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ABSTRACT. Bootstrap methods are widely used for distribution estimation, al-
though in some problems they are applicable only with difficulty. A case in point
is that of estimating the distributions of eigenvalue estimators, or of functions of
those estimators, when one or more of the true eigenvalues are tied. The m-out-
of-n bootstrap can be used to deal with problems of this general type, but it is
very sensitive to choice of m. In this paper we propose a new approach, where a
tie diagnostic is used to determine the locations of ties, and parameter estimates

are adjusted accordingly. Our tie diagnostic is governed by a probability level, β,
which in principle is an analogue of m in the m-out-of-n bootstrap. However, the tie
respecting bootstrap (TRB) is remarkably robust against choice of β. This makes
the TRB significantly more attractive than the m-out-of-n bootstrap, where the
value of m has substantial influence on the final result. The TRB can be used very
generally, for example to test hypotheses about, or construct confidence regions
for, the proportion of variability explained by a set of principal components. It is
suitable for both finite-dimensional data and functional data.
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1. INTRODUCTION

Bootstrap methods can be particularly effective in distribution estimation, but typi-

cally only in cases where the distribution being estimated is asymptotically normal.

Inconsistency occurs in many settings, ranging from inference about extremes to

problems involving goodness-of-fit testing.

Arguably the most commonly occurring difficulties of this type arise when

estimating potentially tied eigenvalues. In this paper we suggest an adaptive, two-

stage approach to tackling this problem, based on a new bootstrap algorithm. We

show that a good bound for the distances between eigenvalues and their estimators,

founded on an inequality borrowed from mathematical analysis, can be combined

with the conventional bootstrap to give an effective statistical diagnostic for iden-

tifying places where ties occur. Armed with this information, a new, tie-respecting

bootstrap algorithm can be employed to generate data that reflect the conclusion

of the first bootstrap step.

Numerical and theoretical properties of the resulting tie-respecting bootstrap

(TRB) are developed. Together they show that the method can be used reliably in

a wide range of settings. Our theoretical contributions include a new representation

for the limiting joint distribution of eigenvalue estimators, valid very generally —

for example in the functional data case, and in both tied and untied eigenvalue

settings.

A variety of diagnostics can be used in the first stage of the algorithm. The one

on which we focus is “tuned” using a probability level, β; the TRB is remarkably

robust against the choice of this quantity. This contrasts markedly with the m-out-

of-n bootstrap, which is particularly sensitive to the value of m. We demonstrate

this point in a simulation study and by proving theoretically that the second stage of

the TRB algorithm is largely unaffected by the nature of the diagnostic in the first

stage; see the first paragraph of section 4.2. We also show that a simple inequality

provides a conservative way of accommodating the value chosen for β; see the last

paragraph of section 4.3.

U. Park was supported by the Korea Science and Engineering Foundation(KOSEF) grant funded by the

Korea government(MOST) (No. R01-2007-000-10143-0).
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The TRB is valid in conventional, finite-dimensional settings, where eigenval-

ues are defined in terms of matrices, and also in less standard problems involv-

ing functional data analysis. Since a non-expert reader may be unable to develop

methodology in the functional-data case, we introduce our methodology there. Its

vector-case version is entirely analogous, and is treated briefly, but specifically, in

section 2.7. Particularly in the case of functional data, principal components anal-

ysis is a popular way of reducing dimension, and the sizes of eigenvalues convey

a great deal of information about the amount of variability that is captured by

relatively low-dimensional approximations.

The problem of bootstrap-based inference for eigenvalues has a history that is

not much younger than that of the bootstrap itself. As early as 1985, and in the

vector case, Beran and Srivastava discussed consistency of bootstrap methods for

confidence regions, noting that consistency fails in the event of eigenvalue ties. To

overcome this difficulty they suggested avoiding the problem of computing confi-

dence regions for individual eigenvalues, and constructing instead a simultaneous

region for all the eigenvalues.

Alemayehu (1988) discussed techniques for finding approximate simultaneous

confidence sets for functions of eigenvalues and eigenvectors. Beran (1988) devel-

oped a general bootstrap approach to constructing simultaneous confidence regions,

and illustrated its application using the example of simultaneous regions for eigen-

values. In a general but parametric setting, Beran (1997) suggested selecting and

adjusting parameter values of the distribution from which bootstrap data are drawn,

in order to achieve consistency. Andrews (2000) developed theory describing cir-

cumstances where bootstrap performance is compromised.

Other work on properties of resampling methods for inference about eigenvalues

and eigenvectors includes that of Nagao (1988), who obtained limiting distributions

of jackknife statistics associated with eigenvalue and eigenvector estimation; Eaton

and Tyler (1991), who introduced techniques for deriving the asymptotic distribu-

tions of eigenvalue estimators, and illustrated them in the context of the bootstrap;

Dümbgen (1993, 1995), who discussed bootstrap-based methods for confidence re-

gions and hypothesis tests related to eigenvalues and eigenvectors; Zhang and Boos
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(1993), who introduced bootstrap tests of hypotheses about multivariate covariance

structures; and Schott (2006) suggested a test for equality of the smallest eigenval-

ues of a covariance matrix.

Hall et al. (1993) described estimation of the largest eigenvalue, using the m-

out-of-n bootstrap in the case of ties. Bickel et al. (1997) and Bickel (2003) also

discussed the m-out-of-n bootstrap, and in particular addressed its performance

when used to estimate distributions that cannot be accessed using the standard

bootstrap. However, when used in tied-eigenvalue problems, this technique is un-

competitive, on two grounds, with the approach suggested here. First, it requires

empirical choice of m, for which a suitable algorithm does not seem to be available;

and secondly, it produces distribution estimators that converge relatively slowly.

