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How are three-dimensional objects represented in

the brain?

Heinrich H. B�ultho�, Shimon Y. Edelman & Michael J. Tarr

Abstract

We discuss a variety of psychophysical experiments that explore di�erent aspects of the prob-

lem of object recognition and representation in human vision. In all experiments, subjects

were presented with realistically rendered images of computer-generated three-dimensional

objects, with tight control over stimulus shape, surface properties, illumination, and view-

point, as well as subjects' prior exposure to the stimulus objects. Contrary to the predictions

of the paradigmatic theory of recognition, which holds that object representations are view-

point invariant, performance in all experiments was consistently viewpoint dependent, was

only partially aided by binocular stereo and other depth information, was speci�c to view-

points that were familiar, and was systematically disrupted by rotation in depth more than

by deforming the two-dimensional images of the stimuli. The emerging concept of multiple-

views representation supported by these results is consistent with recently advanced compu-

tational theories of recognition based on view interpolation. Moreover, in several simulated

experiments employing the same stimuli used in experiments with human subjects, mod-

els based on multiple-views representations replicated many of the psychophysical results

concerning the observed pattern of human performance.
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1 Introduction

How does the human visual system represent

three-dimensional objects for recognition? Ob-

ject recognition is carried out by the human vi-

sual system with such expediency that to intro-

spection it normally appears to be immediate and

e�ortless (Fig. 1 { canonical). Computation-

ally, recognition of a three-dimensional object seen

from an arbitrary viewpoint is complex because its

image structure may vary considerably depend-

ing on its pose relative to the observer (Fig. 1

{ non-canonical). Because of this variabil-

ity across viewpoint, simple two-dimensional tem-

plate matching is unlikely to account for human

performance in recognizing three-dimensional ob-

jects, since it would require that a discrete tem-

plate be stored for each of the in�nite number

of view-speci�c images that may arise for even

a single object. Consequently, the most promi-

nent computational theories of object recognition

(see Ullman, 1989 for a survey) have rejected

the notion of view-speci�c representations. Other

approaches, rooted in pattern recognition the-

ory, have postulated that objects are represented

as lists of viewpoint-invariant properties or by

points in abstract multidimensional feature spaces

(Duda and Hart, 1973). Another, more commonly

held, alternative is characterized by the postulate

that objects are represented by three-dimensional

viewpoint-invariant part-based descriptions (Marr

and Nishihara, 1978; Biederman, 1987), similar

to the solid geometrical models used in computer-

aided design.

Surprisingly, theories that rely on viewpoint-

invariant three-dimensional object representations

fail to account for a number of important charac-

teristics of human performance in recognition. In

particular, across a wide range of tasks, recogni-

tion performance, as measured by response times

and error rates, has been found to vary system-

atically with the viewpoint of the perceiver rel-

ative to the target object. Such results pro-

vide converging evidence in favor of an alterna-

tive theory of recognition, which is based on mul-

tiple viewpoint-speci�c, largely two-dimensional

representations To support this interpretation of

the psychophysical results, we review brie
y sev-

eral computational theories of object recognition,

each of which generates speci�c behavioral pre-

dictions that the experiments were designed to

test. Many of the psychophysical results are ac-

companied by data from simulated experiments,

in which central characteristics of human perfor-

mance were replicated by computational models

based on viewpoint-speci�c two-dimensional rep-

resentations. More about these theories and about

the implemented computational models of recog-

nition used in our simulations can be found in

(Lowe, 1986; Biederman, 1987; Ullman, 1989; Ull-

man and Basri, 1991; Poggio and Edelman, 1990;

B�ultho� and Edelman, 1992; Edelman and Wein-

shall, 1991).

2 Computational theories of object

recognition

Explicit computational theories of recognition

serve as good starting points for inquiry into

the nature of object representation, by providing

concrete hypotheses that may be refuted or re-

�ned through appropriately designed experiments.

More than any other single issue, the question of

whether object representations are viewpoint in-

variant or viewpoint dependent has been identi-

�ed as the crucial distinction on which theories of

recognition stand or fall.

One can use the viewpoint-invariant/viewpoint-

dependent distinction to make speci�c psy-

chophysical predictions as follows. Intuitively, if

the representation is viewpoint invariant, and if

an object-centered reference frame can be recov-

ered independently of object pose, then neither

recognition time nor accuracy should be related

to the viewpoint of the observer with respect to

the object. In contrast, if the representation is

viewpoint dependent, and as long as the complex-

ity of the normalization procedure scales with the

magnitude of the transformation, then both recog-

nition time and accuracy should be systematically

related to the viewpoint of the observer with re-

spect to the object. Subtler predictions may be

derived from a closer examination of speci�c the-

ories.

2.1 Theories that rely on

three-dimensional object

representations

Theories of the �rst kind we mention attempt

to achieve a computer-vision equivalent of com-

plete object constancy, the apparent ability of hu-

mans to perceive and recognize three-dimensional

objects irrespective of factors such as viewpoint

(Ellis et al., 1989). Two major approaches to

object constancy can be discerned. The �rst

approach uses fully three-dimensional viewpoint-

invariant representations, and requires that a sim-

ilar three-dimensional representation of the in-

put be recovered from the image before it is

matched to like-representations in visual mem-
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NON-CANONICALCANONICAL

Figure 1: Canonical views: certain views of three-dimensional objects are consistently easier to recognize or process
in a variety of visual tasks. Once this object is identi�ed as a tricycle seen from the front, we �nd it di�cult to
believe its recognition was anything less than immediate. Nevertheless, recognition is at times prone to errors, and
even familiar objects take longer to recognize if they are seen from unusual (non-canonical) viewpoints (Palmer
et al., 1981). Exploring this and other related phenomena can help elucidate the nature of the representation of
three-dimensional objects in the human visual system.

ory. The second approach uses viewpoint-speci�c

three-dimensional representations (e.g., selected

views that include depth information), and re-

quires that three-dimensional representations of

the input be normalized (by an appropriate spatial

transformation) from the viewpoint of the image

to the viewpoint of a view-speci�c representation

in visual memory.

2.1.1 Viewpoint-invariant

three-dimensional representations

The notion that the processing of the visual in-

put culminates in a full restoration of its three-

dimensional structure which may then be matched

to three-dimensional viewpoint-invariant represen-

tations in memory was popularized by Marr and

Nishihara (1978). Representation by reconstruc-

tion, which became known in computer vision

under the name of intrinsic images (Barrow and

Tenenbaum, 1978; Tenenbaum et al., 1981), was

never implemented, due to persistent di�culties

in solving the problem of a general reconstruction

of the three-dimensional representation from in-

put images. Despite the failure of this approach

in computer vision, in psychology it has become

widely accepted as a plausible model of recogni-

tion, following the work of Biederman and his as-

sociates.

Biederman's theory, known as Recognition-By-

Components (or more recently, Geon-Structural-

Descriptions, or GSD (Hummel and Biederman,

1992)), postulates that the human visual system

represents basic-level object categories by three-

dimensional structural relationships between a re-

stricted class of volumetric primitives known as

\geons" (Biederman, 1987). The crucial property

of the GSD approach is that the part descriptions

upon which object representations are built are

qualitative { the same object representation is de-

rived, regardless of viewpoint, so long as the same

con�guration of perceptual features is present in

the image. A consequence of this is that GSDs

actually exhibit only view-restricted invariance in

that a change in the visibility or occlusion of parts

will alter the feature con�gurations present in the

image (Hummel and Biederman, 1992; Biederman

and Gerhardstein, 1993). Therefore, the represen-

tation of a single object will necessarily include

several characteristic (Freeman and Chakravarty,

1980) or qualitative views, each composed of a dis-

tinct GSD and each viewpoint-invariant only for a

limited range of viewpoints.

2.1.2 Viewpoint-speci�c

three-dimensional representations

in conjunction with normalization

As a representative of this class of theories we

consider recognition by viewpoint normalization,
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of which Ullman's method of alignment is an in-

stance (Ullman, 1989). In the alignment approach

the two-dimensional input image is compared

with the projection of a stored three-dimensional

model, much like in template matching, but only

after the two are brought into register. The trans-

formation necessary to achieve alignment is com-

puted by matching a small number of features in

the image with the corresponding features in the

complete three-dimensional model. The aligning

transformation is computed separately for each

of the models stored in visual memory (but only

one per object). The outcome of the recognition

process is the model whose projection matches

the input image most closely after the two are

aligned. Related schemes (Lowe, 1986; Thomp-

son and Mundy, 1987) select the most appropriate

model in visual memory by using the \viewpoint

consistency constraint" which projects each model

to a hypothesized viewpoint and then relates the

projected locations of the resultant image features

to the input image, thereby deriving a mapping

of the image to the three-dimensional structure of

stored object representations.

