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Abstract

Many different automatic color correction approaches
have been proposed by different research communities in
the past decade. However, these approaches are seldom
compared, so their relative performance and applicability
are unclear. For multi-view image and video stitching ap-
plications, an ideal color correction approach should be ef-
fective at transferring the color palette of the source image
to the target image, and meanwhile be able to extend the
transferred color from the overlapped area to the full tar-
get image without creating visual artifacts. In this paper we
evaluate the performance of color correction approaches
for automatic multi-view image and video stitching. We con-
sider nine color correction algorithms from the literature
applied to 40 synthetic image pairs and 30 real mosaic im-
age pairs selected from different applications. Experimen-
tal results show that both parametric and non-parametric
approaches have members that are effective at transferring
colors, while parametric approaches are generally better
than non-parametric approaches in extendability.

1. Introduction and Motivation

Color correction or color balancing in automatic multi-
view image and video stitching is the process of correct-
ing the color differences between neighboring views which
arise due to different exposure levels and view angles. Com-
pared to the other major steps in image stitching of reg-
istration and blending, color correction has received less
attention and relatively simpler treatment. Image blend-
ing, which has a similar end effect to color correction, has
concealed the the role of the latter. Only recently, with
the growing demand and popularity of high definition im-
ages and video, have people begun to recognize that image
blending alone cannot remove all the color difference be-
tween different views under all situations (see Figure 1 for
an example).

In the computer vision and multi-view video process-

(a). (b).

(c).
Figure 1. An example mosaic image pair that have dramatic color
difference. (a) and (b) are the mosaic image pair, (c) is the stitching
result of Autostitch [4, 5] with the multi-band image blending [6]
functionality enabled. (Note that Autostitch projects the stitching
result into the cylindrical plane). Color incoherence is still obvious
in the scene even after multi-band image blending is performed.

ing communities, the initial efforts on solving the color
balancing problem for multi-view stitching used exposure
compensation (or gain compensation) [21, 4, 30]. This ap-
proach adjusts the intensity gain level of component images
to compensate for appearance differences caused by differ-
ent exposure levels. Although this works for some cases,
it may fail to completely compensate for color difference
between different views when the lighting conditions vary
dramatically. Later work compensated for differences us-
ing all three color channels rather than via the single inten-
sity channel [29, 12, 15, 16, 36, 34]. At the same time
the image processing and computer graphics communities
were developing similar color manipulation methods they
called color transfer techniques (e.g., [25, 28, 33, 32, 24]).
Technically speaking, there is no difference between color
balancing and color transfer, exception the latter generally
does not have to be restricted to the overlapped area — if
we restrict color transfer techniques to operate using only
information from the overlapped area, then they can be eas-
ily used to solve the color balancing problem for multi-view
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image and video stitching. Actually, one of the current re-
search topics in color transfer is how to exploit local spa-
tial constraints/matches to guide the color transfer (e.g., the
local color transfer technique [28]). From this perspective
research on color balancing and color transfer exhibit sig-
nificant overlap.

In this paper, we perform a unified evaluation of color
balancing and color transfer techniques in the context of au-
tomatic multi-view image and video stitching. In this con-
text, we use the term “color correction approaches” to refer
to the union of applicable color balancing and color trans-
fer approaches. And we use the terms “color correction’,
“color alteration”, “color transfer”, “color mapping”, and
“color balancing” interchangeably in the following parts of
this paper.

There is a trade-off of effectiveness and extendability
for any color correction approach: effectiveness measures
how genuinely the color mapping function (which is usu-
ally estimated from the overlapped area) transfers the color
palette of the source image to the target image, and extend-
ability measures how well this mapping extends to the non-
overlapped areas of the target image without creating visual
artifacts. We want to determine through evaluation how dif-
ferent approaches behave with respect to effectiveness and
extendability given mosaic image pairs captured under dif-
ferent conditions. We focus on automatic approaches in our
evaluation and exclude those approaches that need human
invention or guidance (e.g. [22]) to complete the task. We
also focus on techniques operating in the image domain for
maximum generality, and thus those approaches that request
pre-calibration information to operate in the radiance or ir-
radiance domain (e.g. [8]) are not included. The inputs to
our evaluation system are images of different appearance
and unknown capture conditions, so those approaches for
calibration of multi-view camera systems (e.g. [13, 35]) are
also excluded. Our evaluation results should be of interest
not only to the computer vision community, but also to other
communities including computer graphics, image process-
ing, and multi-view video processing.

