
1

Design of Hybrids for the Minimum Sum-of-Squares
Clustering Problem

Joaquín Pacheco1, Olga Valencia
Department of Applied Economics, University of Burgos,

Plaza Infanta Elena s/n BURGOS 09001, SPAIN

Latest version: July 8, 2002

Abstract

A series of metaheuristic algorithms is proposed and analyzed for the non-hierarchical clustering
problem under the criterion of minimum Sum-of-Squares Clustering. These algorithms incorporate
genetic operators and Local Search and Tabu Search procedures. The aim is to obtain quality solutions
with short computation times. A series of computational experiments has been performed. The proposed
algorithms obtain better results than previously reported methods, especially with small numbers of
clusters.

Keywords: Clusterization, Metaheuristics, Tabu Search, Genetic Algorithms,
Memetic Algorithms, Hybrid Algorithms.

1. Introduction

Consider a set X = {x1, x2, ..., xN} of N points in Rq and let m be a predetermined
positive integer. The Minimum Sum-of-Squares Clustering (MSSC) problem is to find a
partition of X into m disjoint subsets (clusters) so that the sum of squared distances from
each point to the centroid of its cluster is minimum. Specifically, let Pm denote the set of
all the partitions of X in m sets, where each partition P ∈ Pm is defined as P = (C1, C2,
..., Cm) and where Ci denotes each of the clusters that forms P. Thus, the problem can be
expressed as:

∑ ∑
= ∈∈

−
m

i Cx
ilP

il
m

xxmin
1

2

 P
,

where the centroid ix is defined as

l
Cxi

i x
n

x
il

∑
∈

= 1 , with ni = |Ci| .

Equivalently the problem can be written as

∑
=

−
N

l
lcl xxmin

1

2
)(,

where c(l) is the cluster to which point xl belongs.
 The design of clusters is a well known exploratory Data Analysis issue called

Pattern Recognition. The aim is to find whether a given set of cases X has some
structure and, in if so, to display it in the form of a partition. This problem belongs to

1 Corresponding author: Fax: +34 947 25 80 13; Tel: +34 947 25 90 21
E-mail addresses: jpacheco@ubu.es (Joaquín Pacheco), oval@ubu.es (Olga Valencia).

2

the area of Non-Hierarchical cluster design, which has many applications in Economics,
Social and Natural Sciences. It is known to be NP-Hard, (Brucker, 1978).

Various exact methods for MSSC can be found in the literature (see, for example,
Koontz et al., 1975 and Diehr, 1985), some of which, such as the method proposed by
du Merle et al. (2000), have succeeded in resolving problems with up to 150 points. For
larger-sized problems the use of heuristic algorithms is still necessary. The most popular
are those based on Local Search methods, such as the well-known K-Means (Jancey,
1966) and H-Means (Howard, 1966) procedures. In a recent work, Hansen and
Mladenovic (2001) propose a new Local Search procedure, J-Means, along with
variants H-Means+ or HK-Means. In recent years algorithms using Metaheuristic
strategies have been designed, such as Simulated Annealing (Klein and Dubes, 1989),
Tabu Search (Al-Sultan, 1995), Genetic Algorithms (Babu and Murty, 1993) or most
recently Variable Neighborhood Search or VNS (du Merle et al., 2000, and Hansen and
Mladenovic, 2001).

A series of algorithms that is able to obtain good solutions in short times is proposed
for this problem. Initially, a genetic algorithm is designed using Local Search methods,
thus becoming a Memetic Algorithm. A simple procedure based on a Tabu Search
method using binary trees is also suggested. This method demonstrates its capacity to
improve solutions in very few iterations. The incorporation of this procedure into
Memetic Algorithms yields Hybrid Algorithms. Finally, these Memetic and Hybrid
Algorithms are analyzed and compared with other techniques. In all cases, the proposed
techniques give adequate solutions, compared with other techniques, in reasonable time,
especially with small values of m.

This paper is structured as follows: in the next section some of the already existing
Local Search algorithms are described. In the third section, the Tabu Search method is
presented. Section 4 considers the Genetic Algorithm in detail. In section 5 Memetic
and Hybrid Algorithms are described. Section 6 presents the results of different
computational experiments and compares the effectiveness and efficiency of the
proposed algorithms with other recent techniques. Finally section 7 summarizes the
contribution.