Ullman (1989) distinguishes between a full

alignment scheme that employs complete three-

dimensional models and attempts to compen-

sate for all possible three-dimensional transfor-

mations that objects may undergo, such as ro-

tation in depth, and a partial alignment scheme

that employs pictorial descriptions that decom-

pose objects into (non-generic) parts and uses

multiple views rather than a single viewpoint-

invariant description to compensate for some

three-dimensional transformations. Ullman notes

(ibid., p.228) that this latter multiple-views ap-

proach to alignment involves a representation that

is \view-dependent, since a number of di�erent

models of the same object from di�erent view-

ing positions will be used," but at the same time

is \view-insensitive, since the di�erences between

views are partially compensated by the alignment

process." As such, this approach is similar to Bie-

derman's (Hummel and Biederman, 1992) most

recent version of GSD theory in which multiple

viewpoint-invariant GSDs are used to represent a

single object (although because GSDs are consid-

ered to be qualitative descriptions, no alignment

process is ever postulated to compensate for di�er-

ences in viewpoint). Regardless of these subtle dif-

ferences, both versions of alignment theory (here-

after referred to simply as alignment) may include

the assumption that normalization procedures do

not depend on the magnitude of the transforma-

tion { consequently, viewpoint-invariant perfor-

mance in recognition tasks (e.g., response times

and error rates) may be considered their central

distinguishing feature. Alternatively, the com-

plexity of normalization may scale with the mag-

nitude of transformation, and as such, viewpoint-

invariant performance is predicted only for er-

ror rates, with viewpoint-dependent patterns pre-

dicted for response times.

2.2 Theories that rely on

viewpoint-dependent two-dimensional

object representations

Theories of the second kind we mention here each

attempt to achieve object constancy by storing

multiple two-dimensional viewpoint-speci�c repre-

sentations (e.g., image-based views) and including

mechanisms for matching input images to stored

views or to views derived computationally from

stored views. While the speci�c mechanisms pos-

tulated for accomplishing this match vary among

theories (and have consequences for the subtler

predictions of each), they may all be considered

as computational variants of the empirically-based

multiple-views-plus-transformation (MVPT) the-

ory of recognition (Tarr and Pinker, 1989). MVPT

postulates that objects are represented as linked

collections of viewpoint-speci�c images (\views"),

and that recognition is achieved when the input

image activates the view (or set of views) that

corresponds to a familiar object transformed to

the appropriate pose. There is evidence (Edel-

man and Weinshall, 1991; Tarr, 1989; Tarr and

Pinker, 1989) indicating that this process can re-

sult in the same dependence of the response time

on the pose of the stimulus object as obtained

in the mental rotation experiments (Shepard and

Cooper, 1982). We consider MVPT as a psycho-

logical model of human performance that predicts

recognition behavior under speci�c conditions; the

computational models reviewed below provide de-

tails on how this performance may be achieved.

2.2.1 Linear combination of views (LC)

Several recently proposed approaches to recog-

nition dispense with the need to represent objects

as three-dimensional models. The �rst of these,

recognition by linear combination of views (Ull-

man and Basri, 1991), is built on the observa-

tion that, under orthographic projection, the two-

dimensional coordinates of an object point can be

represented as a linear combination of the coordi-

nates of the corresponding points in a small num-

ber of �xed two-dimensional views of the same ob-

ject. The required number of views depends on
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the allowed three-dimensional transformations of

the objects and on the representation of an indi-

vidual view. For a polyhedral object that can un-

dergo a general linear transformation, three views

are required if separate linear bases are used to

represent the x and the y coordinates of a new

view. Two views su�ce if a mixed x; y basis is

used (Ullman and Basri, 1991). A system that

relies solely on the linear combination approach

(LC) should achieve uniformly high performance

on those views that fall within the space spanned

by the stored set of model views, and should per-

form poorly on views that belong to an orthogonal

space.

2.2.2 View interpolation by basis

functions (HyperBF)

Another approach that represents objects by

sets of two-dimensional views is view interpolation

by regularization networks (Poggio and Edelman,

1990; Poggio and Girosi, 1990). In this approach,

generalization from stored to novel views is re-

garded as a problem of multivariate function in-

terpolation in the space of all possible views. The

interpolation is performed in two stages. In the

�rst stage intermediate responses are formed by a

collection of nonlinear receptive �elds (these can

be, e.g., multidimensionalGaussians). The output

of the second stage is a linear combination of the

intermediate receptive �eld responses.

More explicitly, a Gaussian-shaped basis func-

tion is placed at each of the prototypical stored

views of the object, so that an appropriately

weighted sum of the Gaussians approximates the

desired characteristic function for that object over

the entire range of possible views (see (Poggio and

Edelman, 1990; Edelman and Poggio, 1992) for

details). Recognition of the object represented by

such a characteristic function amounts to a com-

parison between the value of the function com-

puted for the input image and a threshold.

2.2.3 Conjunction of localized features

(CLF)

The third scheme we mention is also based on

interpolation among two-dimensional views and,

in addition, is particularly suitable for modeling

the time course of recognition, including long-term

learning e�ects (Edelman and Weinshall, 1991;

Edelman, 1991b; Tarr, 1989; Tarr and Pinker,

1989). The scheme is implemented as a two-layer

network of thresholded summation units. The in-

put layer of the network is a retinotopic feature

map (thus the model's name). The distribution of

the connections from the �rst layer to the second,

or representation, layer is such that the activity in

the second layer is a blurred version of the input.

Unsupervised Hebbian learning augmented by a

winner-take-all operation ensures that each su�-

ciently distinct input pattern (such as a particular

view of a three-dimensional object) is represented

by a dedicated small clique of units in the sec-

ond layer. Units that stand for individual views

are linked together in an experience-driven fash-

ion, again through Hebbian learning, to form a

multiple-view representation of the object. When

presented with a novel view, the CLF network can

recognize it through a process that amounts to

blurred template matching and is related to non-

linear basis function interpolation.

3 Recognition behavior as

predicted by the di�erent

theories

3.1 Experimental issues

A wide range of psychophysical experiments have

been reported that assess the impact of changes of

viewpoint on the recognition of both familiar and

novel stimuli. The core issue in all such studies

is whether response times and/or error rates are

equivalent for all changes in viewpoint or are sys-

tematically related to the magnitude of changes in

viewpoint. Such behavioral patterns can help to

decide which representations (viewpoint-invariant

or viewpoint-dependent) are used in object recog-

nition. However, one must be cautious in inter-

preting such patterns { there are instances of both

viewpoint-invariant and viewpoint-dependent be-

havior that do not necessarily imply correspond-

ingly viewpoint-invariant or viewpoint-dependent

representations. In particular, there is an asym-

metry in what may be concluded from viewpoint-

invariant patterns of responses. For novel objects,

because of the limited stimulus set sizes employed

in many experiments, a viewpoint-invariant pat-

tern may simply indicate that in the context of

the experimentally de�ned recognition set, sub-

jects were able to recognize objects via localized

viewpoint-invariant features within each object

(Eley, 1982). In contrast, in the context of all po-

tentially recognizable objects in the world, such

features would not be unique and consequently

would not support viewpoint-invariant recogni-

tion. Thus, one of the many challenges that must

be overcome in assessing recognition mechanisms

in humans is the development of novel stimuli that

do not facilitate the reliance on unique features

(to the extent that such features are unlikely to
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be unique in the real world). A similar prob-

lem of interpretation exists for familiar objects:

a viewpoint-invariant pattern may arise as a re-

sult of multiple familiar stored views (distributed

across viewpoint so as to mask most e�ects of

viewpoint). Thus, another challenge that must be

overcome is how to assess the possible existence

of multiple-views in cases where objects are very

familiar, presumably leading to the instantiation

of many views.

Examples of di�culties of interpretation may

also be found in patterns of performance that

are viewpoint-dependent. For instance, initial

viewpoint-dependency for novel objects may occur

because viewpoint-invariant representations may

arise only over experience. Thus, learning pro-

cesses must be considered in assessing recogni-

tion. Viewpoint-dependent patterns may arise be-

cause of reliance on perceptual information possi-

bly irrelevant to recognition { for example, mirror-

image discrimination requires left/right handed-

ness information de�ned in only in our ego-centric

frame of reference, therefore, mental rotation is

apparently used to normalize objects to this frame

(Shepard and Cooper, 1982). Thus, a �nal chal-

lenge is to ensure that extraneous factors, for in-

stance, handedness, do not produce behavioral

patterns that are not typical of recognition judg-

ments. As discussed in Sections 4.3 and 5, these

challenges are addressed in experiments conducted

by B�ultho� and Edelman (B�ultho� and Edel-

man, 1992; Edelman and B�ultho�, 1992a) and by

Tarr (Tarr, 1989; Tarr and Pinker, 1989). Brie
y,

these experiments employed the following manip-

ulations:

� Novel stimulus objects that shared similar

parts in di�erent spatial relationships (typ-

ical of subordinate-level recognition discrim-

inations), thereby reducing the possibility of

localized unique features mediating recogni-

tion (see Fig. 2).