This paper is organized as follows. In Section 2 we
present a set of state of the art color correction techniques.
Section 3 gives the details of the evaluation experiment
setup including the selection of approaches for comparison,
test image datasets and parameter settings. In Section 4 we
present the experimental results. In the last section we sum-
marize our results and conclusions.

2. Color Correction Approaches
The essence of all color correction algorithms is transfer-

ring the color (or brightness) palette of a source image to a
target image. In the context of multi-view image and video
stitching, the source image corresponds to the view selected
as the reference by the user, and the target image corre-

sponds to the image whose color is to be corrected. Rather
than giving an historic review of color balancing and color
transfer respectively, here we will categorize the techniques
used according to their basic approaches. At the highest
level there are two classes of color correction approaches:
parametric and non-parametric.

2.1. Model-based parametric approaches

2.1.1 Global color transfer

Model-based color correction techniques are parametric,
and include global and local modeling approaches. Global
modeling approaches assume the relation between the color
of the target image and the source image can be described
by a transform: Is = M ∗ It, where M is a 3x3 matrix
representing the mapping of the three color channels. Here
M can be a diagonal matrix, an affine matrix or an arbitrary
3x3 matrix, corresponding to the diagonal model, the affine
model and the linear model respectively [29, 10]. Various
approaches can be used to estimate M , depending on appli-
cations and inputs.

Exposure compensation (or gain compensation) is the
technique initially employed to address the color balancing
problem in panorama stitching where the inputs are partially
overlapped images. Nanda and Cutler first incorporated
gain adjustment as part of the ”AutoBrightess” function of
their multi-head panoramic camera called RingCam [21].
Then, Brown and Lowe employed it in their well-known
automatic panorama stitching software “Autostitch” [4, 5],
and Uyttendaele et al. [30] applied it on a block-by-block
basis followed by spline interpolation of piece-wise gain
parameters. Since the gain compensation technique only
operates in the intensity channel but not in full color space,
it actually corresponds to a particular diagonal model where
the values in the main diagonal of M have to be same. This
particular diagonal model was also adopted in some later
work that combines exposure compensation and vignetting
correction [11, 19].

Other more general approaches in global modeling in-
clude Tian et al.’s work [29] using histogram mapping over
the overlap area to estimate the transform matrix M , and
Zhang et al.’s work [36] using the principal regions map-
ping to estimate M where the highest peaks in the hue his-
togram are designated as principal regions.

Given two general images where there is no overlap,
Reinhard et al. [25] proposed a linear transform based on
the simplest statistics of global color distributions of two
images: g(Ct) = µs + σs

σt
(Ct − µt), where (µs, σs)

and (µt, σt) are the mean and standard deviation of the
global color distributions of the source and target images
in the uncorrelated lαβ color space and Ct is the color
of a pixel in the target image. This work was widely
used as the baseline approach by other color correction ap-
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proaches [36, 33, 23, 28]. Xiao et al. [33] proposed an ellip-
soid mapping scheme which extends Reinhard et al.’s work
to correlated RGB color space. An et al. [3] discuss the
linear transformation in YUV space.

2.1.2 Local color transfer

Global modeling usually provides only a rough mapping be-
tween the color of two images. In practice, many applica-
tions require a more deliberate mapping, which suggests lo-
cal color transfer approaches. Tai et al. [28] proposed a
local color transfer scheme based on probabilistic image
segmentation and region mapping using Gaussian mixture
models (GMM) and the EM algorithm. Xiang et al. [32]
improved this work in the case that multiple source images
are available for selection. For both of these approaches, af-
ter the local regions of the two images are matched, within-
region color transfer is performed using a weighted version
of Reinhard’s method [25].