2. Principal Local Search Algorithms

Some important local search algorithms are described. These are the well-known H-
Means and K-Means, their variants H-Means+ and HK-Means, as well as the more
recent J-Means and J-Means+. In all cases, we begin by obtaining an arbitrary initial
solution (or partition), (C1, C2, ..., CM).

Algorithm 1. H-Means
Repeat

(a) Calculate centroids ix , for i=1.…m;
(b) Reassign every point to its closest centroid (→ new clusters: clusters are composed by the

points assigned to the same centroid);
until convergence (that is, no modifications in the composition of clusters)

Algorithm 2. H-Means+
Repeat

(a) Run steps (a) and (b) of H-Means (Algorithm 1);
(b) If there are no modifications:

3

(b.1) Verify if empty clusters exist (degeneration);
(b.2) If there are k empty clusters select the farthest k points from their

centroids and insert them into the solution as k new single-point clusters;
until convergence.

Algorithm 3. K-Means
Repeat

(a) ∀ i =1..m. ∀ xj ∉ Ci calculate vij (that is: change in the value of the objective
function when xj is reassigned to Ci);

(b) If vi*j* = min vij < 0 then reassign xj* to Ci* ;
until vi*j* ≥ 0

Algorithm 4. J-Means
Repeat

(a) ∀ j =1....N such that xj do not coincide with any actual centroid:
(a.1) Add a fictitious cluster CM+1 whose centroid is xj ;
(a.2) ∀ i=1....m, calculate Jij; that is: the change in the value of the objective function

when cluster Ci is ‘dissolved’ and each one of its entities is reassigned to its
closest centroid cluster among the remaining ones (including CM+1 and not
including Ci) (‘Jump-move’);

(b) If Ji*j* = min Jij < 0 then undo Ci* and reassign the elements of Ci to the closest centroid
cluster among the remaining ones (including CM+1 of centroid xj*), redefine Ci = CM+1 and
eliminate CM+1.

until Ji*j* ≥ 0.

Observe that H-Means+ simply modifies H-Means to prevent the algorithm from
ending in a degenerate solution. This modification is very effective according to Hansen
and Mladenovic's (2001) experiments.

The following formulas are obtained from Späth (1980) to simplify the calculations
in K-Means. Let Cl be the cluster to which xj belongs, then the value of vij is calculated
as follows:

22

11 jl

l

l
ji

i

i
ij xx

n
nxx

n
nv −⋅

−
−−⋅

+
= ,

and the centroids are easily updated as xj is changed from Cl to Ci. It should be noted
that a K-Means local optimum is also a local optimum for H-Means (and H-Means+),
but the reverse is not necessarily true. This suggests using H-Means+ followed by K-
Means and not the reverse. We shall denote this two phase heuristic by HK-
Means.Finally, J-Means+ consists in applying HK-Means once every time ‘Jump-
move’ is run in J-Means.

3. Tabu Algorithm

3.1. Description of a basic algorithm

Tabu Search (TS) is a strategy proposed by Glover (1989) and (1990). “Tabu Search
is dramatically changing our possibilities of solving a host of combinatorial problems in
different areas” (Glover and Laguna, 2002). This is a procedure that explores the

4

solution space beyond the local optimum. Once a local optimum is reached, upward
moves or those that worsen the solutions are allowed. Simultaneously, the last moves
are marked as tabus during the following iterations to avoid cycling. Recent and
comprehensive tutorials on Tabu Search, that include all types of applications, can be
found in Glover and Laguna (1997) and (2002).

Next, we design a simple Tabu Search algorithm that uses the neighboring moves
employed in K-Means. These moves consist at each step in the movement of an entity
from a cluster to a different one. In order to avoid repetitive cycling when a move which
consists in moving point xj from cluster Cl to cluster Ci is performed, point xj is
prevented from returning to the cluster Cl for a certain number of iterations.
Specifically, let’s define

Matrix_tabu (l, j) = the number of the iteration in which point xj leaves cluster Cl .

