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Abstract—This paper focus on noncooperative iris recognition, i.e., the capture of

iris images at large distances, under less controlled lighting conditions, and without

active participation of the subjects. This increases the probability of capturing very

heterogeneous images (regarding focus, contrast, or brightness) and with several

noise factors (iris obstructions and reflections). Current iris recognition systems

are unable to deal with noisy data and substantially increase their error rates,

especially the false rejections, in these conditions. We propose an iris

classification method that divides the segmented and normalized iris image into six

regions, makes an independent feature extraction and comparison for each region,

and combines each of the dissimilarity values through a classification rule.

Experiments show a substantial decrease, higher than 40 percent, of the false

rejection rates in the recognition of noisy iris images.

Index Terms—Iris classification, noncooperative iris recognition, biometrics.
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1 INTRODUCTION

SINCE 1987, when Flom and Safir [1] observed the stability of iris

morphology over human lifetime and estimated the probability for

the existence of two similar irises at 1 in 1072, the use of iris

biometrics has been increasingly encouraged by both government

and private entities. The iris is commonly recognized as one of the

most reliable biometric traits: It has a random morphogenesis and,

apparently, no genetic penetrance.
Under rigid image capturing constraints, it is possible to obtain

good quality images and achieve impressive accuracy with very
low error rates. However, these error rates substantially increase,
especially the false rejections, when the images do not have enough
quality, either due to focus, contrast, or brightness problems and
iris obstructions or reflections. This is a problem commonly
identified by several authors (e.g., [2], [3], [4]).

For the sake of accuracy, present iris recognition systems require
that the subjects stand close (less than 2 meters) to the imaging
camera and look for at least 3 seconds, until the required data is
captured [5]. This cooperative behavior is regarded as a weak point
since it restricts the range of domains where iris recognition can be
applied, especially those where the subjects’ cooperation is not
expectable (e.g., criminal/terrorist seek and missing children).

Assuming that, in spite of noise, the iris was accurately
segmented, we propose a classification strategy more robust to
noise factors. We observed that, in most cases, the noisy data is
localized in some of the iris subparts. Our method is based on the
division of the segmented iris into six regions, followed by the
independent feature extraction in each one. Further, through the
comparison between signatures extracted from correspondent iris
regions, we obtain six dissimilarity values that are fused through a
classification rule. The hope is that most of the iris regions are
noise-free and that accurate recognition can be achieved, even in

highly noisy images. As our experiments confirm, this method
decreases—more than 40 percent—the false rejection rates in the
recognition of noisy iris images, which can be considered an
achievement toward noncooperative iris recognition.

The remainder of this paper is organized as follows: Section 2

briefly summarizes the most cited iris recognition methods and

overviews noncooperative iris recognition. A detailed description

of the proposed recognition methodology is given in Section 3.

Section 4 reports the experiments and discusses the results and,

finally, Section 5 presents the conclusions.

2 IRIS RECOGNITION

In spite of the specificities of the different proposals, typical iris
recognition systems share the structure given in Fig. 1.

The initial stage deals with iris segmentation. This consists of

localizing the iris inner (pupillary) and outer (scleric) borders. In

1993, Daugman [6] proposed an integro-differential operator to

find both the iris inner and outer borders. Similarly, [7] proposed

integro-differential operators that search over the IN3 space, with

the goal of maximizing the equations that identify the iris borders.

Wildes [2] achieved iris segmentation through a gradient-based

binary edge map construction followed by circular Hough trans-

form. In [8], the authors proposed a method based on Wildes’

method, that, together with a clustering process, achieved

robustness for noncooperative environments.

In order to compensate for the variations in the pupil’s size and

in the imaging distances, it is usual to translate the segmented iris

region into a fixed length and dimensionless polar coordinate

system. This stage is usually accomplished through the method

proposed by Daugman [6].

Regarding feature extraction, iris recognition approaches can be

divided into three major categories: phase-based methods (e.g., [6]),

zero crossing methods (e.g., [9]), and texture analysis-based

methods (e.g., [2]). Daugman [6] uses multiscale quadrature

wavelets to extract texture phase information and obtain an iris

signature with 2048 binary components. Boles and Boashash [9]

computed the zero-crossing representation of a 1D wavelet at

different resolutions of concentric circles. Wildes [2] proposes the

characterization of the iris texture through a Laplacian pyramid

with four different levels (scales).