2.2. Modeless non-parametric approaches

Non-parametric methods assume no particular paramet-
ric format of the color mapping function and most of them
use a look-up table to directly record the mapping of the
full range of color/intensity levels. This look-up table is
usually computed from 2D joint histogram of image feature
correspondences or pixel pairs in the overlapped area of two
images. Two things need to be kept in mind when inferring
a mapping function from the histogram: First, robust meth-
ods are usually needed because the data are prone to outliers
and noise due to different lighting conditions, capturing an-
gles and reflection. Second, the the monotonicity property
of the color/intensity levels needs to be maintained in the in-
ferred mapping function. All of the existing non-parametric
mapping approaches can be distinguished from each other
in how they accomplish these two points.

Yamamoto et al. [34] proposed using the joint histogram
of SIFT feature matches between two neighboring views
in a multi-view camera network. An energy minimization
scheme over this histogram space was proposed to get a ro-
bust estimation of the color mapping function and mean-
while maintain its monotonicity.

Jia and Tang [15] proposed a two-stage approach to han-
dle robustness and monotonicity separately: in the first
stage 2D tensor voting was used to suppress the noise and
fill in the data gaps (i.e. where no correspondences are
available for some color levels). This gives an initial esti-
mate of the mapping function. In the second stage, a heuris-
tic local adjustment scheme was proposed to adjust the ini-
tial estimate and make the mapping monotonically increas-
ing. In other work by the same authors [14], a Bayesian
framework was used to recover the mapping function be-
tween a poorly exposed image and a blurred image.

Similar to Jia’s work, Kim and Pollefeys [17] proposed
a likelihood maximization scheme for robust estimation of
the Brightness Transfer Function (BTF) from the 2D joint
intensity histogram of two overlapped images. In practice
the method is applied to the three color channels and each
channel has an individual BTF. Dynamic programming was
used to find a robust estimate under the monotonicity con-
straint. The estimated BTF was further used to estimate and
remove the exposure difference and vignetting effect in the
images.

Fecker et al. [9] proposed the use of cumulative color
histogram mapping for color correction. They use a clos-
est neighbor mapping scheme to select the corresponding
color level of the source image to each level of the target.
Using cumulative histogram-based mapping automatically
satisfies the monotonicity constraint. The authors also sug-
gested some special adjustment to the mapping of the bor-
der bins (i.e. the first and last bin) to avoid possible visual
artifacts.

Pitié et al. [23, 24] proposed a totally different approach
for color correction, called iterative color distribution trans-
fer. This approach does not employ any explicit mapping
function of the global color distribution, but relies on ap-
plying a sequence of simple conversions with respect to ran-
domly projected marginal color distributions. Specifically,
it treats the colors of an image as a distribution in a high di-
mensional space (usually the three-dimensional space), and
repeatedly projects this high dimensional distribution into a
series of random 1D marginal distributions using the Radon
Transform. The color distribution of the target image is con-
verted to that of the source image by repeatedly mapping its
1D marginal distributions to those of the source image until
convergence. In [24], a post-processing technique for re-
ducing the grain artifacts over the converted image was also
proposed.

2.3. Previous evaluation work

Although various color correction techniques have been
proposed in the last decade, there does not exist an extensive
evaluation comparing the performance of these approaches.
Most authors either only demonstrated their systems on a
few self-selected example images or compared with very
simple baseline approaches.

3. Evaluation Setup
3.1. Selection of Approaches

Table 1 shows a list of nine algorithms selected for
performance evaluation and comparison. These selected
algorithms are either a widely used standard baseline in
color alteration (e.g., [25]), or represent the most recent
progress in color correction techniques. The selection in-
cludes both model-based parametric approaches and mod-
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(a) Real scene#6 (b) Real scene#13

(c) Synthetic scene#13 (d) Synthetic scene#38

Figure 2. Example test image pairs. (a)-(b) example real mosaic
image pairs, (c)-(d) example synthetic image pairs. For each pair,
left is source image and right is target image.

eless non-parametric approaches, both approaches using
global image statistics for estimating the color mapping
function and approaches using local matches in the over-
lapped area, as well as approaches operating in various
color spaces.

3.2. Test Image Sets

Both synthetic images and mosaic pairs selected from
real image and video stitching tasks are used in our evalua-
tion. The synthetic test image set includes 40 source/target
image pairs. Each image pair is created in three steps: First,
we selected images of poor exposure-levels from the Berke-
ley BSDS300 image segmentation dataset [20]. Then, for
each of these selected images/frames an image processing
tool [26] was used to auto adjust its color. This produces
a new image of the same scene but differing in color prop-
erties (see Fig. 2 (c)-(d)). Finally, we visually compared
the quality of the original image and the new image, and
extracted a clip from the image with better quality as the
source image and another clip from the other image as the
target image (If the two images are of similar quality then
the assignment is random). When a color correction algo-
rithm is executed with these synthetic image pairs, its abil-
ity to increase the quality of an image by altering its color
distribution is thus tested.