The Tabu Search method is described by Algorithm 5, where P denotes a initial
solution with a value f. The parameter Tabu_Tenure indicates the number of iterations
during which a point is not allowed to return to the leaving cluster. The parameter
max_iter indicates the maximum number of unimproved iterations. After different tests,
Tabu_Tenure was set as m.

Algorithm 5. Tabu Search
(a) Do Matrix_tabu(i,j) = - Tabu_Tenure, i =1..m, j = 1,..N
(b) Do niter = 0 and P* = P, f* = f and iter_better =0;
(c) Repeat

(c.1) niter = niter + 1
(c.2) Determine vi*j* = min {vij / i =1..m. j = 1,...N ; xj ∉ Ci verifying

 niter > Matrix_tabu (i,j) + Tabu_Tenure or
 f + vij < f* (‘aspiration criterion’)}

(c.3) Reassign xj* to Ci* ;
(c.4) Do Matrix_tabu (l*,j*) = niter (l* being the previous cluster of xj*);
(c.5) If f (the value of the current solution P) < f* then do: P* = P, f* = f and iter_better = niter;

 until (niter – iter_better > max_iter) or another termination criterion

3.2. The Use of a Binary Tree structure

Next, a strategy based on the use of binary trees (Williams, 1964) is proposed for
storing and arranging the different possible moves, defined for each (i, j) pair, according
to the corresponding value vij. For each node k of the binary tree, a given move (i, j) is
located so that, in the leaving nodes, 2k to 2k+1, two moves (i’, j’) and (i’’, j’’) are
located that are either equal to or worse than move (i, j), (i.e., vij ≤ vi’j’ and vij ≤ vi’’j’’).
Clearly, in any iteration, the best move will be located in the root node. The binary tree
does not include the tabu moves. A binary tree can be programmed using a vector HP
and a matrix QP :

- HP(k) : indicates move (i, j) located in node k of the tree
- Q(i, j) : indicates the number of the node where move (i, j) is found; if this
move is not in the tree (i.e., xj ∈ Ci or niter > Matrix_tabu (i,j)+ Tabu_Ternure)
then Q(i, j) = 0.

Figure 1 illustrates a binary tree. In this case HP must be equal to ((1,2), (2,4), (3,5),
(2,1), (4,6)) and QP(1,2) = 1, QP(2,4) = 2, QP(3,5) = 3, QP(2,1) = 4, and QP(4,6) = 5.

5

(1,2)

1

(2,4)

2

(3,5)

3

(2,1)

4

(4,6)

5

V 1,2 = -5

V 3,5 = 0 V 2,4 = -3

V 2,1 = 2 V 4 ,6 = -1

Fig. 1. An example of a binary tree to arrange the moves.

When a move defined for i* and j* is run, the positions of the moves with values
located in the binary tree must be updated. Thus, move (i*, j*) in that iteration must be
eliminated, and the move that is no longer tabu must be reincorporated in the tree. As
the number of nodes of the binary tree is at most N·(m-1), each of these binary tree
update operations can be implemented in O(log2 (N·m)) time. As can easily be shown,
the number of moves (i, j) that must be updated is on the order of

() ()32 ** −⋅++⋅ mCCN li . Thus, the number of operations in each iteration is
O(N·log2(N·m)). We denote by Tabu_Search_with Binary tree the procedure
incorporating the above binary tree into the Tabu Search algorithm. Logically, the use
of the binary tree does not affect the final result. However, important savings in
calculation time are expected.

4. Genetic Algorithm

According to Goldberg (1989) “Genetic Algorithms are search techniques based on
the mechanics of natural selection and genetics”. These techniques are probably the
best-known and widespread evolutionary algorithms. They were originally conceived
by John Holland and described in the classic monograph “Adaptation in Natural and
Artificial Systems” (Holland, 1975). This text has had a great influence on the later
development of these techniques since the mechanisms described in it have long since
been adopted as dogma.