Last, the comparison between iris signatures is performed,

producing a numeric dissimilarity value. If this value is higher

than a threshold, the system outputs a nonmatch, meaning that each

signature belongs to different irises. Otherwise, the system outputs

a match, meaning that both signatures were extracted from the

same iris. In this stage, it is common to apply different distance

metrics (Hamming [6], Euclidean [10], Weighted Euclidean [11]),

or methods based on signal correlation [2].

2.1 Noncooperative Iris Recognition

In this paper, we refer to noncooperative iris recognition term as the

process of automatically recognizing individuals, using images of

their iris captured at-a-distance and without requiring them any

active participation. This broadens the iris recognition’s applic-

ability to domains where the subjects’ cooperation is not expectable

(e.g., criminals/terrorists and missing children). However, it is

expected that the captured images contain off-angle and partial

irises and are blurred (due to bad focus or motion). Some of these

noise factors were recently addressed by several authors (e.g., [12]

and [13]).

Examples of these and other types of noise are given in Fig. 2.

We considered all the types of information other than the iris in the

segmented iris ring as noise. According to this definition, there is a
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high probability of capturing images with several noise factors:

eyelids (Figs. 2c and 2d), eyelashes (Fig. 2c), glasses, pupil (due to

less accurate iris segmentation), motion blur (Fig. 2h), and lighting

and specular reflections (Figs. 2e, 2f, and 2g).

3 PROPOSED IRIS CLASSIFICATION METHODOLOGY

We observed that, in the most cases, the iris images captured in

less constrained imaging conditions contain noise that is localized

in some of the iris subparts. Moreover, reflections are predominant

in the left/right iris extremes and obstructions are usual in the

upper and lower parts. Common feature extraction methods focus

in the lower and middle-low frequencies of the signal, which, in

turn, makes it more probable that noisy data is considered in the

creation of the biometric signature.
Previous proposals performed recognition based on small

portions of the iris (e.g., [6]), those where noise is less probable.

However, they are static and do not take into account the dynamics

of the noncooperative imaging environments, which determine the

iris regions corrupted by noise.
By dividing the iris into separate regions, our hope is that some

of these are noise-free and that the comparison with the respective

enrolled region enables accurate recognition. Based on this, in the

following sections we describe the proposed iris partition, feature

extraction, and classification strategies. As reported in Section 4,

this method contributes for a substantial decrease of the error rates

in the recognition of noisy iris images.

3.1 Iris Partition and Feature Extraction

Through the analysis of the available iris image databases and of

our iris imaging experiments, we observed that the most common

types of noise (iris obstructions and reflections) are predominantly

localized, respectively, in the vertical and horizontal iris extremes.

Also, under natural and artificial lighting conditions, reflections

are predominant, respectively, in the outer and inner iris regions.
Based on these observations, the proposed iris division schema

minimizes the number of regions simultaneously affected by each

type of noise, as illustrated in Fig. 3. The independent feature
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Fig. 1. Typical stages of iris recognition. The process begins with the segmentation
of the region correspondent to the iris. To compensate for variations in the pupil’s
size and in the capturing distance, the image is transformed (normalized) into a
dimensionless polar coordinate system. The feature extraction process produces
a set of numeric values known as the biometric signature. The comparison
between the acquired and the enrolled signatures produces a dissimilarity value
used to conclude the identity of the subject.

Fig. 2. Iris images captured under simulated noncooperative conditions. These capture conditions produced images with very heterogeneous characteristics regarding (b)
focus, (h) motion blur, contrast, and brightness, as well as (c) and (d) iris occlusions by eyelids or eyelashes. Under natural light environments, captured images will have (e)
and (g) specular and (f) and (g) lighting reflections. (a) Good quality iris image. (b) Poorly focused iris image. (c) Iris with eyelids and eyelashes obstruction. (d) Iris with
extreme eyelids obstruction. (e) Iris with lighting areas correspondent to reflections from light sources (natural light) next to the user. (f) Iris with specular reflections
correspondent to information from the environment that surrounds the user and iris obstruction by the lower eyelid. (g) Iris with specular reflections (region with high intensity
in the iris upper left quadrant) and lighting reflections. (h) Motion blurred iris.