The real test image set includes 30 example mosaic im-
age pairs collected from various sources, including image
frames from multi-view video applications, scenic or object
photos taken with/without flash lighting or under different
capture modes, and aerial image clips of the same place but
at a different time (Fig. 2 (a)-(b)). For each of these real im-
age pairs, the image which looks more natural is designated
the source image and the other one the target image.

Each source/target image pair in the test image sets is
partially overlapped and Autostitch is used to find the geo-
metric registration between them before color correction is
performed. Figure 2 shows a few examples from the two
test image sets.

3.3. Evaluation Criteria

A recently proposed theory on image quality evaluation
is that from the perceptual point of view the goodness of
a color altered target image should show both color coher-
ence and structural coherence, since color correction may
not only change the color of the target image but also the
structure [31]. Based on this theory, we propose a criterion
to evaluate the quality of transferring the color of a source
image s to a target image t, which results in a converted
image r. The proposed evaluation criterion includes two
components: color similarity CS(r, s) between the source
image s and the transferred image r, and structure similar-
ity SS(r, t) between the target image t and the transferred
image r. The color similarity CS(r, s) is defined as:

CS(r, s) = PSNR(r̂, ŝ) (1)

where PSNR = 20∗ log10(L/RMS) is the peak signal-to
noise ratio [7]. L is the largest possible value in the dynamic
range of an image, and RMS is the root mean square differ-
ence between two images. r̂ and ŝ are the overlapped area
of r and s respectively. The higher the value of CS(r, s)
the closer the color between the two images r and s.

The structure similarity CS(r, t) is defined as:

SS(r, t) = SSIM(r, t) (2)

where SSIM(r, t) = 1
N

∑N
j=1 SSIM(aj , bj) is the Struc-

tural SIMilarity (SSIM) index [31]. N is the number of
local windows for an image, aj and bj are the image con-
tents at the jth local window of r and t respectively. SSIM
itself is defined as a combination of luminance, contrast and
structure components [31]:

SSIM(a, b) = [l(a, b)]α · [c(a, b)]β · [s(a, b)]γ (3)

where l(a, b) = 2µaµb+A1
µ2

a+µ2
b+A1

, c(a, b) = 2σaσb+A2
σ2

a+σ2
b+A2

, s(a, b) =
σab+A3

σaσb+A3
. µa and µb are the mean luminance values of win-

dows a and b respectively; σa and σb are the standard vari-
ance of the of windows a and b respectively; σab is the auto-
covariance between a and b. Here A1, A2 and A3 are small
constants to avoid divide-by-zero error, α, β and γ control
the weighting between the three components. In our imple-
mentation we use the default settings recommended by [31]:
A1 = (0.01∗L)2, A2 = (0.03∗L)2, A3 = A2/2, L = 255
for images of dynamic range [0, 255] and α = β = γ = 1.
The higher the value of SS(r, t) the less difference between
the structure of r and t, and SS(r, t) = 1 if there is no struc-
ture difference.

The color and structure similarities measure the effec-
tiveness and extendability of a color correction approach
respectively. To give the reader a perception of these mea-
sures, Figure 3 shows a real example.
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Index# Name of Approach Reference Parametric/Non-Parametric Local/Global color space
1 gain compensation Brown 2007 [5] parametric local intensity
2 principal regions mapping Zhang 2004 [36] parametric local CIECAM97
3 tensor voting in joint image space Jia 2005 [16] non-parametric local RGB
4 global color transfer Reinhard 2001 [25] parametric global lαβ
5 global color transfer in correlated color space Xiao 2006 [33] parametric global RGB
6 local color transfer Tai 2005 [28] parametric local lαβ
7 brightness transfer function Kim 2008 [17] non-parametric local RGB
8 iterative color distribution transfer Pitie 2005 [23] non-parametric global RGB
9 cumulative histogram mapping Fecker 2008 [9] non-parametric local YCbCr

Table 1. Color correction approaches selected for performance evaluation and comparison.