They are based on a close analogy with the natural processes of the evolution of
species. The base is an ensemble (population) of solutions on which are performed
operations such as Selection, Crossover, Reproduction, Renovation or Mutation. An
outline of how a Genetic algorithm operates is described by Algorithm 6:

Algorithm 6. Genetic Algorithm
Generate an initial population of solutions;
Repeat

(a) Randomly select a subset of elements (even) of the population with a probability
proportional to its goodness;

(b) Cross reproduction: pair or cross these solutions (Parents) to give rise to new solutions
(Children). From each pair of parents a new pair of ‘child’ solutions has to be generated;

6

(c) Mutation: the solutions of the population can change some of its elements (genes) with a
small probability;

(d) Substitute the worst solutions of the population with the new child solutions;
until reaching some stop criterion

The solutions are represented by a set of m seed points S = {s1, s2, ..., sm} ⊂ Rq. The
corresponding partition P = (C1, C2, ..., Cm) is the one resulting from assigning each
point of X to its closest seed point.

The ‘non-goodness’ of each solution of the population will be given by the value of
the objective function f of the corresponding partition. The selection probability of a
given solution Si will be proportional to fmax – fi ; where fi is its non-goodness value
and fmax is the maximum value of fi of this population. Once selected, the parent
solution pairs are crossed as illustrated in the following example. Let m = 3 and let two
parent solutions be S1 = {A1, B1, C1} and S2 = {A2, B2, C2}, then the matrix of distances
between the seeds of S1 and S2 is calculated assuming the results shown in Table 1.

Table 1
Example of distances between seeds

S1↓ S2→ A2 B2 C2

A1 7 9 6
B1 3 5 4
C1 5 4 9

Then the seeds of S2 are rearranged according to their proximity to S1 as follows:
starting from A1 the closest seed of S2, C2, is chosen and positioned in the first place.
The column of C2 is eliminated for consecutive choices. Next, out of the remaining
seeds of S2 the one closest to B1 is selected, A2 in this case, and its column is eliminated.
Finally, the only remaining seed B2 is selected. In this way, the elements of S1 and S2 are
arranged as follows:

S1 → (A1, B1, C1) and S2 → (C2, A2, B2).

Subsequently, an integer value between 1 and m-1 is randomly selected as an
intersection point (cross_pt), (in the example cross_pt = 1), and two child solutions S3

and S4 are generated as shown in Tables 2 and 3.

Table 2
Parent Solutions

S1 → A1 B1 C1

S2 → C2 A2 B2

Table 3
Child Solutions

S3 → A1 A2 B2

S4 → C2 B1 C1

The aim of pairing the elements S1 and S2 according to their closeness is to prevent
entities or seeds that are close to each other from forming the same child solution.
Experience shows, in general, that if there are very close pairs of seeds-points of a
solution S, the corresponding partition is poor (Cano, 1999). A series of tests has been
performed to verify the efficiency of this arrangement process. First, N = 1000 is set and
random values of X between 0 and 100 are uniformly generated. The results clearly

7

show the positive effect of this arrangement process for every value of m considered, (m
= 10, 20, … 150).

Every seed of every generated child solution can change or mutate with a small
probability, mut_p. To decide whether a given seed changes, a random value in the
interval (0,1) is uniformly generated. If this value is less than mut_p the change takes
place: the seed is randomly placed in a point in the range of defined values for X
(Mutation). This mutation process supplies diversity to the process and prevents the
search from getting boxed into a zone around the local minimum.

Once an even number of child solutions is generated (equal to the number of selected
parents), the worst solutions of the population are deleted and replaced by the child
solutions such that the number of elements remains constant (Renovation).

Each iteration (Parent Selection → Crossover or Reproduction → Mutation →
Renovation) is also denoted as ‘generation’. The algorithm ends when a given number
of generations without improvement (max_iter) occurs, or when a certain preset time
elapses. Besides the parameters mentioned before, p_mut and max_iter, two other
parameters are used: n_pop, the number of solutions that constitute the population, and
n_sel, the number of solutions selected as parents.

5. Memetic and Hybrid Algorithms

Memetic Algorithms are also population-based methods and have been demonstrated
to be faster than Genetic Algorithms for certain classes of problems, (Moscato and
Laguna, 1996). In brief, they combine local search procedures with crossing or mutating
operators; due to their structure some researchers have called them Hybrid Genetic
Algorithms, Parallel Genetic Algorithms (PGAs) or Genetic Local Search methods. The
method is gaining wide acceptance particularly for the well-known problems of
combinatorial optimization. A recent tutorial can be found in Moscato, (2002).