Fig. 3. Division of the iris into six regions. Making the normalization process as
described in [6] and starting from an angle of -45 degrees, regions 1 to 4
correspond to successive quadrants of the iris. Regions 5 and 6 correspond,
respectively, to the outer and inner parts of the iris. The main motivation for this
division was the observation that the most common types of noise (iris
obstructions and reflections) are usual, respectively, in the upper/lower and left/
right portions of the iris. Also, reflections resultant from natural and artificial lighting
environments are predominantly localized, respectively, in the outer and inner iris
regions. The proposed division strategy minimizes the number of regions
simultaneously affected by each type of noise. (a) Division of the iris in four
different parts. (b) Division of the iris in “outer” and “inner” parts. (c) Correspondent
regions of (a) in the normalized iris image. (d) Correspondent regions of (b) in the
normalized iris image.



extraction and comparison for each of these regions avoids that the
eventual noise, localized in some of the iris subparts, corrupts the
whole biometric signature.

According to the chosen feature extraction method, the process

consists of the creation of six independent biometric signatures,

each one correspondent to a specific iris region. The details of the

tested feature extraction method are given in Section 4. However,

we stress that this process is independent of the feature extraction

strategy. Oppositely, as starts from the normalized iris image, it is

dependent of the previous accurate iris segmentation, which is

obviously a challenge, given the dynamics of the noncooperative

image capturing environments.

3.2 Feature Comparison and Classification

In the following discussion, we will use a superscript to

distinguish between two different iris images, such as I1 and I2,

and a subscript to distinguish between different regions of an iris

image, such as I1
1 and I1

2 .

Let Ij be a region of an iris image, such as the ones identified in

Fig. 3. We define the result of the function sðIjÞ : Ij ! IRk as the

biometric signature of Ij. Next, we define the dissimilarity between

two signatures as dðsðI1
j Þ; sðI2

j ÞÞ : IRk � IRk ! IR, noting that these

values are found for two signatures extracted from correspondent

iris regions.
If we choose to define N regions in an iris image Ii; i ¼ 1; . . . ; N ,

we obtainN signatures sðIiÞ, one for each region. Consider I1 and I2,
respectively, as the template and sample images. For I1, we have the
N signatures fsðI1

1 Þ; . . . ; sðI1
N Þg and, for I2, the correspondent

fsðI2
1 Þ; . . . ; sðI2

NÞg.
Let D be the set that contains the dissimilarities between the

correspondent regions of I1 and I2: D ¼ fD1; . . . ; DNg, where
Di ¼ dðsðI1

i Þ; sðI2
i ÞÞ, i ¼ 1; . . . ; N .

Let T ¼ fT1; . . . ; TNg; Ti 2 IRþ, be a set of N threshold values,
such that Ti � Tj;8i < j.

We define the function CðD;TiÞ : IRN � IRþ ! IN, that counts
the number of Dj 2 D that are smaller or equal to Ti, as:

CðD;TiÞ ¼
XN
j¼1

IIfDj�Tig; ð1Þ

where IIf:g is the indicator function.
Images I1 and I2 are classified as corresponding to the same

iris if:

9i : CðD; TiÞ � i; i ¼ 1; . . . ; N: ð2Þ

The rationale behind this classification strategy is the inverse
correspondence between the number of comparisons that must be
smaller or equal to Ti and the constraining degree of Ti. Fig. 4
illustrates three examples of the application of the proposed
classification strategy. It contains the dissimilarities between the
template and the sample biometric signatures of three subjects,
represented in the horizontal axis (1, 2, and 3). The similarity
threshold set (T ) is represented by the horizontal dashed lines. The
application of (2) confirms the identity of subjects 1 and 2 and
denies the identity of subject 3. Subject 1 has one dissimilarity
value below the lower threshold (T1) and subject 2 has two
dissimilarities below the second lower threshold (T2).

As detailed in Section 4.3, an exhaustive search is used to select
an optimal set of thresholds (T ). As our experiments report, this
method significantly decreases the false-rejection rates in the
recognition of noisy iris images since it isolates the noisy data in
the correspondent signature, extracted from the iris region that
contains it. This decreases the probability that noisy iris regions
corrupt the whole biometric signature when extracting the lower
frequency components of the signal.