Figure 3. Color correction results on a real test image pair (real scene#16) and the corresponding CS and SS scores. The baseline approach
alg#10 shows the basic CS and SS score corresponding to directly stitching the source and target image together without taking any color
correction measures. In this example, alg#8 and alg#9 produce out-of-gamut errors in the overlapped area, so they obtain lower CS scores
than the baseline. alg#1 and alg#3 make the color in the overlapped area more balanced (seams become less obvious), so they obtain
higher CS scores than the baseline. However, comparing to alg#1, the structure of the transferred image of alg#3 (over the tree area above
the bike) is more distorted with respect to the original target image, so it gets a lower SS score than does alg#1. Note here and in our
evaluation no advanced image blending techniques but simple averaging is applied over the overlapped area in order for color correction
effect to be evaluated independently.

3.4. Pre-processing

One problem that must be considered in our evaluation is
that vignetting may exist in the test images. The traditional
approach is to model vignetting removal and color correc-
tion as a whole, but recent results allow the two effects to be
decoupled so vignetting can be removed separately [37, 38].
Since the focus of this study is color correction, we use
Zheng’s approach [38] to remove any vignetting effects that
might exist in the test images before using the images to test
the color correction approaches.

3.5. Implementation details and parameter settings

We downloaded the source code of the iterative color dis-
tribution transfer approach [23] and SSIM [31] from the
authors’ websites and used them directly in our evalua-
tion. We also implemented the other eight color correc-
tion approaches, and the proposed “color+structure” eval-
uation criterion using MATLAB 7.7.0 (R2008b). We used
the open source code OpenTVF [1] for the 2D tensor voting
technique in our implementation of the tensor voting-based
color correction approach [16].

In our implementation, most of the approaches and eval-

uation criteria use the same parameters as stated in the orig-
inal papers. The only exception is for the principal regions
mapping approach [36]: the original paper prefers to use
three principle regions to construct two-degree polynomial
mapping functions, while in our implementation we con-
servatively used only two principle regions which simpli-
fies the mapping functions to an affine model. This is be-
cause in practice we found higher degree mapping functions
are more prone to out-of-gamut errors (i.e. some trans-
ferred colors go out of the display range of the RGB color
model) [18].

4. Evaluation Results
4.1. Experimental data and analysis

We tested all nine selected approaches on both the syn-
thetic image set and the real image set computing both CS
and SS scores. Figure 4 and Table 2 show statistics of
the these scores over the 40 synthetic image pairs and 30
real image pairs respectively. Here ‘alg#10’ is an addi-
tional “virtual baseline approach” for purely comparison
purposes. It corresponds to “no correction performed”, that
is, computing the CS/SS scores between the source image

5
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(a) CS for synthetic image set (b) CS for real image set (c) SS for synthetic image set (d) SS for real image set

Figure 4. Errorbar statistics of CS and SS scores for all of the nine selected color correction algorithms. Red triangle: parametric approach;
Green Square: non-parametric approach; Blue Star: the baseline approach.

Alg#1 Alg#2 Alg#3 Alg#4 Alg#5 Alg#6 Alg#7 Alg#8 Alg#9 Alg#10
syn µCS 30.8825 38.0145 42.7686 25.9149 25.6988 34.3836 44.3281 26.5597 26.3066 20.5134

σCS 6.0941 5.5917 3.2322 4.4301 7.2960 5.7530 5.1852 4.7586 4.2376 5.2041
real µCS 24.9928 23.9749 26.6989 22.8586 22.2535 26.5897 26.7329 21.7544 21.6938 18.4429

σCS 6.5170 7.6458 6.9387 6.3581 6.5077 6.9391 7.1134 6.2852 5.9989 5.4203
syn µSS 0.9404 0.9115 0.9064 0.8609 0.8159 0.8866 0.9075 0.8320 0.8507 1.0000

σSS 0.0492 0.0523 0.0573 0.0847 0.1897 0.0808 0.0554 0.0818 0.0695 0
real µSS 0.9085 0.8205 0.8440 0.9127 0.8830 0.9064 0.8716 0.8478 0.8625 1.0000