There is a large literature too on principal component analysis for functional

data. In that setting, methodology goes back at least to work of Besse and Ramsay

(1986), Ramsay and Dalzell (1991) and Rice and Silverman (1991). The literature

is surveyed in greater detail by Ramsay and Silverman (2002, 2005). Relatively

theoretical contributions to the functional-data case includes those of Dauxois et

al. (1982), Bosq (1989, 2000) and Besse (1992).

2. METHODOLOGY

2.1. Background: conventional estimators of eigenvalues and eigenvectors. Given a

random sample X = {X1, . . . , Xn} from the distribution of a random function X,

let K̂(u, v) denote the conventional estimator of the covariance function, K(u, v) =

cov{X(u), X(v)}:

K̂(u, v) =
1

n

n∑

i=1

{Xi(u)− X̄(u)} {Xi(v)− X̄(v)} , (2.1)

where X̄ = n−1
∑

i Xi. It will be assumed that the argument of X is confined to

a compact interval I, say, and that u and v are also restricted to that region.

The eigenvalues θj and eigenvectors, or eigenfunctions, ψj , are arguably most

clearly expressed in terms of the spectral decomposition of the linear operator of
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which the kernel is K:

K(u, v) =
∞∑

j=1

θj ψj(u)ψj(v) . (2.2)

Specifically, denoting the operator too by K, the operator is defined by (Kψ)(u) =
∫
K(u, v)ψ(v) dv, and in these terms, Kψj = θj ψj . Here and below, unqualified

integrals are taken over the interval I.

The estimator K̂, at (2.1), admits an expansion analogous to that for K,

at (2.2):

K̂(u, v) =
∞∑

j=1

θ̂j ψ̂j(u) ψ̂j(v) . (2.3)

In both (2.2) and (2.3) the eigenvalues are assumed to be ordered as decreasing

sequences:

θ1 ≥ θ2 ≥ . . . ≥ 0 , θ̂1 ≥ θ̂2 ≥ . . . ≥ 0 . (2.4)

The inherent positive semi-definitness of a covariance function guarantees the non-

negativity claimed in (2.4). The fact that the sample X contains only n elements

ensures that θ̂j vanishes for j > n. This in turn implies that the functions ψ̂j in

(2.3) are not determined for j > n.

Under mild continuity assumptions on the distribution of the stochastic process

X, random fluctuations within the dataset X guarantee that, even if there are ties

among nonzero eigenvalues in the sequence θj , these are not reflected among the

empirical eigenvalues θ̂j , with the result that θ̂1 > . . . > θ̂n with probability 1.

2.2. Principal components. The principal components of X are the coefficients

ξj =
∫

(X − EX)ψj , and lead to the Karhunen-Loève expansion,

X − E(X) =
∞∑

j=1

ξj ψj . (2.5)

The definition of ξj implies that those quantities are uncorrelated.

Analogously, the empirical principal components are defined by ξ̂ij =
∫

(Xi −
X̄) ψ̂j , and lead to an empirical version of (2.5),

Xi − X̄ =
∞∑

j=1

ξ̂ij ψ̂j . (2.6)
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Reflecting the properties E(ξj) = 0 and var(ξj) = θj enjoyed by the true principal

components, we have for their empirical counterparts,

n∑

i=1

ξ̂ij = 0 ,
1

n

n∑

i=1

ξ̂2ij = θ̂j , (2.7)

for each j. Since only n data curves Xi are available, then ξ̂ij = 0 for j ≥ n+1 and

for each i.

2.3. A tie diagnostic. If there are ties among the θj ’s, then the corresponding

values of θ̂j are generally n−1/2 apart. Specifically, if θp+1 = . . . = θp+q then, under

regularity conditions, the differences n1/2 (θ̂p+j − θ̂p+k) have proper, nondegenerate

limiting distributions, for 1 ≤ j < k ≤ q.

Herein lies the difficulty that conventional bootstrap methods have reflecting

tied eigenvalues. In the standard bootstrap approximation to “reality,” the θ̂j ’s rep-

resent the respective “true” eigenvalues θj , and so the bootstrap incurs errors of size

n−1/2 when it is employed, explicitly or implicitly, to approximate the differences

between identical eigenvalues. That is, in places where the eigenvalue differences

should be zero, their values in the bootstrap world are of size n−1/2. This is the

same order as the difference between an eigenvalue estimator and the true eigen-

value; the extra term of size n−1/2, representing a quantity which should really be

zero, confounds the distribution-estimation problem. In consequence, the bootstrap

estimator of the distribution of a tied eigenvalue is not consistent.

We suggest overcoming this problem by, first, using the data to estimate where

the tied eigenvalues are, and subsequently replacing these empirically-determined

ties by tied eigenvalue estimators. In principle, estimating the locations of ties

requires us to have good estimators of the distributions of eigenvalue estimators,

and that in turn demands knowledge of the locations of ties. We may break this

circular argument by using a relatively robust method for constructing simultaneous

confidence bands, such as that given below. Depending on the number of ties, and

their locations in the eigenvalue sequence, our method can be improved by using

a more sophisticated approach to constructing simultaneous bounds. However, the

principle remains the same.
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It is known that, with probability 1,

sup
j≥1

|θ̂j − θj | ≤
∣∣∣∣∣∣K̂ −K

∣∣∣∣∣∣ , (2.8)

where, for any bivariate function L, |||L|||2 =
∫∫

L2. This property suggests that si-

multaneous confidence intervals for the θj ’s can be constructed by using a bootstrap

procedure for estimating the distribution of |||K̂ −K|||. To this end, let X†
1 , . . . , X

†
n

denote a bootstrap resample drawn by sampling randomly, with replacement, from

X in the conventional way, and put

K̂†(u, v) =
1

n

n∑

i=1

{
X†

i (u)− X̄†(u)
} {

X†
i (v)− X̄†(v)

}
, (2.9)

where X̄† = n−1
∑

i X
†
i . Choosing a probability level β, such as β = 0.05, take ẑβ

to be the solution of the equation

P
(∣∣∣∣∣∣K̂† − K̂

∣∣∣∣∣∣ ≤ ẑβ

∣∣X
)

= 1− β .