In our case, the proposed Memetic Algorithm acts like the Genetic Algorithm
described in section 4, except Local Search procedures are added each time a new
solution is generated. The Local Search procedures can be any of those described above:
HK-Means, J-Means or J-Means+. When a new solution is generated, these processes
act on the corresponding partition leading to a new improved partition P. The set S of
seed points of this new partition P is defined as the set of centroids of the clusters in P.
It must be noted that, after running HK-Means or J-Means+, the new partition P will not
vary if we reassign the points of X to the closer seeds (centroids in this case), because P
is the local optimum with respect to H-Means. In other words, the partition
corresponding to S continues to be P.

In many cases the incorporation of Local Search methods improves the performance
of the original genetic algorithms, although sometimes this has the effect of accelerating
the process towards a local minimum. The use of higher values in the mutation
probability (p_mut) is recommended to ensure a certain degree of diversification to
avoid this problem.

The Tabu Search procedure with only a few iterations demonstrates its capacity to
improve solutions, even ‘good’ local optima (see section 6.2). Therefore, we propose
modifying the Memetic proposed algorithm by appending Tabu Search (with max_iter =
50 to avoid excessive computation time) to the local search procedure. The aim is to
obtain a Hybrid method that gives better results than the original Memetic one.

8

6. Computational Results

Next the results of a set of computational experiments using the proposed algorithms
are shown. For each case, the TSPLIB library file (Reinelt, 1991) with N = 1060 points
is used with different numbers of clusters, m = 10, 20, 30, ..., 150. These test data were
previously used in Hansen and Mladenovic (2001), where the best solution known for
every value of m (except m = 40) is reported. These were obtained on a SUN Ultra I
System workstation with 10 minutes computation time. All the tests in the current work
are performed on a personal computer with a Pentium III 600 MHz processor.

6.1. Empirical Analysis of using the Binary Tree in Tabu Search

We present the results of a series of tests carried out in order to verify the reduction
in computation time achieved by using the binary tree in Tabu Search. For each value of
m, both Tabu Search (TS) and Tabu Search with Binary Tree (TSB) are run. Each uses
the same initial solution and performs a fixed number (500) of iterations. The initial
solution (SA) is obtained as follows: m centroids (with uniform distribution in the X
value range) are randomly generated and each point is directly assigned to the closest
centroid. The obtained computation times (in seconds) are shown in figure 2. It is clear
that a reduction in computation time is achieved using the binary tree, especially as m
grows (except for m =10). Thus, from now on, the TSB variant will be used when Tabu
Search is employed.

Calculation Time Evolution

0
10
20
30
40
50

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

Values for m

TS
TSB

Fig. 2. Calculation Times of TS and TSB.

6.2. Tabu Search to improve Local Minima: Empirical Analysis

To demonstrate the efficiency of this Tabu Search method, a series of tests is
run. In these tests the two-part solutions obtained by the greedy-random method - as
proposed by Beltrán and Pacheco, (2001) - are improved by the J-Means+ algorithm.
The solutions obtained by this Local Search method are in turn improved by the Tabu
Search algorithm. In this case, Tabu Search uses the stop criterion max_iter = 50. The
process is repeated ten times for each number of clusters m. The corresponding average
percent deviation with respect to the best solution known is presented in figure 3.

9

0

5

10

15

20

25

10 30 60 80 10
0

12
0

14
0

Number of clusters (m)

D
ev

ia
tio

n
(%

) w
ith

 th
e

be
st

so

lu
tio

n
kn

ow
n

Greedy-Random
J-means+
Tabu Search

Fig. 3. Tabu Search Behavior

The following conclusions can be drawn from results of figure 3:

- As presented in Beltrán and Pacheco, (2001), the local optima obtained using
greedy-random initial solutions are better than the local optima obtained with
initial random centroids (SA).

