work was based on the potential benefits that pat-
tern matching and pattern discovery techniques could provide to business analysts and
architects during the definition of new process-centric services. Process models can be
annotated with the results of the pattern matching and presented to designers on standard
modelling tools. Note that in this paper we have assumed the availability of process mod-
els and/or process-centric service descriptions and their related patterns. In current real
scenarios, the availability of process documentation might be considered as low. How-
ever, we believe that business and architectural documentation in the form of process-
centric models is becoming more and more relevant in the context of service architecture
implementations and public workflows, for example in the grid workflow environment.

Models documenting real case scenarios are complex, numerous and often large.
Automation is core to improve effectiveness and efficiency during the analysis of these
models. Our proposal aims to support designers by automating some of the steps during
the analysis and design of process-centric service architectures descriptions.

We believe that architecture abstractions, such as patterns, are a powerful concept
that can be exploited to improve the design of new services. Further work regarding per-
formance and scalability of our proposed techniques is in development. We plan to inves-
tigate their applicability to dynamic service composition.

References
[1] Aalst, W.M.P. van der, Hofstede, A.H.M. ter, Kiepuszewski, B., Barros, A. P. Workflow Patterns.

Distributed and Parallel Databases 14(1):5–51. (2003).
[2] Aalst, W.M.P. van der, Alves de Medeiros, A.K., Weijters, A.J.M.M. Process Equivalence :

Comparing Two Process Models Based on Observed Behavior. In: S. Dustdar, J.L. Fiadeiro, A.
Sheth (Eds.), Business Process Management (BPM’06). Springer, LNCS, Vol. 4102, pp. 129-
144 (2006).

[3] Abramovsky, L. and Griffith, R., Outsourcing and Offshoring of Business Services: How Im-
portant is ICT?. Journal of the European Economic Association 4(2-3):594–601, MIT Press
(2006).

[4] Bae, J., Liu, L., Caverlee, J., Rouse, W.B., Process Mining, Discovery, and Integration us-
ing Distance Measures. In: Proc. IEEE International Conference on Web Services (ICWS’06),
IEEE Computer Society, p. 479-488, (2006).

[5] Barros O., Business Process Patterns and Frameworks: Reusing Knowledge in Process Innova-
tion. Business Process Management Journal 13(1):47-69, Emerald Group (2007)

[6] Beeri, C., Eyal, A., Kamenkovich, S., Milo, T., Querying Business Processes with BP-QL. In-
formation Systems 33(6):477-507, Elsevier (2008)

[7] Buschmann, F., Henney, K., Schmidt, D.C., Pattern-Oriented Software Architecture: On Pat-
terns and Pattern Languages. 1st Edition, Wiley & Sons (2007).

[8] Corrales, J., Grigori, D., Bouzeghoub, M., BPEL Processes Matchmaking for Service Dis-
covery. In: On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and
ODBASE, p.237-254, Springer (2006).

co
py's

 au
thor

Towards Reuse of Business Processes Patterns to Design Services 19

[9] Erl, T., Service-oriented architecture: Concepts, Technology, and Design. Prentice Hall (2004).
[10] Eshuis, R., Grefen, P., Structural Matching of BPEL Processes. In: 5th European Conference

on Web Services (ECOWS’07), p. 171-180, IEEE Computer Society, (2007).
[11] Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G., Handbook of Graph Grammars and

Computing by Graph Transformation, Part II: Applications, Languages and Tools. World Sci-
entific (1999).

[12] Fettke, P., Loos, P., Reference Modeling for Business Systems Analysis. IGI Publishing (2006).
[13] Fiala, J., Structure And Complexity of Locally Constrained Graph Homomorphisms. PhD The-

sis, Charles University, Faculty of Mathematics And Physics (2007).
[14] Fiala, J., Kratochvil, J., Locally constrained graph homomorphisms–structure, complexity, and

applications. Computer Science Review 2(2):97–111, Elsevier Inc. (2008).
[15] Gschwind T., Koehler J., Wong J., Applying Patterns during Business Process Modeling. In:

Dumas M., Reichert M., Shan M.-C. (Eds.), 6th International Conference on Business Process
Management (BPM’08), Springer, LNCS, Vol. 5240, p. 4-19 (2008).

[16] Hell, P., Nesetril, J., Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and
Its Applications, Oxford University Press, Vol. 28 (2004).

[17] Kuramochi, M., Karypis, G., Finding Frequent Patterns in a Large Sparse Graph. Data Minin-
ing and Knowledge Discovery 11(3):243–271, Kluwer Academic Publishers (2005).

[18] Sadiq, W., Orlowska, M.E., Analyzing process models using graph reduction techniques. In-
formation Systems 25(2):117–134, Elsevier Science Ltd (2000).