σSS 0.0962 0.2561 0.1660 0.0771 0.1144 0.0947 0.1149 0.0893 0.0810 0
Table 2. Mean (µ) and standard deviation (σ) statistics of CS and SS scores for the nine selected color correction algorithms.

and the target image directly with no color adjustment.
First of all, the data tell us the synthetic image set and the

real image set are different. The CS score range of alg#10
(the baseline) is 20.5134± 5.2041 for the synthetic set, and
is 18.4429±5.4203 for the real image set. Since CS is built
upon PSNR which is built upon RMS erros, this means there
are more intra-pair and inter-pair differences in the real im-
age set, which makes it more challenging. Considering this
factor that our test sets are different and our goal is to serve
real applications, in the following we use the data from the
real image set as main reference.

As a very simple and widely used approach in image
and mosaic stitching, alg#1 (gain compensation) performs
pretty well: this is reflected as relatively high (rank 4) mean
SS scores with small variance, and good (rank 2) CS scores.

The biggest problem for alg#2 (principle regions map-
ping) is stability. It has pretty good performance on the syn-
thetic image set, but very poor performance on the structural
score on real image set. The possible explanation for this is
that it simply designates peaks in hue histograms as princi-
ple regions, which might be too simple to work well for real
scenes with complex contents.

Alg#5 (global color transfer in correlated color space)
and alg#6 (local color transfer) are both variants to alg#4
(global color transfer). Compared to alg#4 which operates
in uncorrelated lαβ color space, alg#5 operates in corre-
lated RGB color space, which leads to deteriorations in both
color correction effectiveness and extendability. Alg#6
makes use of local spatial information to guide color trans-
fer, which leads to a gain in color correction effectiveness
and similar extendability.

Alg#3 (tensor voting in joint image space) and alg#7
(brightness transfer function) are representatives of non-

parametric approaches that build the color transfer function
upon exact mapping of the full range of color/intensity lev-
els. Compared to alg#8 (iterative color distribution trans-
fer) and alg#9 (cumulative histogram mapping) that use
implicit or rough mapping, they show not only much better
color correction effectiveness, but also similar (or slightly
better) extendability.

From the perspective of the performance of different
types of approaches, non-parametric approaches have better
color transfer effectiveness but less extendability than para-
metric ones in general. But this is by no means absolute
for individuals: some parametric approaches that make use
of local information, such as alg#6 (local color transfer),
have quite close performance in color transfer effectiveness
as that of the most capable non-parametric approaches such
as alg#3 (tensor voting in joint image space) and alg#7
(brightness transfer function).

4.2. Analysis of the worst cases

There are two questions of interest to us: 1) is there a
common factor in practice that may affect the performance
of all the approaches, and 2) what is the most challenging
scene for all of the approaches. To answer these questions,
we have found the five real scenes (i.e. image pairs) on
which the nine selected approaches achieve the lowest av-
erage CS scores and SS scores (see Table 3).

Table 3 shows that scenes #6, #13 and #16 are in the
worst case lists for both CS and SS. Especially, on scene
#13 and #6 the nine selected approaches on average suf-
fer deterioration of both CS and SS scores. Figures 2(a),
2(b) and 3 show these three scenes. It is easy to discover
that all of them are affected by extreme lighting condi-
tions: The target image of scene #6 contains saturated
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CS SS
scene# 13 16 7 6 19 13 6 23 16 22

average score 13.0501 15.4465 15.9166 16.1193 17.5904 0.5909 0.6690 0.7155 0.7622 0.7627
baseline score 16.7105 11.9117 12.6996 16.6621 12.9240 1.0000 1.0000 1.0000 1.0000 1.0000

gain (percentage) -28.05% 22.88% 20.21% -3.37% 26.53% -40.91% -33.10% -28.45% -23.78% -23.73%
Table 3. The real test scenes on which the nine selected approaches achieves the lowest average CS and SS scores.

areas, which may cause problems in both calculating the
color mapping function and in extending this mapping to
the non-overlapped area. Scene #13 has saturated parts in
the non-overlapped region of the target image, which may
cause problems when extending the color mapping func-
tion to this area. The saturated area in scene#16 is in the
non-overlapped part of the source image, which might not
cause any problems in calculating and extending the color
mapping function, but at least partly shows that the lighting
conditions are very different between the source and target
images.