- However, these local optima can still be slightly improved by exploring their
neighboring regions with a simple Tabu Search method as suggested in section 3.
This is interesting, since the local optima obtained by J-Means+ are local optima
with respect to J-Means, H-Means, and K-Means. Thus, apparently, it would be
very difficult to improve on them with solutions nearby. Moreover, the
computation time employed by Tabu Search using the binary tree is very short.
This allows their addition to other metaheuristics that use Local Search
procedures, such as GRASP, VNS, Memetics, Scatter Search, to improve on the
results and produce Hybrids of higher quality.

6.3. Genetics and Memetics: Empirical Analysis

To compare the efficiency of the proposed Genetic and Memetic algorithms, a series
of tests has been performed:

- the Genetic Algorithm proposed in section 4,
- Memetic-HK: the Memetic Algorithm proposed in section 5 with HK-Means as the

Local Search method,
- Memetic-J: the same Memetic Algorithm with J-Means as the Local Search method.

For each number of clusters m the algorithms are run once, all employing the same
population of initial solutions. To obtain the elements of these initial populations,
partitions are randomly generated with the SA algorithm previously described. The
centroids of the corresponding clusters are used as a set of seeds. A calculation time of
30 seconds is used for all algorithms as a stop criterion. The values of the parameters
are the following: n_pop = 10, n_sel = 6, and p_mut = 0.3. A graph with the minimal
percent deviations with respect to the best-known solution is shown in figure 4.

10

0
20
40
60
80

100
120
140
160

10 30 60 80 10
0

12
0

14
0

Number of Clusters (m)

D
ev

ia
tio

n
(%

) w
ith

 th
e

be
st

so

lu
tio

n
kn

ow
n

Genetic
Memetic-HK
Memetic-J

Fig. 4. Evolution of the minimal deviations

In the light of these results the following conclusions can be drawn:

- Among the evolutionary algorithms analyzed, the Memetic methods clearly
perform better than the genetic ones, at least with this computational time. To
obtain quality results, it is necessary to incorporate a local search procedure.
Within the memetic methods, it is clear that HK-Means gives better results than J-
Means. This is due to the poor functioning of the J-Means method using a start
from partitions obtained by random seed points (generated by SA) as shown by
Beltrán and Pacheco (2001). Therefore, in the following sections the Memetic-HK
variant is used.

6.4. The proposed algorithms versus other recent strategies

To compare the efficiencies of the algorithms proposed in the previous sections and
those of other recent strategies, a series of tests is performed. The following algorithms
are tested:

Memetic-HK: proposed in section 5
HybMem: Memetic Algorithm to which Tabu Search is incorporated
GRASP-HK: the GRASP Algorithm described in Beltrán and Pacheco (2000),

with HK-Means as the Local Search method
GRASP-J: the GRASP Algorithm with J-Means as the Local Search method
VNS-HK: the VNS Algorithm, proposed in Hansen and Mladenovic (2001),

with HK-Means as the Local Search method
VNS-J: the VNS Algorithm, with J-Means as the Local Search method.

The GRASP strategy (Greedy Randomize Adaptive Search Procedures), although
initially presented in the work of Feo and Resende (1989), has undergone development
more recently than other metaheuristics. A thorough description can be found in a paper
published in 1995 by the same authors, (Feo and Resende, 1995). Variable
Neighborhood Search (VNS) is a recent metaheuristic method for solving combinatorial
problems and is described in the works of Mladenovic (1995), Mladenovic and Hansen

11

(1997), and Hansen and Mladenovic, (1998). Both these recent strategies use Local
Search procedures repeatedly.

Memetic-HK and HybMem use the same parameters as in section 5. For each value
of m, the algorithms are run ten times. The Memetic-HK and HybMem algorithms use
an initial population whose elements are generated as follows: partitions are generated
in two phases with a greedy-random method described in Beltrán and Pacheco (2001).
The centroids of the corresponding clusters are taken as sets of seeds. The VNS-HK and
VNS-J algorithms use the best of these partitions as the initial solution. The two
GRASP variants generate their own initial solutions. The running time is limited to 300
seconds for all the algorithms. In table 4 a series of statistics is presented corresponding
to the solutions obtained for each algorithm. That is, the percent deviation with respect
to the best-known solution (minimum and average). Also, the minimal deviations are
presented in figure 5.