[19] Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T., Fast best-effort pattern matching in
large attributed graphs. In: Proc. 13th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining (KDD’07), P. 737–746, ACM (2007).

[20] Vanhatalo J., Vlzer H., Koehler J., The Refined Process Structure Tree. Business Process Man-
agement (BPM’08), Springer, LNCS, Vol. 5240, p.100-115 (2008)

[21] Wombacher, A., Rozie, M., Evaluation of Workflow Similarity Measures in Service Discov-
ery. In: Schoop, M., Huemer, C., Rebstock, M., Bichler, M. (Eds.) Service Oriented Electronic
Commerce, GI, Vol(80), p.51-71 (2006).

8. Annex: Graphs
This annex is based on Nešetřil, Fiala and Hell’s work [16],[14], [13].
A graph G is a set VG of vertices together with a set EG of edges, where each edge is a
two-element set of vertices. If VG is finite, the graph G is called a finite graph. If the graph
has orientation, it is called directed graph, and each edge is called an arc. An arc can have
one of the two orientations (u,v) or (v,u) with u,v ∈VG. If loops on vertices are allowed,
then edges consist of only one vertex, written (u,u) with u∈VG. A sequence of vertices of
a graph G, such that the consecutive pairs are adjacent, is called a walk in G. If all vertices
in a walk are distinct, then it is called a path. A graph G is called a connected graph if for
every pair of vertices u,v ∈VG there exists a finite path starting in u and ending in v.

For a vertex u in a graph G, the set of all vertices adjacent to u are called the neigh-
borhood of u and is denoted by NG(u), with NG(u) = {v|(u,v) ∈ EG}. Consequently, a
vertex v is a neighbor of u if u and v are adjacent. A graph G is a subgraph of H if VG ⊆VH
and EG ⊆ EH .

co
py's

 au
thor

20 Veronica Gacitua-Decar and Claus Pahl

Homomorphisms. Graph homomorphisms are edge preserving vertex mapping between
two graphs. A graph homomorphism from G to H denoted by G→H is a vertex mapping
f : VG → VH satisfying (f (u), f (v)) ∈ EH for any edge (u,v) ∈ EG. According to [14],
whenever a homomorphism G→H holds, then the image of the neighborhood of a vertex
from the source graph VG is contained in the neighborhood of the image of that vertex
in the target graph VH , i.e. f (NG(u)) ⊆ NH(f (u)) for all u ∈ VG. Composition of two
homomorphisms f : F → G and g : G→ H is another homomorphism g◦ f : F → H. If a
homomorphism f : G → H is an one-to-one mapping and f−1 is also a homomorphism,
then f is called an isomorphism. In such a case is said that G and H are isomorphic and
it is denoted by G' H. An isomorphism f : G→ G is called an automorphism of G, and
the set of all automorphisms of G is denoted by AUT (G).

Using the latter notation, for graphs G and H three kind of homomorphic mapping
are defined as:
• G B→ H if there exist a locally bijective homomorphism f : VG → VH that satisfies for
all u ∈VG : u ∈VG : f (NG(u)) = NH(f (u)) and | f (NG(u))|= |NG(u)|.
• G I→ H if there exist a locally injective homomorphism f : VG → VH that satisfies for
all u ∈VG : | f (NG(u))|= |NG(u)|.
• G S→ H if there exist a locally surjective homomorphism f : VG →VH that satisfies for
all u ∈VG : f (NG(u)) = NH(f (u)).
Note that for the mappings above, locally bijective homomorphism is both locally in-
jective and surjective. The mappings are also known in the literature as (full) covering
projections (bijective), or as partial covering projections (injective), or as role assign-
ments (surjective). Additionally, any locally surjective homomorphism f from a graph G
to a connected graph H is globally surjective, and any locally injective homomorphism f
from a connected graph G to a forest H is globally injective [13].
Labelled Graphs. The graph G = (VG,EG, `VG , `EG) is a graph where the vertices in VG
and edges in EG have labels. The functions assigning labels to vertices and edges are
surjective homomorphisms `VG : VG → LVG and `EG : EG → LEG for all the vertices in
VG and the edges in EG, respectively. LVG and LEG are the sets of vertex labels and edge
labels, respectively. Note that surjection allow the existence of a same label in LVG(LEG)
for several vertices(edges).

Acknowledgment
We want to thanks Lero - The Irish Software Engineering Research Centre and CONICYT
(Chile) for supporting this work.

Veronica Gacitua-Decar and Claus Pahl
Lero, School of Computing
Dublin City University
Glasnevin, Dublin 9
Ireland
e-mail: vgacitua|cpahl@computing.dcu.ie

co
py's

 au
thor