Then, approximate, and often slightly conservative, simultaneous confidence bounds

for θj are given by θ̂j ± ẑβ , for each j ≥ 1. Properties of this method were explored

by Hall and Hosseini-Nasab (2006), who showed that the level of conservatism is

usually slight.

If the confidence intervals (θ̂j− ẑβ , θ̂j + ẑβ) and (θ̂j+1− ẑβ , θ̂j+1 + ẑβ) intersect;

that is, if θ̂j − θ̂j+1 < 2ẑβ ; then our tie diagnostic asserts that θj = θj+1. On the

other hand, if θ̂j − θ̂j+1 ≥ 2ẑβ then our diagnostic states that θj > θj+1. These

conclusions, which amount to the results of a sequence of simultaneous hypothesis

tests, uniquely define a sequence of values of p̂k and q̂k for k ≥ 1 starting with

p̂1 = 0, where p̂k + 1 and p̂k + q̂k define the endpoints of the kth sequence of

integers, j, for which the diagnostic asserts that the eigenvalues θj are equal to one

another. Note that q̂k = 1 if the diagnostic suggests that there are no ties for θp̂k+1.

It follows that

p̂k+q̂k = p̂k+1 for each k ≥ 1, and 1 = p̂1+1 ≤ p̂1+q̂1 < p̂2+1 ≤ p̂2+q̂2 <
p̂3 + 1 ≤ p̂3 + q̂3 < . . ., with the sequence of inequalities ending when we
find a value of ν for which q̂ν = ∞.

(2.10)
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One may define an alternative tie diagnostic based on the bootstrap distribution

of supj≥1 |θ̂j − θj |. Let θ̂†j denote the eigenvalues of the covariance operator K̂†,

and z̃β be the solution of the equation

P
(

sup
j≥1

|θ̂†j − θ̂j | ≤ z̃β

∣∣∣ X
)

= 1− β .

The corresponding tie diagnostic states that θj = θj+1 if θ̂j − θ̂j+1 < 2z̃β ; θj > θj+1

otherwise.

2.4. Adjusting eigenvalue estimators to reflect ties.

Suppose that an empirical tie diagnostic, such as the bootstrap-based method

discussed in section 2.3, suggests that ties occur among θp̂k+1, . . . , θp̂k+q̂k
for k ≥ 1,

where p̂k and q̂k satisfy (2.10). Then we modify the set of eigenvalue estimators as

follows:

(a) For j in the range p̂k + 1 ≤ j ≤ p̂k + q̂k, we replace θ̂j by the average,
θ̃j say, of the values of θ̂p̂k+1, . . . , θ̂p̂k+q̂k

, provided 1 ≤ k ≤ ν − 1. (b) We
replace θ̂j by the average value, θ̃j , of θ̂p̂ν+1, . . . , θ̂n if p̂ν +1 ≤ j ≤ n; and
we leave the value of θ̂j unchanged at zero if j > n, but relabel it θ̃j .

(2.11)

In addition to producing ties in the estimated eigenvalue sequence when the tie

diagnostic says they should be there, part (a) of the algorithm at (2.11) identifies

“ties of order one,” i.e. instances where q̂k = 1 and the corresponding value of θ̂j

(with j = p̂k + 1 = p̂k + q̂k) is equal to θ̃j . In part (b) we could have replaced θ̂j by

zero whenever j ≥ p̂ν +1, but that would have altered the total value,
∑

j θ̂j , of the

estimated eigenvalues. This quantity estimates the total variability of the random

function X, and is of statistical importance in its own right, without regard to

individual eigenvalue estimators. Therefore we would prefer to leave it unchanged.

Implementing the algorithm at (2.11), we generate a new sequence θ̃1 ≥ θ̃2 ≥ . . .

of eigenvalue estimators.

2.5. Correcting the empirical principal components. It can be deduced from the

second part of (2.7) that, after adjusting the values of the eigenvalue estimators θ̂j

to reflect our assessment of where ties lie among the true eigenvalues, we should

also rescale the empirical principal components before resampling. Thus, we are led
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to work with

ξ̃ij = (θ̃j/θ̂j)
1/2 ξ̂ij for 1 ≤ i ≤ n and 1 ≤ j ≤ n . (2.12)

These quantities satisfy,

n∑

i=1

ξ̃ij = 0 ,
1

n

n∑

i=1

ξ̃2ij = θ̃j .

Reflecting the uncorrected case, we define ξ̃ij = 0 for j ≥ n+ 1 and for each i.

Once we have computed these “corrected” principal components, we resample

their values in much the same way that we would resample from a set of residuals

in a regression problem. This is unusual in bootstrap algorithms for functional

data analysis; usually the raw data are resampled. However, if one were to work

instead with the conventional principal components ξ̂ij , rather than their corrected

counterparts ξ̃ij , then resampling, using the principles outlined below, would be

equivalent to resampling from the raw data. Although the eigenfunctions can change

sign and so can the principal components, this does not cause any difficulty since

the resampled vectors of the principal components are multiplied to the empirical

eigenfunctions ψ̂j to produce a bootstrap sample.