Table 4.
dmn: Minimal percent Deviation; dme: mean percent Deviation;

m Est. Memetic HybMem GRASP-HK GRASP-J VNS-HK VNS-J
10 dmn 0 0 0.026 0.082 0 0

dme 0 0 0.032 0.213 0.028 0.029
20 dmn 0 0 0.066 0.142 0 0.077

dme 0.026 0 1.412 1.645 1.301 1.393
30 dmn 0.0 0.048 1.512 0.270 0.56 0.582

dme 0.862 1.312 2.841 2.081 1.954 2.473
50 dmn 0.602 0.545 1.698 0.972 0.403 0.871

dme 1.321 1.014 2.444 1.976 1.358 1.619
60 dmn 1.236 0.984 2.158 2.120 0.971 1.777

dme 1.964 1.891 2.955 3.402 1.943 2.636
70 dmn 0.835 0.778 1.725 2.064 0.379 0.817

dme 1.985 1.304 2.988 2.458 1.231 1.976
80 dmn 1.715 1.541 2.386 2.185 0.345 1.617

dme 2.267 2.059 3.430 3.825 1.804 2.162
90 dmn 1.759 1.286 2.428 2.761 0.492 1.66

dme 2.642 2.453 3.712 4.159 1.623 3.128
100 dmn 2.005 1.491 3.805 3.021 0.523 1.563

dme 2.418 2.391 4.246 3.941 1.583 2.646
110 dmn 2.241 1.905 3.620 3.036 0.335 2.347

dme 3.406 2.931 4.614 4.276 2.229 3.645
120 dmn 1.891 1.724 3.823 4.281 1.798 2.146

dme 3.461 3.107 4.810 5.274 3.001 3.509
130 dmn 2.590 2.256 4.190 3.497 2.103 2.928

dme 4.336 4.431 6.012 4.918 3.691 4.615
140 dmn 2.699 2.801 4.061 4.051 1.423 3.011

dme 3.371 3.427 5.925 5.791 3.321 3.913
150 dmn 2.401 2.256 3.938 4.130 1.011 2.398

dme 3.321 3.198 4.830 5.203 2.989 3.345

12

0

1

2

3

4

5

10 30 60 80 10
0

12
0

14
0

Number of Clusters (m)

D
ev

ia
tio

n
(%

) w
ith

 th
e

be
st

so

lu
tio

n
kn

ow
n

Memetic-HK
HybMem
GRASP-HK
GRASP-J
VNS-HK
VNS-J

Fig. 5. Evolution of the minimal deviations (300’’ run)

The following conclusions can be drawn from the previous results:
– Among the techniques analyzed, the two GRASP variants yield slightly worse

results.
– Among the other four, Memetic-HK and HybMem obtain excellent results for a

low number of clusters (until m = 50).
– For 60 or 70 clusters VNS-HK obtains the best results, both for the least and

average values. Moreover, in almost all cases, Memetic-HK and HybMem yield
better results than VNS-J, (particularly regarding average results).

– Finally, HybMem tends to give better results than Memetic-HK as the number of
clusters increases.

7. Conclusions

Methods that give adequate solutions to the cluster design problem in short time have
been proposed. The methods proposed have obtained solutions equal to the best-known
solutions for small values of m, and only slightly worse for higher values of m.

In the former case, (m ≤ 50), the new methods proposed obtain the best overall
solutions from among those included in the comparison. In the latter case, they are only
surpassed by the VNS algorithm proposed by Hansen and Mladenovic (2001), with HK-
Means as the Local Search Procedure. However, the following is worth noting: in their
work, VNS is used with J-Means and J-Means+ as a local search procedure, whereas in
our work the use of J-Means in VNS leads to worse solutions than VNS with HK-
Means and also to worse solutions than the methods we propose.

In future work the behavior of these new proposed methods and/or variants using
long calculation times will be studied.

Acknowledgements

The authors are grateful to the Editor and two anonymous reviewers for helpful
comments.

13

References

Al-Sultan, K.H., 1995. A Tabu Search Approach to the Clustering Problem. Pattern Recognition 28,
1443-1451.

Babu, G.P. and Murty, M.N., 1993. A Near-Optimal Initial Seed Value Selection in K-means Algorithm
using Genetic Algorithms. Pattern Recognition Letters, 14, 763-769.