� Measures assessing both the initial recogni-

tion of novel objects and recognition follow-

ing extensive familiarization.

� Restricted sets of viewpoints during initial

training or other controls (see below) to in-

vestigate the degree of viewpoint speci�city

encoded in object representations of familiar

objects or novel objects following extensive

familiarization.

� The introduction of unfamiliar \test" views

to assess the underlying organization of views

instantiated during learning.

� Recognition tasks that reduced the likelihood

of extraneous in
uences on recognition per-

formance. For instance, some studies con-

trolled for handedness by using bilaterally

symmetrical objects or treating both mem-

bers of mirror-pairs as equivalent.

Additionally, to di�erentiate between the more

subtle predictions of viewpoint-dependent theories

of recognition, we have investigated the perfor-

mance in three distinct cases, each corresponding

to a di�erent kind of test views. In the �rst and

easiest case, the test views are familiar to the sub-

ject (that is, test views re shown during training).

In the second case, the test views are unfamiliar,

but are related to the training views through a

rigid three-dimensional transformation of the tar-

get. In this case the problem can be regarded as

generalization of recognition to novel views. In

the third case, which is especially relevant in the

recognition of articulated or 
exible objects, the

test views are obtained through a combination of

rigid transformation and nonrigid deformation of

the target object. To better place the results of

such experiments in a theoretical context, we �rst

review the speci�c theoretical predictions gener-

ated by each theory of recognition.

3.2 Theoretical predictions

The theories discussed in Section 2 make di�er-

ent predictions about the e�ect of factors such as

viewpoint on the accuracy and latency of recogni-

tion under the various conditions outlined above.

As mentioned, at the most general level, theo-

ries that rely on viewpoint-invariant representa-

tions predict no systematic e�ect of viewpoint on

either response times or error rates, both for fa-

miliar and for novel test views, provided that the

representational primitives (i.e., invariant features

or generic parts) can be readily extracted from

the input image. In comparison, theories that rely

on viewpoint-dependent representations naturally

predict viewpoint-dependent performance. How-

ever, the details of such predictions vary according

to the speci�cs of the approach postulated by each

particular theory.

3.2.1 Viewpoint-invariant

three-dimensional representations

A recognition scheme based on viewpoint-in-

variant three-dimensional representations may be

expected to perform poorly only for those views

which by an accident of perspective lack the infor-

mation necessary for the recovery of the reference

frame in which the viewpoint-invariant description
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Figure 2: The appearance of a three-dimensional ob-
ject can depend strongly on the viewpoint. The image
in the center represents one view of a computer graph-
ics object (wire-, amoeba-, or cube-like). The other
images are derived from the same object by �75� ro-
tation around the vertical or horizontal axis. The dif-
ference between the images illustrates the di�culties
encountered by any straightforward template match-
ing approach to three-dimensional object recognition.
Thin wire-like objects have the nice property that the
negligible amount of occlusion provides any recogni-
tion system with equal amount of information for any
view. A realistic recognition system has to deal with
the more di�cult situation of self-occlusion as demon-
strated with the amoeba-like objects.

is to be formed (Marr and Nishihara, 1978; Bieder-

man, 1987). In a standard example of this situa-

tion, an elongated object is seen end-on, causing a

foreshortening of its major axis, and an increased

error rate, due presumably to a failure to achieve a

stable description of the object in terms of its parts

(Marr and Nishihara, 1978; Biederman, 1987). In

all other cases this theory predicts independence

of response time on orientation, and a uniformly

low error rate across di�erent views. Furthermore,

the error rate should remain low even for deformed

objects, as long as the deformation does not alter

the make-up of the object in terms of its parts and

their qualitative spatial relations.

Similar predictions are made by the most re-

cent version of GSD theory (Biederman and Ger-

hardstein, 1993; Hummel and Biederman, 1992)

to the extent that given GSD is considered to be

viewpoint invariant up to changes in the visibil-

ity or occlusion of speci�c geons. Therefore, as

long as the complete set of GSDs is familiar for

a given object, recognition behavior will be com-

pletely viewpoint invariant. However, under con-

ditions where some GSDs are unfamiliar or, more

generally, under conditions where the GSD recov-

ered from an image must be matched to a di�erent

GSD in memory, recognition behavior will degrade

qualitatively, that is, without any systematic re-

lationship to the magnitude of changes in view-

point (Biederman and Gerhardstein, 1993). Thus,

GSD theory predicts viewpoint invariance for the

recognition of familiar objects and only step-like

viewpoint-dependent patterns for the recognition

of unfamiliar objects undergoing extreme changes

in visible part structure.

3.2.2 Viewpoint-dependent

three-dimensional representations

Consider next the predictions of those theories

that explicitly compensate for viewpoint-related

variability of apparent shape of objects, by nor-

malizing or transforming the object to a standard

viewpoint. As mentioned, if the recognition sys-

tem represents an object by multiple views and

uses an incremental transformation process for

viewpoint normalization, response times are ex-

pected to vary monotonically with the viewpoint

of the test view relative to one of stored views.

This pattern of response times will hold for many

of the familiar, as well as for novel test views,

since the system may store selectively only some

of the views it encounters for each object, and may

rely on normalization for the recognition of other

views, either familiar or novel. In contrast to the

expected dependence of response times on view-

point, the error rate under the viewpoint normal-

ization approach will be uniformly low for any test

view, either familiar or novel, in which the infor-

mation necessary for pose estimation is not lost
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(thereby leading to successful recognition). Alter-

natively, if normalizing or transforming the object

uses a \one-shot" transformation process for view-

point normalization, response times will likewise

be viewpoint invariant. In either case, the pre-

dictions of this theory may be di�erentiated from

theories that rely on two-dimensional representa-

tions and normalization procedures in that the lat-

ter predict e�ects of viewpoint for both response

times and error rates (as discussed in the follow-

ing sections). By comparison, theories based on

three-dimensional representations predict that er-

ror rates will not vary with viewpoint (regardless

of the pattern of response times).

3.2.3 Linear combination of views

The predictions of the LC scheme vary accord-

ing to the particular version used. The basic

LC scheme predicts uniformly successful general-

ization to those views that belong to the space

spanned by the stored set of model views. It

is expected to perform poorly on views that be-

long to an orthogonal space. In contrast, the

mixed-basis LC (MLC) is expected to generalize

perfectly, just as the three-dimensional viewpoint-

invariant schemes do. Furthermore, the varieties

of the LC scheme should not bene�t signi�cantly

from the availability of depth cues, because they

require that the views be encoded as lists of coor-

dinates of object features in two-dimensions and

cannot accommodate depth information. Regard-

ing the recognition of deformed objects, the LC

method will generalize to any view that belongs to

a hyperplane spanned by the training views (Ull-

man and Basri, 1991). For the LC+ scheme (that

is, LC augmented by quadratic constraints verify-

ing that the transformation in question is rigid),

the generalization will be correctly restricted to

the space of the rigid transformations of the ob-

ject, which is a nonlinear subspace of the hyper-

plane that is the space of all linear transformations

of the object.

3.2.4 View interpolation

Finally, consider the predictions of the view in-

terpolation theory. First, as with theories that

rely on three-dimensional representations, e�ects

of viewpoint on response times are expected to

vary with speci�c implementation details. In one

instance, there will be no systematic increase in

response times with changes in viewpoint if the

transformation (in this case, interpolation) mech-

anism is \one-shot" instead of incremental. In the

other instance, response times will increase with

increasing changes in viewpoint if the interpola-

tion involves an incremental process, for example,

a time-consuming spread of activation in a dis-

tributed implementation.

We note that while activation-spread models

have been proposed as accounts of viewpoint-

dependent response times in object recognition

(Edelman and Weinshall, 1991), they may also of-

fer a plausible mechanism for many so-called men-

tal transformation phenomena. For instance, it is

well documented that at the behavioral level, hu-

mans employ a transformation process commonly

referred to as \mental rotation" during some per-

ceptual judgments (Shepard and Cooper, 1982).