5. Conclusions and Discussion

To the best of our knowledge, our work is the first work
so far that performs an extensive, systematic and quantita-
tive evaluation of the performance of color correction ap-
proaches in the context of automatic multi-view image and
video stitching. Our evaluation and comparison of the ap-
proaches, has yielded a number of useful observations and
conclusions.

From the perspective of color transfer effectiveness, both
the non-parametric approaches of alg#3 (tensor voting in
joint image space) and alg#7 (brightness transfer function)
and the parametric approaches of alg#1 (gain compensa-
tion) and alg#6 (local color transfer) are superior according
to the experimental data. From the perspective of extend-
ability, parametric approaches (including alg#1 (gain com-
pensation), alg#4 (global color transfer) and alg#6 (local
color transfer)) are generally better and more stable than
non-parametric ones. It is also worth mentioning that non-
parametric approaches are much more complex than para-
metric ones. Alg#3 (tensor voting in joint image space) in
particular is much slower than the other eight, according to
our un-optimized implementation.

Considering all the above factors (effectiveness, extend-
ability, stability and speed), we think alg#1 (gain com-
pensation) and alg#6 (local color transfer) could be the
first options to try for a general image and video stitch-
ing application in practice. Both of these two approaches
are simple, fast, effective, and general. It is interesting to
notice that to our best knowledge alg#1 may be one of
the earliest color correction approaches developed for mo-
saic and panorama stitching [27], while the direct prede-
cessor of alg#6, alg#4 (global color transfer), is widely
used as the baseline approach in color transfer research. Af-
ter alg#1 and alg#6, alg#3 (tensor voting in joint image

space) and alg#7 (brightness transfer function) may also be
good choices.

Based on our experience on studying various color cor-
rection approaches and implementing and evaluating nine
of them, we think that future work on color correction ap-
proaches faces the following problems: 1) How to process
extreme inputs like over-saturated parts of the input images
that may affect the calculation of the color mapping func-
tion, 2) the handling of out-of-gamut errors, and 3) how to
intelligently extend the color mapping function calculated
from the overlapped area to non-overlapped regions. On the
last problem, making use of image segmentation results to
selectively extend the mapping might be a good exploration
direction.

For the convenience of the reader to reproduce the ex-
perimental results shown in this paper, we make our imple-
mentation of the selected nine color correction approaches
available for download on the project’s website: [2].

References
[1] Open tensor voting framework (OpenTVF).

http://sourceforge.net/projects/opentvf/. 5
[2] removed for blind review. 7
[3] K. An, J. Sun, and L. Zhou. A linear color correction method

for compressed images and videos. IEICE Transactions on
Information and Systems, (10):2686–2689, 2006. 3

[4] M. Brown and D. G. Lowe. Recognising panoramas. In Proc.
ICCV’03, volume 2, pages 1218–1225, 2003. 1, 2

[5] M. Brown and D. G. Lowe. Automatic panoramic image
stitching using invariant features. IJCV, 74(1):59–73, 2007.
1, 2, 5

[6] P. J. Burt and E. H. Adelson. A multiresolution spline with
application to image mosaics. ACM Transactions on Graph-
ics, 2:217–236, 1983. 1

[7] Y. F. (ed.). Fractal Image Compression: Theory and Appli-
cation. Springer Verlag, New York, 1995. 4

[8] A. Eden, M. Uyttendaele, and R. Szeliski. Seamless im-
age stitching of scenes with large motions and exposure dif-
ferences. In Proc. CVPR’06, volume 2, pages 2498–2505,
2006. 2

[9] U. Fecker, M. Barkowsky, and A. Kaup. Histogram-based
prefiltering for luminance and chrominance compensation of
multiview video. IEEE Transactions on Circuits and Systems
for Video Technology, 18(9):1258–1267, 2008. 3, 5

[10] B. V. Funt and B. C. Lewis. Diagonal versus affine transfor-
mations for color correction. Journal of the Optical Society
of America A, 17(11):2108–2112, 2000. 2

7



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVPR
#1450

CVPR
#1450

CVPR 2009 Submission #1450. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[11] D. Goldman and J. Chen. Vignette and exposure calibration
and compensation. In Proc. ICCV’05, pages 899–906, 2005.
2
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