2.6. A tie-respecting bootstrap algorithm. Let ξ̃i = (ξ̃i1, ξ̃i2, . . .) denote the vector of

corrected empirical principal components, the latter defined at (2.12). Conditional

on the data X , draw a resample ξ̃∗1 , . . . , ξ̃
∗
n by sampling randomly, with replacement,

from the collection ξ̃1, . . . , ξ̃n. Put

X∗
i = X̄ +

∞∑

j=1

ξ̃∗ij ψ̂j ,

this being a bootstrap version of the conventional Karhunen-Loève expansion at

(2.5). We shall construct percentile-method bootstrap confidence regions for eigen-

values, using the resampled data X∗
i .

The bootstrap version of K̂, at (2.1), is given by

K̂∗(u, v) =
1

n

n∑

i=1

{X∗
i (u)− X̄∗(u)} {X∗

i (v)− X̄∗(v)} ,
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where X̄∗ = n−1
∑

i X
∗
i . (Thus, K̂∗ is the TRB form of K̂, whereas K̂†, at (2.9), is

the conventional bootstrap form.) A bootstrap analogue of the spectral expansion

(2.3) is

K̂∗(u, v) =
∞∑

j=1

θ̂∗j ψ̂
∗
j (u) ψ̂∗j (v) .

The algorithm (2.11) can be applied directly to the bootstrap quantities θ̂∗k, as at

(2.13) below, just as it was earlier to the non-bootstrap empirical values. In the

bootstrap case we employ, for simplicity, the same values p̂k and q̂k determined by

a procedure we gave in section 2.3.

(a) For j in the range p̂k + 1 ≤ j ≤ p̂k + q̂k, we replace θ̂∗j by the average,
θ̃∗j say, of the values of θ̂∗p̂k+1, . . . , θ̂

∗
p̂k+q̂k

, provided 1 ≤ k ≤ ν − 1. (b) We
replace θ̂∗j by the average value, θ̃∗j , of θ̂∗p̂ν+1, . . . , θ̂

∗
n if p̂ν + 1 ≤ j ≤ n,

and we leave the value of θ̂∗j unchanged at zero if j > n, but relabel it θ̃∗j .

(2.13)

In (2.13) it might be more natural to replace p̂j and q̂j by their respective

bootstrap versions, p̂∗j and q̂∗j . However the error incurred by not doing this will

generally be small.

To compute percentile-bootstrap confidence regions for θj , we first solve for

x̂jα, as nearly as possible, the equation

P
(
θ̃∗j ≤ θ̃j + x̂jα

∣∣X
)

= α .

Here, α ∈ (0, 1) represents a probability. Tie-respecting, one- and two-sided percen-

tile-method confidence regions, each with nominal coverage 1− α, are given by

(
θ̃j − x̂j,1−α,∞

)
,

(
−∞, θ̃j − x̂jα

)
,

(
θ̃j − x̂j,1−(α/2), θ̃j − x̂j,α/2

)
. (2.14)

A simultaneous confidence region for a general, finite sequence of eigenvalues θj1 ,

. . . , θjk
can be constructed analogously. This region will have asymptotically correct

coverage, even if some of the eigenvalues θj`
are tied with one another or with other

eigenvalues not included in the sequence.

TRB confidence regions for functions of the eigenvalues θ1, θ2, . . . can be con-

structed using the same procedure. We illustrate below in the case of a confidence

region for the ratio,

ρ =

( k∑

j=1

θj

)/( ∞∑

j=1

θj

)
,
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which represents the proportion of the variability of the random function X that is

explained by the first k principal components.

Define the tie-respecting estimator ρ̃ of ρ, and its bootstrap version ρ̃∗, by

ρ̃ =

( k∑

j=1

θ̃j

)/( ∞∑

j=1

θ̃j

)
, ρ̃∗ =

( k∑

j=1

θ̃∗j

)/( ∞∑

j=1

θ̃∗j

)
.

Solve for ŷα, as nearly as possible, the equation

P
(
ρ̃∗ ≤ ρ̃+ ŷα

∣∣X
)

= α .

Analogously to (2.14), nominal (1−α)-level, one- and two-sided percentile-method

confidence regions for ρ are given by

(
ρ̃− ŷ1−α,∞

)
,

(
−∞, ρ̃− ŷα

)
,

(
ρ̃− ŷ1−(α/2), ρ̃− ŷα/2

)
. (2.15)

In practice, the quantile ẑβ as defined in section 3 is approximated by the corre-

sponding quantile of the ‘empirical’ distribution of
∣∣∣∣∣∣K̂†−K̂

∣∣∣∣∣∣ obtained from a finite

number of bootstrap resamples. Different resamples yield different approximations

of ẑβ , and thus produce differing numbers of distinct eigenvalues when using the

tie determination rule. This may be a source of additional variability in our TRB

procedure, and may influence the coverage performance of the TRB confidence in-

tervals. The additional variability in p̂k and q̂k may be significant depending on

the value of β and spacings of eigenvalues. If this were of concern then it could be

dealt with by using Breiman’s (1996) bagging method, even to the extent of delet-

ing simulations that did not accord with the majority assessment of the number of

eigenvalues. We shall not explore this approach, however. One promising aspect of

the present TRB method, as found in the numerical study presented in section 3, is

that the method is fairly robust against choice of β and works pretty well in various

settings of spacings of eigenvalues.