However, if the iris is divided as described above, it is not possible
to achieve invariance to iris rotation through signature shifting, and
this is a very common technique used in feature comparison. We
compensate for this by making the normalization process into the
dimensionless polar coordinate system starting from five different
deviation angles of the segmented iris image (-10, -5, 0, +5, and
+10 degrees) and obtaining five normalized iris images. The
subsequent processing is further made separately for each of the
images, and the final similarity is given by the highest similarity
between the enrolled signatures and those extracted from each
image.

4 EXPERIMENTS AND RESULTS

To enable the effective test of the proposed classification strategy,
we analyzed the available iris databases and selected the most
appropriate for our purposes. In the following section, we briefly
describe the available public iris image databases and the data sets
used in our experiments.

4.1 Iris Databases

There are presently seven public and freely available iris image

databases for biometric purposes: CASIA [14], MMU [15], BATH

[16], UPOL [17], ICE [18], WVU [19], and UBIRIS [20].

The CASIA database is by far the most widely used for iris

biometric purposes. However, its images incorporate few types of

noise, almost exclusively related with eyelid and eyelash obstruc-

tion, similarly to the images from MMU and BATH databases.

UPOL images were captured with an optometric framework,

obtaining optimal images with extremely similar characteristics.

Although ICE and WVU databases contain images with more noise

factors, their lack of images with significant reflections within the

iris rings constitutes a weak point regarding the simulation of

noncooperative imaging conditions. Oppositely, images of the

UBIRIS database were captured under natural lighting and

heterogenous imaging conditions, which explains their higher

heterogeneity.

Based on the manual verification of the iris segmentation

accuracy in each of the images, we selected 800 images from

80 subjects of the UBIRIS database. In order to evaluate the

recognition accuracy both in highly and less noisy environments,

an equal number of images from the CASIA and ICE databases were
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Fig. 4. Examples of the classification process. The horizontal axis represents the
subjects (1, 2, and 3) and the vertical axis the dissimilarity values between the
correspondent template and the sample signatures. The threshold set (T ) is
represented by the horizontal dashed lines. The application of (2) confirms the
identity of subjects 1 and 2 since subject 1 has one dissimilarity below the lower
threshold and subject 2 has two dissimilarities below the second lower threshold,
whereas denies the identity of subject 3 since it just has two dissimilarities below
the upper threshold. The dissimilarities that determined the identity acceptance
are represented by filled circles, oppositely to the remaining ones.



selected, having, once again, manually verified the accuracy of the

iris segmentation. Further, we divided each data set into two

halves. The first data sets—UBIRIStr, CASIAtr, and ICEtr—were

used as training sets, to obtain the threshold sets (T ), and the

later—UBIRIStt, CASIAtt, and ICEtt—to evaluate the recognition

accuracy.
Each data set enables, respectively, 1,800 and 78,000 intra and

interclass comparisons. Images of the UBIRIS data sets contain iris

obstructions by eyelids and eyelashes, poor focused and motion

blurred irises, and irises with specular and lighting reflections,

while those of the CASIA and ICE data sets contain, almost

exclusively, iris obstructions by eyelids and eyelashes and a small

number of poorly focused images.

4.2 Description of Experiments

We implemented the recognition method described by Daugman [6]

and compared the obtained results when following the method as

described by the author and using the proposed iris division and

classification strategies. Initially, we made the feature extraction and

comparison using the whole segmented iris, extracting a total of

2,048 bits. Further, according to Fig. 3, we divided the iris into six

regions and, through feature extraction, obtained 512 and 1,024 bits,

respectively, for the signatures extracted from the iris regions 1 to 4

and 5 to 6. The iris classification was made through the fusion rule

given by (2). We stress that we did not implement any noise

detection technique, which increased the error rates but enabled

clear conclusions about the robustness to noise of each classification

method.
As described in [6], the Daugman’s recognition method is

divided into the following stages:

. Iris segmentation. We implemented the integrodifferential
operator proposed by the author to find both the inner and
outer iris borders, given by

maxr;x0 ;y0

���G�ðrÞ �
�

�r

I
r;x0 ;y0

Iðx; yÞ
2�r

ds
���:

This operator searches over the image domain ðx; yÞ for the

maximum in the blurred partial derivative with respect to

increasing radius r of the normalized contour integral of

Iðx; yÞ along a circular arc ds of radius r and center

coordinates ðx0; y0Þ.