The explanation o�ered by Shepard is that such

transformations are mental analogs of actual phys-

ical transformations { a hypothesis which still

stimulates a major debate in cognitive science, but

does not seem to lead to a plausible neural or com-

putational theory. In its stead, we propose that,

to the extent that a given theory of view inter-

polation relies on an incremental process, it may

provide a plausible account of mental transforma-

tion behavioral patterns across many tasks.1

Another prediction of the view interpolation

theory is lower error rate for familiar test views

than for novel test views, depending on the dis-

tance from the novel view to the nearest famil-

iar stored view. Some variation in the error rate

among the familiar views is also possible, if the

stored prototypical views form a proper subset of

the previously seen ones (in which case views that

are the closest to the stored ones will be recog-

nized more reliably than views that have been pre-

viously seen, but were not included in the repre-

sentation). For deformed objects, generalization

is expected to be as signi�cant as for novel views

produced by rigid transformations. Furthermore,

better generalization should be obtained for test

views produced by the same deformation method

used in training.

1Indeed, a view interpolation account of Tarr's data
on object recognition supports this proposal. Tarr
(1989; Tarr and Pinker, 1989) compared directly the
response time patterns obtained in recognition tasks
to those obtained using identical objects in identical
viewpoints in perceptual judgments known to elicit the
use of mental transformations. The comparison re-
vealed that recognition and transformation tasks yield
highly similar putative rates of \rotation" as well as
deviations from monotonicity. While such evidence is
necessarily only circumstantial, it provides some in-
dications that well-speci�ed computational theories of
recognition may also inform us as to the mechanisms
used in other aspects of visual cognition.
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4 Psychophysical background

4.1 Basic vs. subordinate-level

recognition

Numerous studies in cognitive science (see Rosch

et al., 1976 for a review) reveal that in the hi-

erarchical structure of object categories there ex-

ists a level of category organization, referred to

as the basic level, which is the most salient ac-

cording to a variety of psychological criteria (such

as the ease and preference of access). Taking as

an example the hierarchy \quadruped, mammal,

cat, Siamese", the basic level is that of \cat".

While basic-level categorical structure is unlikely

to a product of either purely de�nitional or percep-

tual mechanisms (Armstrong et al., 1983), there is

some evidence that basic-level categories are orga-

nized to some extent around perceptual proper-

ties of objects. For instance, Tversky and Hemen-

way (1984) have proposed that the presence of

common parts in similar con�gurations is one of

the essential properties in determining category

membership. However, given this conjecture, it is

clear that some apparent members of a particular

basic-level category are inappropriate. For exam-

ple, while robins, bluejays, and penguins all share

membership in the category \bird," only the �rst

two actually share many common parts. Both the

shape and consequently the parts of penguins are

dissimilar to prototypical birds. Likewise, in terms

of naming performance, it is clear that the basic

level fails to capture some aspects of categoriza-

tion behavior; for example, the �rst label assigned

to an image of a penguin is likely to be \penguin"

rather than \bird" { a behavior consistent with

the dissociation at the perceptual level. Conse-

quently, it has been suggested that for purposes

of characterizing recognition performance, the ba-

sic level should be supplanted by the entry level {

the �rst categorical label generally assigned to a

given object (Jolicoeur et al., 1984). To the extent

that theories of recognition attempt to account for

classi�catory behavior, they do so for entry-level

performance (i.e., Biederman, 1987; Hummel and

Biederman, 1992).

In contrast to the entry-level, objects whose

recognition implies �ner distinctions than those

required for entry-level categorization are said to

belong to a subordinate level. In terms of percep-

tual content, the subordinate level may be char-

acterized by objects having similar overall shape

as a consequence of sharing similar parts in sim-

ilar spatial relationships. Typical examples of

subordinate-level or within-category discrimina-

tions include recognizing individual faces or spe-

ci�c models of cars.

Crucially, the pattern of response times and er-

ror rates in recognition experiments appears to

be in
uenced to a large extent by the category

level at which the distinction between the di�er-

ent stimuli is to be made (Edelman, 1992). Specif-

ically, if the subjects are required to classify the

stimulus (that is, to determine its entry-level cat-

egory), error rates and response times are often

found to be viewpoint invariant (except in in-

stances where the three-dimensional structure of

the object is severely distorted, e.g., due to fore-

shortening; see Biederman 1987). In contrast, if

the task is to identify a speci�c object (that is,

to discriminate one individual from other, visu-

ally similar objects sharing parts and spatial re-

lations), error rates and response times are nor-

mally viewpoint dependent. While this distinc-

tion is certainly true in its extreme form (for in-

stance, objects having no parts in common will al-

most certainly be members of di�erent entry-level

categories and, likewise, may be discriminated by

viewpoint-invariant unique features) it is less clear

that \everyday" entry-level performance is medi-

ated by viewpoint-invariant mechanisms. For ex-

ample, as discussed in the following section, nam-

ing times (generally at the entry-level) for familiar

common objects have been found to be viewpoint-

dependent. More importantly, because entry-level

categories are only acquired over extensive experi-

ence with many instances of each class, it is pos-

sible that multiple viewpoint-dependent represen-

tations are acquired as the category is learned. As

discussed in Section 3.1, this leads to an asymme-

try in the kind of conclusions that can be drawn

from viewpoint-invariant performance: for famil-

iar entry-level categories, the reliance on multiple

views may mask the operation of any viewpoint-

dependent mechanisms. Thus, it is di�cult to as-

sess the underlying structure of object represen-

tations through entry-level tasks employing famil-

iar objects as stimuli. To address this problem,

we are currently undertaking several psychophys-

ical studies in which the acquisition of entry-

level categories for novel objects is manipulated

in conjunction with viewpoint. To the extent that

entry-level categorization is normally viewpoint-

invariant, such performance should be found re-

gardless of which views have been displayed; alter-

natively, to the extent that entry-level categoriza-

tion relies on multiple-views, performance should

vary systematically in relation to the views that

are familiar.
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4.2 Canonical views

Most familiar common objects such as houses, an-

imals, or vehicles are recognized faster or more

slowly, depending on the viewpoint of the ob-

server (as demonstrated in Figure 1). This phe-

nomenon has been de�ned originally purely in

descriptive and qualitative terms. For instance,

Palmer, Rosch and Chase (1981) found that sub-

jects consistently labeled one or two views, desig-

nated as canonical views, of such objects as sub-

jectively \better" than all other views. Consis-

tent with such ratings, a naming task revealed

that subjects tended to respond fastest when the

stimulus was shown in a canonical view (as deter-

mined independently in the aforementioned sub-

jective judgment experiment), with response times

increasing monotonically with changes in view-

point relative to this view. This demonstra-

tion of viewpoint-dependent naming is consistent

with the hypothesis that multiple-views mediate

recognition even at the entry-level; in particu-

lar, theories of recognition that rely on viewpoint-

speci�c representations may accommodate such

results quite naturally, while theories that rely

on viewpoint-invariant representations will require

added complexity solely to account for this behav-

ior. It should be noted however, that at the entry

level, canonical views are largely a response time

phenomenon (the error rate for basic-level nam-

ing, as found by Palmer et. al., was very low,

with the errors being slightly more frequent for the

worst views than for others). In comparison, at the

subordinate levels canonical views are apparent in

the distribution of error rates as well as response

times, where they constitute strong and stable ev-

idence in favor of viewpoint-dependent nature of

object representations (see Section 5.1). Thus,

while entry-level and subordinate-level recognition

may share some common representational struc-

tures, they may di�er at some level of processing,

for instance, in the threshold for what constitutes

a correct match.

4.3 Mental transformation and its

disappearance with practice

As discussed in Section 3.1, the body of evidence

documenting the monotonic dependency of recog-

nition time on viewpoint has been interpreted re-

cently (Tarr, 1989; Tarr and Pinker, 1989; Tarr

and Pinker, 1990) as an indication that objects

are represented by a few speci�c views, and that

recognition involves viewpoint normalization (via

alignment, linear combinations, or HyperBF's) to

the nearest stored view, by a process similar to

mental rotation (Shepard and Cooper, 1982). A

number of researchers have shown the di�erences

in response time among familiar views to be tran-

sient, with much of the variability disappearing

with practice (see, e.g., Jolicoeur, 1985; Koriat

and Norman, 1985; Tarr, 1989; Tarr and Pinker,

1989). Thus, experience with many viewpoints

of an object leads to apparent viewpoint invari-

ance. However, to reiterate the point made in Sec-

tion 3.1, such performance is not diagnostic in that

it may arise as a result of either multiple-views or

as a single viewpoint-invariant representation.