Beltrán, M. and Pacheco, J., 2001. Nuevos métodos para el diseño de cluster no jerárquicos. Una
aplicación a los municipios de Castilla y León. Estadística Española. Instituto Nacional de Estadística.
Vol. 43, nº 148, pp. 209-224.

Brucker, P., 1978. On the Complexity of Clustering Problems. Lecture Notes in Economics and
Mathematical Systems 157, 45-54.

Cano, F.J., 1999. Análisis de clusters o de conglomerados. I Jornadas de Matemáticas. Burgos, Octubre
1999.

Diehr, G., 1985. Evaluation of a Branch and Bound Algorithm for Clustering. SIAM
J.Sci.Statist.Comput., 6, 268-284.

du Merle, O., Hansen, P., Jaumard, B. and Mladenovic, N., 2000. An Interior Point Algorithm for
Minimum Sum of Squares Clustering. SIAM Journal on Scientific Computing, 21(4):1485-1505.

Feo, T.A. and Resende, M.G.C., 1989. A Probabilistic heuristic for a computationally difficult Set
Covering Problem. Operations Research Letters, 8, 67-71.

Feo, T.A. and Resende, M.G.C., 1995. Greedy Randomized Adaptive Search Procedures. Journal of
Global Optimization, vol. 2, pp 1-27.

Glover, F., 1989. Tabu Search: Part I. ORSA Journal on Computing. Vol. 1, pp. 190-206.
Glover, F., 1990. Tabu Search: Part II. ORSA Journal on Computing. Vol. 2, pp. 4-32.
Glover, F. and Laguna, M., 1997. Tabu Search. Kluwer Academic Publishers, Boston.
Glover, F. and Laguna, M., 2002. Tabu Search, in Handbook of Applied Optimization, P. M. Pardalos

and M. G. C. Resende (Eds.), Oxford University Press, pp. 194-208.
Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison

Wesley, Reading, Massachusetts.
Hansen, P. and Mladenovic, N., 1998. An Introduction to Variable Neighborhood Search. In S.Voss et al.

(eds.), Metaheuristics Advances and Trends in Local Search Paradigms for Optimization, pp. 433-458,
MIC-97, Kluwer, Dordrecht.

Hansen, P. and Mladenovic, N., 2001. J-Means: A new Local Search Heuristic for Minimum Sum-of-
Squares Clustering. Pattern Recognition, 34 (2): 405-413.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor.

Howard, R., 1966. Classifying a Population into Homogeneous Groups. In Lawrence, J.R. (eds.),
Operational Research in the Social Sciences. Tavistock Publ., London.

Jancey, R.C., 1966. Multidimensional Group Analysis. Australian J. Botany 14, 127-130.
Klein, R.W. and Dubes, R.C., 1989. Experiments in Projection and Clustering by Simulated Annealing.

Pattern Recognition, 22, 213-220.
Koontz, W.L.G., Narendra, P.M. and Fukunuga, K., 1975. A Branch and Bound Clustering Algorithm.

IEEE Transactions on Computers, C-24, 908-915
Mladenovic, N., 1995. A Variable Neighborhood Algorithm – A New Metaheuristic for Combinatorial

Optimization. Abstracts of papers presented at Optimization Days, Montreal, p.112.
Mladenovic, N. and Hansen, P., 1997. Variable Neighborhood Search. Computers and Operations

Research, 24, 1097-1100.
Moscato, P., 2002. Memetic Algorithms, in Handbook of Applied Optimization, P. M. Pardalos and M.

G. C. Resende (Eds.), Oxford University Press, pp. 157-167.
Moscato, P. and Laguna, L., 1996. Algoritmos Genéticos, in Optimización Heurística y Redes

Neuronales, DIAZ,A (coord). Paraninfo, Madrid.
Reinelt, G., 1991. TSPLIB: A Travelling Salesman Problem Library. ORSA Journal on Computing, 3,

376-384.
Späth, H., 1980. Cluster Analysis Algorithms for Data Reduction and Classification of Objects. Ellis

Horwood, Chichester.
Williams, J.W.J., 1964. Algorithm 232: HeapSort. Commun. A.C.M. 7, 347.

14