. Normalization. After the segmentation of both iris borders,

to compensate for the varying size of th pupil and

capturing distance, we translated the images into a

dimensionless polar coordinate system, according to the

process known as the Daugman Rubber Sheet [6].
. Feature Extraction. The iris data encoding was accomplished

through the use of two-dimensional Gabor filters. These

spatial filters have the form Gðx; yÞ ¼ e���:e�2�i�, with

� ¼ ðx� x0Þ2=�2 þ ðy� y0Þ2=�2
h i

and

� ¼ u0ðx� x0Þ þ v0ðy� y0Þ½ �:

ðx0; y0Þ defines the position in the image, ð�; �Þ is the filter

width and length and ðu0; v0Þ specifies the modulation,

having spatial frequency w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

0 þ v2
0

p
and direction

�0 ¼ arctanðv0=u0Þ. To achieve invariance to illumination,

the real parts of the 2D Gabor filters were truncated to be

zero volume and the sign of the real and imaginary parts

from quadrature image projections quantized into binary

values.
. Feature Comparison. The binary features allowed the use

of the Hamming distance as the similarity measure

between two iris signatures. Given two binary sets with

N bits: A ¼ fa1; . . . ; aNg and B ¼ fb1; . . . ; bNg, the Ham-

ming distance is given by HDðA;BÞ ¼ 1
N �
PN

i¼1 ai � bi,
where a� b is the logical XOR operation.

4.3 Thresholds and Performance

The proposed classification strategy requires the computation of

the optimal dissimilarity threshold set ðT Þ that minimizes the error

rates. In order to obtain it, we started by the feature extraction and

comparison using the whole iris and each of the proposed regions

(exclusively) in the training data sets.
Fig. 5 contains the histograms of the dissimilarities between the

signatures extracted from the UBIRIStr data set, using the whole

iris (Fig. 5a) and each of the regions individually (Figs. 5b, 5c, 5d, 5e,

5f, and 5g). The lines correspond to the approximated normal

distributions obtained through curve fitting, with a 95 percent

confidence interval. �i contains the value for a t-test given by:
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Fig. 5. Histograms of the dissimilarities between the signatures extracted from the (a) whole iris and each of the regions identified in Fig. 3. These values correspond to

the UBIRIStr data set and the line plots approximate normal distributions obtained through curve fitting. We concluded that each of the isolated regions can distinguish

between individuals since a clear separability between the intra and interclass comparisons can be observed, when using each of the iris regions exclusively. (a) Whole

iris distribution. �W ¼ 78:3. (b) Region “1” distribution. �1 ¼ 76:0. (c) Region “2” distribution. �2 ¼ 74:7. (d) Region “3” distribution. �3 ¼ 66:1. (e) Region “4” distribution.

�4 ¼ 39; 2. (f) Region “5” distribution. �5 ¼ 56; 3. (g) Region “6” distribution. �6 ¼ 72; 5.



�i ¼
	E � 	Iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I

2

NI þ �E
2

NE

q ;

where 	I and 	E , respectively, indicate the mean of the intra and

interclass dissimilarities. �I and �E indicate the respective

standard deviations and NI and NE are, respectively, the number

of intra and interclass comparisons.

Through this process, we obtained the parameters of the

normal distributions for each of the iris regions and type of

comparisons (intra and interclass). Let the subscript denote the

image regions identified in Fig. 3 (1; . . . ; 6) and the superscript

denote, respectively, the intra (I) and interclass (E) comparisons,

such as NI
1 (the normal distribution of the intraclass comparisons

between the irises region 1).
The goal is to find the values for the ordered threshold set T ¼

fT1; . . . ; T6g that minimize the error rates. LetDE ¼ fD1; . . . ; D6g be

the set of random variables following, respectively, the NE
i , i ¼

1; . . . ; 6 distributions. According to (1),CðDE; TkÞ is the function that

counts the number of Dj 2 DE that are smaller or equal to Tk. The

FAR is given by:

FAR ¼
X6

i¼1

P
�
CðDE; TiÞ � ij

\i�1

j¼1

CðDE; TjÞ < j
�
; ð3Þ

where P ðAjBÞ denotes the probability of A conditioned by the

occurrence of B. Using the same notation, let DI ¼ fD1; . . . ; D6g be

the set of random variables following, respectively, the NI
i , i ¼

1; . . . ; 6 distributions. The FRR is given by:

FRR ¼
Y6

i¼1

P
�
CðDI; TiÞ < i

�
: ð4Þ

Using (3) and (4), we made an exhaustive search in the ½0; 1�
interval, having tested all the possible combinations for the six

thresholds values with 10�3 precision.