2.7. Adaptation to matrix setting. If the data Xi are random p-vectors, rather than

random functions, then K and K̂ should be interpreted as p× p matrices, with K̂

given by:

K̂ =
1

n

n∑

i=1

(Xi − X̄) (Xi − X̄)T .



12

The eigenvectors ψj are now p-vectors, and infinite expansions, for example the

spectral decompositions at (2.2) and (2.3), are now of length only p:

K =

p∑

j=1

θj ψj ψ
T
j , K̂ =

p∑

j=1

θ̂j ψ̂j ψ̂
T
j .

Principal components are defined by vector multiplication rather than integration.

In particular, ξ̂ij = (Xi − X̄)Tψ̂j . Once these reinterpretations are made, the

account of the TRB algorithm in section 2.5 is applicable to the case of vector-

valued data.

The L2 norm for bivariate functions L, defined in section 2.6 by |||L|||2 =
∫∫

L2,

is given in the matrix case, where L = (`i1i2) say, by |||L|||2 =
∑

i1

∑
i2
`2i1i2

. With

this reinterpretation of notation, (2.8) holds in its original form, and the discussion

in section 2.6 of both the tie diagnostic and its bootstrap-based implementation is

valid in the vector case.

3. NUMERICAL PROPERTIES

Here we assess the finite sample performance of the proposed TRB algorithm de-

scribed in section 2.6. The sample functions Xi, i = 1, . . . , n were generated from

the model

X(u) =
∞∑

j=1

ξj ψj(u) , u ∈ I ,

where I = [−1, 1], ξj were independently distributed as N(0, θj), and ψj(u) =
√

2 cos(jπu). Recall that θj are the eigenvalues of the covariance operatorK defined

in section 2.1. We set θj = {500+100(j−4)}−1 for 4 ≤ j ≤ n and θj = 0 for j > n,

and considered the following three models for the values of θ1, θ2 and θ3:

(1) θ1 = θ2 = θ3 = 1, (2) θ1 = 1.6, θ2 = θ3 = 0.7, (3) θ1 = 1.6, θ2 = 1, θ3 = 0.4.

In these models the first three principal components explain most of the variance

of X. We considered two sample sizes, n = 100 and 400. The proportion of the

variability explained by the first three principal components equals 99.0% when

n = 100, and 98.5% when n = 400.
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To compute the estimators θ̂j , at (2.3), we discretised the sample curves Xi.

In particular we took J (≤ n) equi-spaced points u1, . . . , uJ on I, and performed a

singular-value decomposition on the n×J matrix Z =
(
Xi(uj)− X̄(uj)

)
. This gave

the estimators ϑ̂1 ≥ . . . ≥ ϑ̂J ≥ 0 of ZTZ, and their corresponding eigenvectors

φ̂j = (φ̂j1, . . . , φ̂jJ)T. The eigenvalues θ̂j and eigenfunctions ψ̂j were then obtained

from the formulae θ̂j = ϑ̂j/(nJ) and ψ̂j(sk) =
√
J φ̂jk. The principal components

ξ̂ij =
∫

(Xi−X̄) ψ̂j were approximated by discretising the integrals. In our numerical

experiments we took J = 30 when n = 100, and J = 100 for n = 400. In respect of

these calculation details, and others given below, we used the same settings in the

“bootstrap world” as in nonbootstrap cases.

To assess performance we considered the coverage probabilities of the two-sided

confidence intervals for θj , at (2.14), and for the ratios ρj =
∑

1≤k≤j θk/
∑

k≥1 θk,

at (2.15). We investigated the performance of the two tie diagnostics described in

section 2.3, one based on the bootstrap distribution of |||K̂−K||| and the other on the

bootstrap distribution of supj≥1 |θ̂j − θj |. In addition to the coverage probabilities,

we evaluated how well these tie diagnostics identified the tied eigenvalues. Note that

for model (1), pk = k + 1 for k ≥ 2. For model (2), p2 = 1 and pk = k for k ≥ 3,

and for model (3), pk = k − 1 for k ≥ 2. In all cases, p1 = p̂1 = 0 by definition.

We computed P (p̂2 = 3) for model (1), P (p̂2 = 1, p̂3 = 3) for model (2), and

P (p̂2 = 1, p̂3 = 2, p̂4 = 3) for model (3). These are the probabilities of identifying

correctly the ties among θj for 1 ≤ j ≤ 4. Those four terms are critical to the success

of the tie diagnostics method, since θj , for j ≥ 4, make negligible contribution to

the total variation of X.

We also compared our method with m-out-of-n bootstrap algorithms. The lat-

ter are based on bootstrap resamples of size m (≤ n), drawn by sampling randomly

with replacement from the sample X = {X1, . . . , Xn} in the conventional way. This

approach ignores ties among the true eigenvalues. Let X †m = {X†
1 , . . . , X

†
m} be the

m-out-of-n bootstrap resample, and K̂†
m be a version of K̂†, defined in section 2.3,

that is based on X †m, i.e.,

K̂†
m(u, v) =

1

m

m∑

i=1

{
X†

i (u)− X̄†
m(u)

}{
X†

i (v)− X̄†
m(v)

}
,
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where X̄†
m = m−1

∑
i≤m X†

i . Denote by θ̂†j,m the eigenvalues of the covariance

operator K̂†
m, and let x̂†j,α,m be the solution of the equation

P
(
θ̂†j,m ≤ θ̂j + x̂†j,α,m

∣∣X
)

= α .