To distinguish between these two possibilities,

Tarr and Pinker (1989; also Tarr, 1989) investi-

gated the e�ect of practice on the pattern of re-

sponses in the recognition of novel objects, which

are particularly suitable for this purpose because

they o�er the possibility of complete control over

the subjects' prior exposure to the stimuli. Specif-

ically, their experiments included three phases:

training, practice, and surprise. Feedback about

the correctness of their responses was provided

to subjects in all phases. During training, sub-

jects learned to identify three or four novel ob-

jects from a single viewpoint. Crucially, the stimu-

lus objects shared similar parts in di�erent spatial

relationships, a perceptual discrimination charac-

teristic of subordinate-level recognition. To as-

sess the initial e�ects of changes of viewpoint on

recognition, during practice, subjects named the

objects in a small select set of viewpoints.2 Con-

sistent with the hypothesis that objects are recog-

nized by a normalization to viewpoint-speci�c two-

dimensional representations, initial naming times

and accuracy were both monotonically related to

the change in viewpoint (a �nding also consistent

with the results of Palmer, et. al., 1981, and Joli-

coeur, 1985). In particular, the magnitude of this

e�ect was comparable in terms of putative rate of

rotation (as measured by the slope of the response

time function) to the rates found in classic studies

of mental rotation (Shepard and Cooper, 1982)

and to control experiments in which the same

novel stimuli were discriminated on the basis of

left/right handedness in the identical viewpoints.

However, as expected, this e�ect of viewpoint di-

minished to near equivalent performance at all fa-

miliar viewpoints with extensive practice. At this

point, the surprise phase was introduced, during

which subjects named the same now-familiar ob-

2To ensure that subjects did not rely on unique fea-
tures, several \distractor" objects were also included.
Rather than naming such objects, subjects simply
made a \none-of-the-above" response.
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Figure 3: Mean response times for correctly naming familiar \cube" objects in familiar and unfamiliar viewpoints.
Viewpoints were generated by rotations in depth (around the x or y axis) or in the picture-plane (around the
z axis). Filled data points represent familiar viewpoints learned during training and extensive practice; open
points represent unfamiliar viewpoints introduced in the \surprise" phase of the experiment. Prior to this phase,
extensive practice resulted in the onset of equivalent naming performance at all familiar viewpoints { a pattern
consistent both with the acquisition of multiple viewpoint-dependent \views" and with the acquisition of a single
viewpoint-invariant description. Performance in the surprise phase distinguishes between these two possibilities:
naming times (and error rates) increased systematically with angular distance from the nearest familiar view-
point, indicating that subjects represented familiar objects as multiple-views and employed a time-consuming
normalization process to match unfamiliar viewpoints to familiar views. One of the 7 \cube" objects is shown
along with the axis of rotation to the right of each plot (data and stimuli adapted from Tarr, 1989).
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jects in new, never-before-seen viewpoints as well

as in previously practiced familiar viewpoints (see

Fig. 3).

The surprise phase manipulation is diagnos-

tic for distinguishing between viewpoint-invariant

and viewpoint-dependent theories in that the for-

mer class of theories predict that the mechanisms

used to achieve invariance for the familiar view-

points may be used to recognize stimuli indepen-

dent of viewpoint in the unfamiliar viewpoints as

well; in contrast, the latter class of theories predict

that no such generalization will occur, rather, the

viewpoint-dependent mechanisms used to match

stimuli to stored familiar views will now necessi-

tate that stimuli in unfamiliar views be normal-

ized with stored views. Consistent with this latter

prediction, numerous experiments have revealed

patterns in both response times and error rates

that vary monotonicallywith the distance between

the unfamiliar viewpoint and the nearest famil-

iar view (Fig. 3). Importantly, the magnitude of

such e�ects was comparable to the viewpoint ef-

fects found in the initial practice phase of each

experiment { indicating that the same viewpoint-

dependent mechanism was employed both when

the stimuli were relatively novel and when they

were highly familiar (the crucial di�erence being

the number of views encoded per object). In-

deed, as before, further experience with a wide

range of views (all of the viewpoints in the sur-

prise phase) once again led to a dimunition in the

e�ect of viewpoint on performance for those spe-

ci�c viewpoints, presumably because additional

views were acquired with experience. Similar �nd-

ings have been observed under numerous stim-

ulus manipulations that controlled for the pos-

sibility that e�ects of viewpoint were the result

of super
uous handedness checks, including ex-

periments employing bilaterally symmetrical ob-

jects and cases where mirror-image pairs were

treated as equivalent. Overall, these results pro-

vide strong evidence that, at least for purposes

of subordinate-level recognition, objects are rep-

resented as viewpoint-speci�c multiple-views and

recognized via viewpoint-dependent normalization

processes.

4.4 Limited generalization

The pattern of error rates in experiments by Rock

and his collaborators (Rock and DiVita, 1987) in-

dicates that when the recognition task can only be

solved through relatively precise shape matching

(such as required for subordinate-level recognition

of the bent wire-forms used as stimuli), the error

rate reaches chance level already at a misorien-

tation of about 40� relative to a familiar attitude

(Rock and DiVita, 1987), see also Figure 6. A sim-

ilar limitation seems to hold for people's ability to

imagine the appearance of such wire-forms from

unfamiliar viewpoints (Rock, Wheeler and Tudor,

1989). However, such results may present an ex-

treme case in terms of performance. Farah (Farah

et al., 1994) observed that when Rock's wire-

forms were interpolated with a smooth clay surface

(creating \potato-chip" objects), subjects' recog-

nition accuracy increased dramatically for changes

in viewpoint equivalent to those tested by Rock.

Thus, object shape and structure plays a signi�-

cant role in the ability of humans to compensate

for variations in viewpoint (for instance, see Koen-

derink and van Doorn, 1979). One possibility is

that as the structure of objects becomes more reg-

ular (in terms of properties such as spatial rela-

tions and symmetries), the ability to compensate

e�ciently for changes in viewpoint is enhanced, in

that the resultant image structure is predictable

(Vetter et al., 1994). One consequence is that er-

ror rates may be reduced and performance will

be enhanced, although it is possible that mixed

strategies or veri�cation procedures will yield re-

sponse times that are still dependent on viewpoint

(as seen in the naming of familiar common objects

in non-canonical views, Palmer, et. al., 1981).

5 Psychophysics of

subordinate-level recognition

Despite the availability of data indicating that

multiple-views and normalization mechanisms

play some role in subordinate-level recognition

(Section 4.3), psychophysical research has left

many of the questions vital to computational un-

derstanding of recognition unanswered. For exam-

ple, it is still unclear whether the canonical views

phenomenon re
ects basic viewpoint dependence

of recognition, or is due to particular patterns of

the subjects' exposure to the stimuli.3 More im-

portantly, existing data are insu�cient for test-

ing the subtler predictions of the many computa-

tional theories concerning generalization to novel

views and across object deformations. Finally, the

role of depth cues in recognition has been largely

unexplored. The experiments described in this

section were designed to address many such is-

sues, concentrating on subordinate-level identi�ca-

3Recent psychophysical and computational studies
indicate that viewpoint dependence may be to a large
extent an intrinsic characteristic of 3D shapes (Cutzu
and Edelman, 1992; Weinshall et al., 1993).
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View-sphere visualization of RT = f(viewangle)

Session 1

Session 2

Figure 4: Canonical views and practice: the advantage of some views over others, as manifested in the pattern
of response times (RTs) to di�erent views of wire-like objects, is reduced with repeated exposure. The spheroid
surrounding the target is a three-dimensional stereo-plot of response time vs. aspect (local deviations from a
perfect sphere represent deviations of response time from the mean). The three-dimensional plot may be viewed
by free-fusing the two images in each row, or by using a stereoscope. Top, Target object and response time
distribution for Session 1. Canonical aspects (e.g., the broadside view, corresponding to the visible pole of the
spheroid) can be easily visualized using this display method. Bottom, The response time di�erence between views
are much smaller in Session 2. Note, that not only did the protrusion in the spheroid in Session 1 disappear but
also the dip in the polar view is much smaller in Session 2. Adapted from Edelman and B�ultho�, 1992.

tion, which, unlike entry-level classi�cation (Bie-

derman, 1987), has been relatively unexplored.

All the experiments described below employed

tasks in which subjects were asked to explicitly re-

call whether a currently displayed object had been

previously presented.4 Each experiment consisted

of two phases: training and testing. In the train-

ing phase subjects were shown a novel object de-

4Such a judgment is commonly referred to as an
\explicit" memory task. While some dissociations in
performance have been found between similar explicit
tasks and so-called \implicit" tasks such as priming
or naming (Schacter, 1987), there is little evidence to
indicate that this dissociation holds for changes across
viewpoint (Cooper and Schacter, 1992). Moreover,
Palmer, et. al.'s, (1981) and Tarr's (1989; Tarr and
Pinker, 1989) studies employed implicit tasks, yet still
revealed robust e�ects of viewpoint.