Fig. 6 contains the obtained receiver operating curves (ROCs)

when following the classical Daugman recognition method (dashed

lines) and our proposal (continuous lines) in the UBIRIStt,

CASIAtt, and ICEtt data sets. These results show that our proposal

consistently decreased the error rates, either in the highly noisy

(UBIRIStt) or less noisy images (CASIAtt and ICEtt).

4.4 Discussion

Table 1 contains a comparison of the obtained results by the

original classification method, as described by Daugman, our iris

division and classification proposal, and three common classifica-

tion fusion strategies (mean, minimum, and product). The first

column identifies the classification method, and the second

contains the false rejection rates when preventing the false accept

errors. EER corresponds to the equal error rate and, finally, the

last column contains the approximate percent value of the area

under the ROC, which corresponds to the error area. All the error

rates are expressed for a confidence interval of 95 percent.

We observed that our method consistently achieved better

performance when compared to the original proposal. These can

be observed either in the highly noisy images from the UBIRIS

database or in the less noisy images from the CASIA and ICE

databases.

This higher accuracy in the recognition of noisy images can be

explained by its ability to perform recognition using small portions

of the iris, avoiding the corruption of the whole signature by

localized noisy regions. These results led us to conclude that the

proposed iris division and classification strategy is more tolerant to

noise factors and, for this reason, is more adequate for the

application is less constrained imaging environments.

5 CONCLUSIONS

In this paper, we addressed the problems motivated by the

existence of noise in the captured iris images and the correspon-

dent increase of the error rates, with particular relevance to the

false rejections, in the context of noncooperative iris recognition.

Common feature extraction proposals usually focus on the

lower and middle-low frequency components of the signal. This

implies that small portions of nondetected noise can corrupt the

whole biometric signature and decrease the recognition accuracy.
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Fig. 6. Comparison between the ROCs obtained by the classical Daugman recognition method (dashed lines) and our iris division and classification proposals

(continuous lines) in the (a) UBIRIStt, (b) CASIAtt, and (c) ICEtt data sets. Notice the different scales in the figures and the larger errors in the noisier UBIRIStt data

set. (a) ROCs obtained in the UBIRIStt data set. (b) ROCs obtained in the CASIAtt data set. (c) ROCs obtained in the ICEtt data set.

TABLE 1
Comparison between the Error Rates Obtained When Following the

Original Daugman’s Recognition Method, Our Classification Strategy,
and Three Common Classification Fusion Strategies



Based on this, we proposed a new iris classification strategy that

divides the segmented and normalized iris into six regions and

makes an independent feature extraction and comparison for each

of these regions. Iris classification is achieved through a fusion rule

that uses a threshold set to combine the dissimilarity values

resultant from the comparison between correspondent iris regions.

Experiments in the recognition of noisy images showed a

significant decrease in the error rates, about 30 percent in the false

rejections (FRR; FAR ¼ 0 from 22.95 to 16.49 percent, 3.41 to

2.39 percent, and 2.30 to 3.78 percent, respectively, in the UBIRIS,

CASIA, and ICE data sets) when compared to Daugman’s original

iris classification proposal. Moreover, as can be seen by the results

presented in Table 1, we compared the accuracy of our proposal

with three common classification fusion strategies—product, mean,

and minimum—and the proposed method consistently achieved

lower error rates. This indicates that the proposed method is

adequate for less constrained image capturing environments, such

as in a noncooperative setting, and broadens the range of domains

where iris recognition can be applied.

However, we stress that these results are dependent on the

previous accurate iris segmentation, which is highly challenging,

given the dynamics of noncooperative environments. The require-

ment of optical frameworks that are able to capture iris images

with enough quality and of real-time face and eye localization

methods is assumed too.
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