Then m-out-of-n percentile-bootstrap confidence regions can be obtained by re-

placing θ̃j and x̂jα in section 2.6 by θ̂j and (m/n)1/2 x̂†j,α,m, respectively. The

normalisation (m/n)1/2 here derives from the fact that the conditional distribution

of m1/2(θ̂†j,m− θ̂j), given X , approximates the distribution of n1/2(θ̂j − θj). Results

for n = 400 are reported in Tables 1–3, which contain coverage probabilities of the

confidence regions at the nominal level 1− α = 0.9.

(Put Tables 1–3 about here)

Section 2.3 described two tie diagnostics. In the discussion below and in the

tables, we refer to the tie diagnostic based on the bootstrap distribution of |||K̂−K|||
as TD1, and the other as TD2. Let τ denote the probability of identifying correctly

the ties among θj for 1 ≤ j ≤ 4. The results in the tables show that performance of

the m-out-of-n bootstrap is sensitive to choice of m. When ties are present the sub-

sampling scheme improves the coverage probability of the conventional bootstrap

(m = n), but it suffers from the need to choose m carefully. Furthermore, in

the case of ties it has poor coverage accuracy even when m is chosen to give best

performance.

In contrast, the TRB method with TD1 diagnostic is quite successful over the

entire range of β in these cases; that is, it is robust against choice of β. Moreover,

it has greater coverage accuracy than the m-out-of-n bootstrap at optimal values of

β and m, respectively. When there are no ties among eigenvalues, the conventional

bootstrap works well (as expected), but here the TRB methods perform well too,

exhibiting essentially the same coverage probabilities as the conventional bootstrap

method for β > 0.1 in the case of TD2, and for β > 0.3 in the case of TD1.

Looking at the probability τ one finds that TD1 picks up the tied eigenvalues

correctly, with very high probability, for all values of β, while TD2 works better

than TD1 for small values of β when there is no tie. These properties are directly

translated to the performance of the methods in terms of coverage probability.
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Recall that supj≥1 |θ̂j − θj | ≤ |||K̂ −K||| at (2.8). This implies that TD1 tends to

accept θj = θj+1 more often than TD2, for fixed β.

In the case n = 100, for which the results are not reported in the tables,

we found that the TRB does not work as well as when n = 400. Nevertheless,

there exists a range of β for each tie diagnostic such that the resulting TRB does

better than the conventional bootstrap. One interesting point here is that the TRB

recovers quite fast as the sample size increases to n = 400. This is true for all cases

in the models (1) and (2) where there is a tie. For the model (3), one finds that,

even for sample size n = 400, the coverage probabilities are still far away from their

nominal value in a few cases. By increasing the sample size further to n = 1 000 we

found that the coverage probabilities in these cases improve greatly. For example,

in the case where TD1 with β = 0.1 is employed, the coverage probabilities for

θ1, θ2, θ3, ρ1, ρ2 equal .870, .872, .896, .874, .892, respectively. One lesson learned

from this observation is that the coverage error of the TRB converges to zero quite

fast as n increases, and the convergence depends only a little on choice of β.

(Put Figure 1 about here)

To see the performance of the TRB algorithm and of the m-out-of-n bootstrap

method as spacings of eigenvalues change on a continuous scale, we calculated the

coverage probabilities of the two-sided confidence intervals for θj , 1 ≤ j ≤ 3, when

(θ1, θ2, θ3) = (1 + s, 1, 1− s) , 0 ≤ s ≤ 0.5 ,

and θj for j ≥ 4 were the same as those in the three models (1)–(3). Figure 1

depicts the coverage probabilities of TD1 and the m-out-of-n bootstrap method as

functions of s, for which β and m/n, respectively, were chosen to give the best

coverage performance. These results suggest that the proposed TRB method is also

robust against spacings of eigenvalues.

Although not reported here, we also implemented bootstrap calibration for each

method for enhancing coverage accuracy of confidence regions. We found that the

double bootstrap has little effect on coverage accuracy in the settings considered

here. It produces confidence regions that have nearly the same coverage error as

their non-calibrated versions when the latter do not do well. Calibration slightly
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improves coverage error, or makes it worse, when the coverage accuracy is good.

The main conclusions from the numerical study are that, in the presence of

ties, the TRB works well for moderate sample sizes; that TD1 correctly identifies

tied eigenvalues with high probability, and thus gives good coverage performance

for a wide range of values of β and in various settings of spacings of eigenvalues;

and that, in the case of ties, this approach outperforms the m-out-of-n bootstrap,

in terms of coverage accuracy and robustness against choice of tuning parameter.

We repeated our experiments for nominal level 1 − α = 0.95, and found that the

lessons there were essentially the same.

4. THEORETICAL PROPERTIES

4.1. Distributions of conventional estimators of eigenvalues. We first describe

spacings among eigenvalues, using a model which reflects the empirical description

at (2.10):

qk ≥ 1 and pk + qk = pk+1 for each k, and 1 = p1 +1 ≤ p1 + q1 < p2 +1 ≤
p2 + q2 < p3 + 1 ≤ p3 + q3 < . . ., with the sequence of inequalities either
continuing ad infinitum, in which case we define ν = ∞, or ending with a
finite value of ν for which qν = ∞; θj1 = θj2 for pk + 1 ≤ j1, j2 ≤ pk + qk
and for each k; and θj1 > θj2 if j1 < j2 and j1 and j2 lie in distinct intervals
[pk1

+ 1, pk1
+ qk1

] and [pk2
+ 1, pk2

+ qk2
].