�ned as the target, usually as a motion sequence

of two-dimensional views that led to an impression

of three-dimensional shape through structure from

motion. In the testing phase the subjects were pre-

sented with single static views of either the target

or a distractor (one of a relatively large set of sim-

ilar objects). The subject's task was to press a

\yes"-button if the displayed object was the cur-

rent target and a \no"-button otherwise, and to

do it as quickly and as accurately as possible. No

feedback was provided as to the correctness of the

response.

5.1 Canonical views and their

development with practice

To explore the �rst issue raised above, that of

the determinants of canonical views, we tested the

recognition of views all of which have been pre-
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viously seen as a part of the training sequence

(for further details see (Edelman and B�ultho�,

1992a), Experiment 1). Our stimuli proved to

possess canonical views, despite the fact that in

training all views appeared with equal frequency.

We also found that the response times for the dif-

ferent views became more uniform with practice.

The development of canonical views with practice

is shown in Figure 4 as a three-dimensional stereo-

plot of response time vs. orientation, in which local

deviations from a perfect sphere represent devia-

tions of response time from the mean. For ex-

ample, the di�erence in response time between a

\good" and a \bad" view in the �rst session (the

dip at the pole of the sphere and the large pro-

trusion in Fig. 4, top) decreases in the second ses-

sion (Fig. 4, bottom). The pattern of error rates,

in comparison, remained largely una�ected by re-

peated exposure.

5.2 Role of depth cues

5.2.1 Depth cues and the recognition of

familiar views

A second set of experiments explored the role

of three di�erent cues to depth in the recogni-

tion of familiar views (for details, see (Edelman

and B�ultho�, 1992a), Experiment 2). Whereas

in the previous experiment test views were two-

dimensional and the only depth available cues were

shading of the objects and interposition of their

parts, we now added texture and binocular stereo

to some of the test views, and manipulated the

position of the simulated light source to modulate

the strength of the shape from shading cue (cf.

B�ultho� and Mallot, 1988).

The stimuli were rendered under eight di�erent

combinations of values of three parameters: sur-

face texture (present or absent), simulated light

position (at the simulated camera or to the left

of it) and binocular disparity (present or ab-

sent). Training was done with maximal depth

information (oblique light, texture and stereo

present). Stimuli were presented using a non-

interlaced stereo viewing system (StereoGraphics

Corp.). A �xed set of views of each object was

used both in training and in testing. We found

that both binocular disparity and, to a smaller

extent, light position a�ected performance. The

error rate was lower in the stereo compared to

mono trials (11:5% as opposed to 18:0%) and

lower under oblique lighting than under head-on

lighting (13:7% compared to 15:8%).

Figure 5: Generalization to novel views: An illustra-
tion of the inter, extra and ortho conditions. Com-
putational theories of recognition outlined in Section 2
generate di�erent predictions as to the relative degree
of generalization in each of the three conditions. We
have used this to distinguish experimentally between
the di�erent theories.

5.2.2 Depth cues and the generalization

to novel views

A second manipulation probed the in
uence of

binocular disparity (shown to be the strongest con-

tributor of depth information to recognition) on

the generalization of recognition to novel views

(for details, see Edelman and B�ultho�, 1992, Ex-

periment 4). The subjects were �rst trained on

a sequence of closely spaced views of the stimuli,

then tested repeatedly on a di�erent set of views,

spaced at 10� intervals (0� to 120� from a reference

view at the center of the training sequence).

The mean error rate in this experiment was

14:0% under mono and 8:1% under stereo. In

the last session of the experiment, by the time the

transient learning e�ects have disappeared, the er-

ror rate under mono approached the error rate

under stereo, except for the range of misorienta-

tion between 50� and 80�, where mono was much

worse than stereo. Notably, error rate in each

of the two conditions in the last session was still

signi�cantly dependent on misorientation.
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Human Subjects RBF Model

Figure 6: Generalization to novel views: Top left: Error rate vs. misorientation relative to the reference (\view-0"
in Fig. 5) for the three types of test views { inter, extra and ortho, horizontal training plane. Top right:

performance of the HyperBF model in a simulated replica of this experiment. Bottom left and right: same as
above, except vertical training plane. Adapted from B�ultho� and Edelman, 1992.

5.3 Generalization to novel views

A related experiment used an elaborate general-

ization task to distinguish among three classes of

object recognition theories mentioned in Section 2:

alignment, linear combination of views (LC), and

view interpolation by basis functions (HyperBF).

Speci�cally, we explored the dependence of gener-

alization on the relative position of training and

test views on the viewing sphere (for details, see

B�ultho� and Edelman, 1992). We presented the

subjects with the target from two viewpoints on

the equator of the viewing sphere, 75o apart. Each

of the two training sequences was produced by

letting the camera oscillate with an amplitude of

�15o around a �xed axis (Fig. 5). Target test

views were situated either on the equator (on the

75o or on the 360o�75o = 285o portion of the great

circle, called inter and extra conditions), or on

the meridian passing through one of the training

views (ortho condition; see Fig. 5).

The results of the generalization experiment,

along with those of its replica involving the Hy-

perBF model, appear in Figure 6. As expected,

the subjects' generalization ability was far from

perfect. The mean error rates for the inter, ex-

tra and ortho view types were 9:4%, 17:8% and

26:9%. Repeated experiments involving the same

subjects and stimuli, as well as control experi-

ments under a variety of conditions yielded an

identical pattern of error rates. The order of the

mean error rates was changed, however, when the

training views lay in the vertical instead of the hor-

izontal plane. The means for the inter, extra

and ortho conditions were in that case 17:9%,

35:1% and 21:7%.

The experimental results �t most closely the

predictions of the HyperBF scheme and contradict

theories that involve three-dimensional viewpoint-

invariant models or viewpoint alignment models

that do not allow for errors in recognition. In

particular, the di�erences in generalization per-

formance between the horizontal and the vertical

arrangements of training views can be accommo-

dated within the HyperBF framework by assigning

di�erent weights to the horizontal and the vertical

dimensions (equivalent to using non-radial basis

functions).
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Figure 7: Human performance in the recognition of
rotated and deformed objects. The subjects had to
attribute brie
y displayed static images of isolated ob-
jects to one of two classes (17 subjects participated;
data are from 24 experimental sessions, which involved
5 di�erent object pairs; for details, see Spectorov,
1993). The four curves show mean error (miss) rate
for view related to the single training view by rotation
around the X, Y, and Z axes (the latter is image-plane
rotation), and by deformation along the X axis (data
from four deformation methods, all of which produced
similar results, are collapsed for clarity). Note that
both image-plane rotation and deformation were easy,
and elicited near-
oor error rate.

5.4 Generalization across deformations

In the last experiment reported in this section,

we compared the generalization of recognition to

novel views belonging to several di�erent cate-

gories: those obtained from the original target ob-

ject by rigid rotation, by three-dimensional a�ne

transformation, and by non-uniform deformation

(Edelman and B�ultho�, 1990; Sklar et al., 1993;

Spectorov, 1993). The views in the rigid rota-

tion category were obtained by rotation around

the X axis (that is, in the sagittal plane), around

the Y axis, and in the image-plane. In the defor-

mation category, the methods were shear, stretch,

quadratic stretch, and non-uniform stretch, all in

depth. Altogether, views obtained through seven

di�erent transformation and deformation classes

were tested.

From the experimental results it appears that
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Figure 8: RBF model performance (measured by the
classi�cation threshold needed to achieve correct ac-
ceptance of all test views) in the recognition of ro-
tated and deformed objects (for details, see Spectorov,
1993). The four curves are as in Figure 7. The wire-
frame stimuli were encoded by vectors of angles formed
by the various segments. Consequently, the image-
plane rotation (which leaves these angles invariant)
was as easy for the model as for the human subjects,
but the deformations elicited somewhat worse perfor-
mance (the rotations in depth were the most di�cult,
as they were for the humans). A choice of features
other than angles may bring the performance of the
model closer to that of humans.

the degree of generalization exhibited by the hu-

man visual system is determined more by the

amount of (two-dimensional) deformation as mea-

sured in the image plane (cf. Cutzu and Edel-

man, 1992) than by the direction and the dis-

tance between the novel and the training views

in the abstract space of all views of the target ob-

ject. The HyperBF scheme was recently shown to

produce a similar pattern of performance (Spec-

torov, 1993). More generally, such �ndings are

consistent with the conception of multiple-views

object representations as being exemplar-based,

and consequently, recognition performance show-

ing sensitivity to variations in two-dimensional im-

age properties such as global shape, color, or illu-

mination (Wurm et al., 1993).
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5.5 Interpretation of the experimental

data: support for a view

interpolation theory of recognition

The experimental �ndings reported above are in-

compatible with theories of recognition that pos-

tulate viewpoint-invariant representations. Such

theories predict no di�erences in recognition per-

formance across di�erent views of objects, and

therefore cannot account either for the canonical

views phenomenon or for the limited generaliza-

tion to novel views, without assuming that, for

some reason, certain views are assigned a spe-

cial status. Modifying the thesis of viewpoint-

invariant representation to allow privileged views

and a built-in limit on generalization greatly weak-

ens it, by breaking the symmetry that holds

for truly viewpoint-invariant representations, in

which all views, including novel ones, are equiv-

alent.

Part of the �ndings on viewpoint-dependent

recognition, including mental rotation and its dis-

appearance with practice, and the lack of trans-

fer of the practice e�ects to novel orientations or

to novel objects (Tarr, 1989; Tarr and Pinker,

1989), can be accounted for in terms of viewpoint

alignment (Ullman, 1989). According to Ullman's

(1989) alignment explanation, the visual system

represents objects by small sets of canonical views

and employs a variant of mental rotation to recog-

nize objects at attitudes other than the canonical

ones. Furthermore, practice causes more views to

be stored, making response times shorter and more

uniform. At the same time, the pattern of error

rates across views, determined largely by the sec-

ond stage of the recognition process in which the

aligned model is compared to the input, remains

stable due to the absence of feedback to the sub-

ject.

This explanation, however, is not compatible

with the results of the generalization experiments

(nor with Tarr's studies in which subjects received

feedback about the correctness of their responses),

which, on the one hand, show a marked and per-

sistent dependency of error rate (also observed in

Tarr's studies) on the distance to the training view

for rigid rotations,5 and, on the other hand, in-

dicate that people are capable of generalization

across object deformations. Moreover, the view-

point dependency of the representations formed by

5These �ndings also rule out the possibility that
the increase in the uniformity of response time over
di�erent views, caused by practice, is due to the for-
mation of a viewpoint-invariant representation of the
target object.

subjects, manifested in the limitation on general-

ization to novel views, cannot be due exclusively to

an absolute lack of three-dimensional information

in the stimuli, since the same dependency of error

rate on viewpoint was obtained (in the depth-cues

experiment) both in mono and stereo trials.

In view of the experimental results discussed

above, theories that rely on fully three-dimension-

al viewpoint-invariant representations appear to

be poor models of human performance, at least

in tasks that require subordinate-level recogni-

tion. A plausible alternative account of the exper-

imental data assumes that object representations

involved in such tasks are inherently viewpoint

dependent. According to this account, a three-

dimensional object is represented by a collection

of speci�c views, each of which is essentially an

image-based representation of the object as it is

seen from a certain viewpoint, augmented by lim-

ited depth information.6 The collection of stored

views is structured, in the sense that views that

\belong" together (e.g., because they appeared

in close succession during previous exposure and

share some structural information in common) are

more closely associated with each other (Edelman

and Weinshall, 1991; Perrett et al., 1989). To pre-

cipitate recognition, an input stimulus must bring

the entire structure to a certain minimal level of

activity. This process of activation may be me-

diated by a correlation-like operation that com-

pares the stimulus (possibly in parallel) with each

of the stored views, and activates the representa-

tion of that view in proportion to its similarity

to the input (Edelman, 1991b). Computationally,

this method of recognition is equivalent to an at-

tempt to express the input as an interpolation of

the stored views (Poggio and Edelman, 1990; Edel-

man and Weinshall, 1991), which is much more

likely to succeed if the input image is indeed a

legal view of the three-dimensional object repre-

sented by the collection of stored views (Ullman

and Basri, 1991).

6The basic limitation on the use of depth in recog-
nition stems from its representation in a viewpoint-
dependent coordinate frame (in Marr's terminology
(Marr, 1982), such representation would be called a
2 1
2
D-sketch). Another possible limitation is expected

in view of the recent �ndings regarding the imperfec-
tions of the perception of three-dimensional shape, as
mediated by di�erent depth cues (B�ultho� and Mallot,
1988).
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6 What are the features of

recognition?

Most of the psychophysical �ndings reported

above have been replicated by a computational

model (Poggio and Edelman, 1990) based on inter-

polation of stored two-dimensional views (B�ultho�

and Edelman, 1992). A natural question arising

at this point is how those two-dimensional views

are represented in the human visual system. It

is instructive to compare the di�erent possibilities

that suggest themselves to the method of repre-

sentation used by the HyperBF network model.

The input to the model is a vector of measure-

ments of certain image parameters. In the sim-

plest case, these parameters are the image coordi-

nates of primitive features such as edge termina-

tors or corners. While these features are suitable

for the class of thin tube-like objects used in most

of our experiments to date, they are clearly inad-

equate for the description of objects in which in-

tensity edges and, in particular, edges due to the

occluding contour, are of secondary importance.

An example of an object class that dictates a re-

consideration of the feature issue appears in Fig-

ure 2. It should be noted that amoeba-like stimuli

yield the same pattern of results as do the wire-like

objects used throughout the experiments reported

above. These results, however, cannot be repli-

cated computationally without an in-depth study

of the feature extraction stage of recognition in hu-

man vision. In this section we outline one possible

approach to the study of the features of recogni-

tion in human vision (see Edelman, 1991a for more

details).

The central tenet of this approach, supported by

the evidence presented in the preceding sections, is

that recognition normally requires neither three-

dimensional reconstruction of the stimulus, nor

the maintenance of a library of three-dimensional

models of objects (Edelman and Poggio, 1989). In-

stead, information su�cient for recognition can be

found in the two-dimensional image locations of

object features. The choice of features and their

complexity may vary between objects. For exam-

ple, a pineapple can be recognized by its character-

istic pattern of spiny scales. The main feature in

this case is textural and is distributed over the ob-

ject's surface. In comparison, the relevant features

of a peanut are both its texture and a characteris-

tic outline (in a line drawing, a round peanut can

be confused with a golf ball). Finally, a road ve-

hicle can be recognized as such by the presence of

wheels (each of which may be considered a com-

plex feature), but for the drawing of a vehicle to be

classi�ed, e.g., as a car, simple additional features

such as contour elements and corners must be ap-

propriately situated in the image (presumably, in

the vicinity of the locations of corresponding fea-

tures in the image of a prototypical car).

The ensuing generic recognition scheme is based

on the idea of a hierarchy of image features, and

is designed to address the major issue that re-

mains at this point unresolved, namely, the capa-

bility of a recognition scheme based on interpola-

tion among speci�c views for viewpoint-invariant

performance exhibited by human subjects under

certain circumstances (especially in tasks requir-

ing basic-level classi�cation, rather than the iden-

ti�cation of individual objects; see (Biederman,

1987)). Evidence of viewpoint-invariant recogni-

tion has served in the past as an argument against

multiple-view representation of objects. We pro-

pose that such evidence can be accommodated

within the framework of multiple-view represen-

tation by allowing for an appropriate encoding of

the stored views. In other words, we propose to

capture the varying degree of viewpoint invariance

found in human recognition performance by en-

dowing the model with an extensive repertoire of

feature detectors, whose output (and not the raw

input image) is fed into the classi�cation stage

(Edelman, 1991a).

Those of the detected features that are well-

localized in the image (e.g., polyhedral vertices,

as mentioned in the preceding section; see also In-

trator et al., 1992) would allow �ne distinctions

among objects at the expense of relatively strong

sensitivity to viewpoint (the location of a corner in

the projected image is highly dependent on the ob-

ject's attitude with respect to the observer). On

the other hand, the so-called non-accidental fea-

tures (Lowe, 1986; Biederman, 1987) o�er rela-

tive insensitivity to viewpoint at the expense of

reduced power of discrimination among objects.

An example of such a feature is the presence of

near-parallel lines in the image, which is highly

unlikely to be caused by an accident of a view-

point, but at the same time only allows to dis-

criminate between objects that possess such par-

allel lines and those that do not. Finally, \dif-

fuse" features such as surface color or texture may

support recognition performance that is basically

viewpoint-invariant and is exact to the extent that

the surface markings are distinctive for each ob-

ject under consideration. It is important to note

that all three kinds of features | localized, non-

accidental, and di�use | can be detected by com-
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Human Subjects RBF Model

Figure 9: Left: human performance in the recognition of rotated wire-like 3D objects (B�ultho� and Edelman,
1992). Error rate of subjects trained on single view is plotted vs. distance between training and test views. Note
poor generalization across rotations in depth (curves marked by x;y), compared to rotation in the image plane
(curve marked by z; see text). Right: performance of the HyperBF network model (Poggio and Edelman, 1990;
Edelman and Poggio, 1992; B�ultho� and Edelman, 1992) in the same task.

putational mechanisms resembling receptive �elds,

and can be considered, therefore, as a natural ex-

tension of a basis-function classi�cation network

(Poggio and Edelman, 1990).