(4.1)

Given a function f of two variables, and functions g1 and g2 of one variable,

write
∫∫

fg1g2 for
∫∫

f(u, v) g1(u) g2(v) du dv. In this notation, and provided that

sup
u,v∈I

|K(u, v)| <∞ and

∫
E(X4) <∞ , (4.2)

the random variables

Mj1j2 = n1/2

∫∫
(K̂ −K)ψj1 ψj2 , j1, j2 ≥ 1 , and

M0 = n1/2
∞∑

j=1

(θ̂j − θj) = n1/2

∫
(K̂ −K)(u, u) du

(4.3)

are jointly, asymptotically distributed as multivariate normal variables Nj1j2 and
∑

j Njj , say, with zero means. In particular, if the principal components ξj are as
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defined at (2.5), and if Z0 =
∑

j Njj , then

cov(Nj1j2 , Nj3j4) = cov(ξj1 ξj2 , ξj3 ξj4) ,

cov(Nj1j2 , Z0) =
∞∑

j=1

cov
(
ξj1 ξj2 , ξ

2
j

)
.

(4.4)

Given 1 ≤ k < ν, let Jk denote the set of indices pk + 1, . . . , pk + qk. Then

θj = θ(k), say, not depending on j, for all j ∈ Jk. Theorem 1 below asserts that

the limiting joint distribution of the normalised eigenvalue differences n1/2 (θ̂j−θj),

and of M0, is that of random variables Zj , defined as follows. If Jk is a singleton,

or equivalently, if there are no ties for the eigenvalue θpk+1, then we take Zpk+1 =

Npk+1,pk+1. If Jk contains qk ≥ 2 elements, let N (k) denote the qk×qk matrix with

(j1, j2)th component Nj1j2 , for pk + 1 ≤ j ≤ pk + qk. Write Λpk+1 ≤ . . . ≤ Λpk+qk

for the ordered eigenvalues of N (k). Since k < ν then, with probability 1, these

eigenvalues are also distinct. Define Zpk+j = Λpk+j for pk + 1 ≤ j ≤ pk + qk.

Theorem 1. Assume (4.1) and (4.2), and that 1 ≤ k < ν. Then the random

variables n1/2 (θ̂j − θj), for 1 ≤ j ≤ pk + qk, and M0, are jointly asymptotically

distributed as Zj , for 1 ≤ j ≤ pk + qk, and Z0.

4.2. Properties of tie diagnostics. In section 2.3 we suggested a particular member

of a large class of diagnostics, the general class characterised by the property:

decide that θj1 = θj2 if and only if |θ̂j1 − θ̂j2 | ≤ ẑ . (4.5)

The value of the “critical point” ẑ would generally be computed from data. If ẑ

were to satisfy the relations,

0 ≤ ẑ = op(1) and n−1/2 = op(ẑ) , (4.6)

as n → ∞; and if the tie diagnostic were given by (4.5); then from Theorem 1

it would follow that the tie diagnostic asymptotically correctly identified a finite

number of eigenvalue clusters, that is,

P
(
p̂` = p` and q̂` = q` for 1 ≤ ` ≤ k

)
→ 1 (4.7)
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as n→∞ for 1 ≤ k < ν. Any sequence ẑ that decreased to zero more slowly than

n−1/2 would satisfy (4.6). Theorem 2, below, implies that the sequence ẑ = 2 ẑβ ,

introduced in section 2.3 using a bootstrap argument, satisfies (4.6) if β is permitted

to decrease slowly to 0 with increasing sample size. In section 3 we show that under

(4.1) and (4.2), property (4.7) is sufficient for consistency of TRB.

To state Theorem 2, let Wj1j2 denote jointly normally distributed random

variables with zero means and the same covariance structure as ξj1ξj2 − E(ξj1ξj2).

Put Θ2
k =

∑
j∈Jk

(θ̂j−θ(k))2, where θ(k) denotes the common value of θj for j ∈ Jk,

and define

W 2
k =

∑

j1∈Jk

∑

j2∈Jk

W 2
j1j2 , W 2 =

∞∑

j1=1

∞∑

j1=1

W 2
j1j2 .

Recall the definition of K̂† from section 2.3.

Theorem 2. Assume (4.1) and (4.2), and that 1 ≤ k < ν. Then, (a) E(W ) <

∞, (b)

n
(
Θ2

1, . . . ,Θ
2
k, |||K̂ −K|||2

)
→

(
W 2

1 , . . . ,W
2
k ,W

2
)
, (4.8)

where the convergence is in joint distribution, and (c) conditional on the data

X1, . . . , Xn, we have n |||K̂† − K̂|||2 →W 2 in distribution.

Parts (b) and (c) of Theorem 2 imply that, as n → ∞, the scaled bootstrap

critical point n1/2ẑβ converges in probability to the (1−β)-level critical point of W .

Also, part (b) makes clear, in an asymptotic sense, the extent of conservatism of

the bound

sup
1≤j≤pk+qk

|θ̂j − θj | ≤ |||K̂ −K||| , (4.9)

which forms the basis for the tie diagnostic suggested in section 2.3. To appreciate

this point, note that the square of the left-hand side of (4.9) is bounded above

by max(Θ2
1, . . . ,Θ

2
k), which in turn is bounded above by

∑
`≤k Θ2

` , which, when

multiplied by n, converges in distribution to
∑

`≤k

∑
j1∈J`

∑
j2∈J`

W 2
j1j2

. This

triple series is, with probability 1, strictly less than W 2, which equals the limit, as

n→∞, of n |||K̂ −K|||2.

4.3. Consistency of tie-respecting bootstrap. The following theorem implies consis-

tency of TRB estimators of the joint distribution of any finite number of the θ̂j ’s,
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and of
∑

j θj .