A concrete example of the potential tradeo�

between discrimination power and viewpoint in-

variance of a feature set is provided by recent ex-

perimental data (Edelman and B�ultho�, 1992a)

shown in Figure 9. The plot on the left sug-

gests that humans recognize 3D wire-like objects

nearly independently of their image-plane orien-

tation (but not of the orientation in depth; cf.

Figure 7). A similar behavior is exhibited by a

view-interpolationmodel which includes lengths of

segments between connected vertices in the object

representations (in addition to the coordinates of

individual vertices). This relative insensitivity to

rotation in the image plane is expected to cause

the model to be more prone to confuse objects

that have similar projected segment lengths, but

di�erent 3D structure. A complete invariance to

image-plane rotation could be achieved by encod-

ing vertex angles. For rotation in the image plane

vertex angles stay constant but the projected an-

gles are deformed by rotations in 3D.

A similar comparison between image-plane and

rotation-in-depth may be found in the experiments

reported by Tarr (1989; see, Fig. 3). However, in

contrast to the results discussed above, subjects in

these experiments exhibited large e�ects of view-

point for both image-plane and in-depth rotations.

One possible explanation for the discrepancy be-

tween these experiments may be the extent to

which subjects relied on geometrically-de�ned ver-
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Figure 10: Subjects trained on two �15� motion se-
quences, centered at �37:5� to the reference view were
tested on di�erent deformation types based on the ref-
erence view. The deformation levels were normalized
so the Level 4 is equivalent to the maximum amount
of 2D vertex displacement possible with rotation in
depth. Average miss rate of eight subjects for 6 ob-
jects.

sus familiarity-de�ned views. In terms of changes

in image structure, all image-plane rotations are

equivalent (e.g., constitute a single qualitative or

characteristic view or aspect), and therefore may

be undi�erentiated with regard to multiple-views

representations that encode views solely on the ba-

sis of qualitative changes in visible features. How-

ever, Tarr's (1989) study intentionally manipu-

lated the frequency with which selected views ap-

peared to subjects (including views in the image-

plane), thereby biasing them towards di�erentiat-

ing between featurally-equivalent image-plane ro-
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Figure 11: The various deformation methods e�ect measurements in 3D (XYZ) or in the image plane (XY) in
di�erent ways. The 2D vertex angle (XY) resembles best the psychophysical data presented in Figure 10.

tations. Indeed, the fact that most canonical views

of familiar objects seem to have a preferred orien-

tation relative to gravitational upright, indicates

that familiarity with speci�c viewpoints, as well as

the presence of speci�c clusters of features, medi-

ates what constitutes a view.

In order to test which feature (e.g., vertex po-

sition, vertex angle, segment direction, segment

length, etc) is most likely the distinguishing fea-

ture used by the visual system in the recogni-

tion task, we compared recognition performance

for a number of 2D and 3D deformation methods

including rotation-in-depth, stretching, shearing,

and random deformations (Sklar et al., 1993). For

these experiments subjects �rst viewed a target

object rotating�15� about a reference view. They

were then asked to discriminate deformed versions

of the target object from distractor objects which

have undergone the same types and degrees of de-

formation. The results in Figure 10 show that the

error rate for rotation-in-depth is clearly more pro-

nounced than for the other deformation methods.

We then calculated how the di�erent deforma-

tion methods and levels e�ect the following mea-

surements: (1) segment direction (XYZ) is a 3D

direction which can be only derived under stereo-

scopic display conditions; (2) segment direction

(XY) is the projected 3D direction on the image

plane; (3) segment length (XY) is the length of

a wire segment measured in the image plane; (4)

vertex normal direction (XYZ) is again a 3D mea-

sure which could only be derived under perfect

3D viewing conditions; (5) vertex angle (XY) is

the projected angle measured in the image plane;

(6) vertex order is a more topological measure

which describes the change in top/bottom order of

the vertices. A comparison with the psychophysi-

cal deformation data in Figure 10 shows that the

vertex angle is the best 2D descriptor for human

recognition performance of wire-like objects under

varying image deformations (Fig. 11).

7 General conclusions

The psychophysical results reviewed in this paper

present evidence that viewpoint-dependent repre-

sentations and recognition processes play an im-

portant role in human object recognition. In par-

ticular, given that most studies have employed

stimulus objects that share parts and have some

spatial relations in common, viewpoint depen-

dency is most strongly implicated in subordinate-

level recognition. However, one must be cautious

not to extend such conclusions to the more gen-

eral assumption that viewpoint-dependent mecha-

nisms are limited to the subordinate-level. Rather,

the framework we have presented indicates that

extreme viewpoint dependence and extreme view-

point invariance lie at two ends of a continuum,

with appropriate mechanisms and features re-
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cruited according to task demands, context, and

the organization of visual memory. This concep-

tion of recognition in humans leaves less room for

exclusively viewpoint-invariant theories of recog-

nition, for instance, Geon-Structural-Descriptions

(Biederman, 1987; Hummel and Biederman, 1992)

in that a great deal of the extant psychophys-

ical data on object recognition in humans is

expressly inconsistent with such accounts (Bar-

tram, 1974; B�ultho� and Edelman, 1992; Edel-

man and B�ultho�, 1992b; Cave and Kosslyn,

1993; Humphrey and Khan, 1992; Srinivas, 1993).

Furthermore, the plausibility of such accounts is

severely strained by their failure to accommo-

date the more 
exible recognition mechanisms we

have proposed. Indeed, even to the extent that

such viewpoint-invariant theories are intended

solely as explanations of entry-level performance,

they are hampered by evidence for viewpoint-

dependent patterns in naming familiar common

objects (Palmer, et. al., 1981) and by their inabil-

ity to provide both the stability and the sensitivity

necessary to account for entry-level organization

(cf., Marr and Nishihara, 1978).

A second important point to be drawn from the

work surveyed here is that modeling psychophys-

ically obtained response patterns permits us to

\reverse-engineer" the human visual system { an

integral part of our research e�ort. Insight gained

through modeling proves to be useful both for

understanding experimental results and for the

planning of experiments that explore further the-

oretical issues. In particular, the success of a

HyperBF model that relied on simple receptive-

�eld-like features in replicating nontrivial aspects

of human performance in recognition experiments

(B�ultho� and Edelman, 1992) indicates that even

better results can be obtained with more sophisti-

cated feature-extraction and learning techniques.

The integrated psychophysical and computational

study of these issues has led to a number of in-

sights:

� Multiple-views. Psychophysical evidence in-

dicates that humans encode three-dimension-

al objects as multiple viewpoint-speci�c rep-

resentations that are largely two-dimensional

(but may include some depth information as

well).

� Normalization. Psychophysical evidence in-

dicates that subordinate-level recognition is

achieved by employing a time-consuming nor-

malization process to match objects seen in

unfamiliar viewpoints to familiar stored view-

points. The role of such mechanisms in entry-

level recognition is less clear, but is more

plausible than exclusively three-dimensional

viewpoint-invariant accounts of recognition.

� HyperBF Model and View Interpolation.

Psychophysical evidence in conjunction with

computational simulations indicates that

view interpolation o�ers a plausible expla-

nation for viewpoint-dependent patterns of

performance in terms of both response times

and error rates. Moreover, this model of-

fers an account of subtle aspects of general-

ization performance inconsistent with other

viewpoint-dependent theories.

Our research program currently concentrates on

the issue of feature extraction for recognition, on

perceptual learning involved in the acquisition of

object representations, and on the uni�cation of

theories of recognition spanning all levels of cat-

egorization. First, in modeling feature extraction

in recognition, the identity and the relative im-

portance of features discovered by computational

learning models can be compared to a psychophys-

ical characterization of the features of recognition

relied upon by human subjects. Second, to the

extent that both feature extraction and classi�-

cation exhibit considerable 
exibility, we are ex-

ploring the degree to which both priors and en-

vironmentally determined factors constrain learn-

ing and representation in human object recogni-

tion. Such factors include those relevant to general

recognition, for instance, common feature sets,

and those that di�er for di�erent classes of objects,

for instance, subsets of non-generic features and

restricted-class categorization methods. Finally,

we believe that the concept of features of recogni-

tion, of varying complexities and degrees of spatial

localization, may o�er a uni�ed approach spanning

the continuum of subordinate-level to entry-level

performance in human object recognition.
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