Theorem 3. Assume (4.1) and (4.2), and that 1 ≤ k < ν. If the tie diagnostic

algorithm, used in section 2.6 to construct the bootstrap algorithm, asymptotically

correctly identifies the eigenvalue clusters up to the kth; that is, if it satisfies (4.7);

then the joint distribution of n1/2 (θ̂∗j − θ̂j), for 1 ≤ j ≤ pk + qk, and n1/2
∑

j (θ̂∗j −
θ̂j), conditional on the data X1, . . . , Xn, also converges to the joint distribution of

Z1, . . . , Zpk+qk
and Z0.

An immediate corollary is that simultaneous confidence regions for any finite

number of θj ’s, and for
∑

k θk and the ratio
∑

k≤j θk/
∑

k θk, have asymptoti-

cally correct coverage. Examples of such confidence regions include those at (2.14)

and (2.15).

We have seen that confidence regions based on our TRB algorithm and the

tie diagnostic in section 2.3 have asymptotically correct coverage if β decreases

slowly to 0 with increasing sample size. However, the case of fixed β is arguably

both simpler and more easily interpretable. Its treatment makes explicit the cost

of uncertainty in the decision made at the tie diagnostic stage. To appreciate why,

note that Theorem 2 implies that the bootstrap critical point ẑβ is asymptotically

conservative, in the sense that, for fixed β,

lim
n→∞

P
(

sup
j≥1

|θ̂j − θj | ≤ ẑβ

)
> 1− β . (4.10)

The strictness of the above inequality follows from the strictness of the bound

∑

`≤k

∑

j1∈J`

∑

j2∈J`

W 2
j1j2 < W 2,

discussed immediately after Theorem 2. From (4.10) it follows that, instead of (4.7),

lim inf
n→∞

P
(
p̂` = p` and q̂` = q` for 1 ≤ ` ≤ k

)
> 1− β . (4.11)

Bearing in mind that the limit property in Theorem 3 is conditional on the data,

of which the quantities p̂k and q̂k are functions, it can be seen from (4.11) that a

nominal (1−α)-level confidence region based on our bootstrap algorithm, and using
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the tie diagnostic in section 2.3 for fixed β, has asymptotic coverage strictly greater

than 1− α− β. The strictness of this bound provides a degree of assurance of the

robustness of our tie diagnostic, as we observed in section 3.

4.4. Uniformity and perturbations of the model. In general the bootstrap is not

good at producing distribution estimators and confidence regions that perform well

in a uniform sense. See e.g. Hall and Jing (1995) and Romano (2004). Results of

Eaton and Tyler (1991) and Dümben (1993) indicate that this is also a challenge for

m-out-of-n bootstrap methods. However, we are not aware of other methods that

outperform the bootstrap in this respect, and the problem is probably inherent,

rather than a shortcoming of the bootstrap per se.

Issues of this type arise if we consider perturbations of the covariance model as

n increases. To explore this problem, consider the case where we have a triangular

array of functions, Xn,1, Xn,2, . . . , Xn,n for n ≥ 1, with covariance kernel Kn and

eigenvalues θn,1 ≥ θn,2 ≥ . . . ≥ 0. Suppose that Kn −K and θnj − θj converge to

zero at rate δ1 = δ1(n), denoting a positive sequence decreasing to zero, and that

ẑ, in (4.6), converges to zero at rate δ2. It will be assumed that n−1/2 is of smaller

order than both δ1 and δ2. If δ1 is of strictly larger order than δ2, i.e. if δ2 = o(δ1),

then the probability that |θ̂n,j1 − θ̂n,j2 | > ẑ converges to 1 as n→∞. Equivalently,

with probability converging to 1 the tie diagnostic declares θj1 and θj2 to be unequal.

This is the correct decision in the present case, since the rate n−1/2 at which the

eigenvalues θn,j1 and θn,j2 are estimated by θ̂n,j1 and θ̂n,j2 , respectively, is of strictly

smaller order than δ1, and so the limiting distributions of θ̂n,j1 and θ̂n,j2 are those

that arise for unequal eigenvalues. However, if δ1 is of strictly smaller order than

δ2, i.e. if δ1 = o(δ2), then the probability that |θ̂n,j1 − θ̂n,j2 | ≤ ẑ converges to 1 as

n→∞, and so with probability converging to 1 the tie diagnostic declares θj1 and

θj2 to be equal. This is the incorrect decision, and in this instance the tie-respecting

bootstrap generally gives inconsistent estimators of the distributions of θ̂n,j1 and

θ̂n,j2 .

5. TECHNICAL ARGUMENTS

5.1. Preliminary lemma. Assume that the kernels, K1 and K2, of two positive
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semi-definite Hilbert-Schmidt operators, also denoted by K1 and K2, are bounded

and admit the spectral decompositions Kk(u, v) =
∑

j θkj ψkj(u)ψkj(v), where

the θkj ’s are eigenvalues and the ψkj ’s are the respective orthogonal eigenvectors.

Suppose too that the eigenvalues are arranged in order of decreasing size, and that

the eigenvalues of K1 can be grouped into blocks of length qk, where:

qk ≥ 1 and pk + qk = pk+1 for each k, and 1 = p1 +1 ≤ p1 + q1 < p2 +1 ≤
p2+q2 < p3+1 ≤ p3+q3 < . . ., with the sequence of inequalities either con-
tinuing ad infinitum or ending with a value of ν for which qν = ∞; θ1j1 =
θ1j2 for pk +1 ≤ j1, j2 ≤ pk +qk and each k; and θ1j1 > θ1j2 if j1 < j2 and
j1 and j2 lie in distinct intervals [pk1

+1, pk1
+qk1

] and [pk2
+1, pk2

+qk2
].

(5.1)

Put ‖ψ‖2 =
∫
ψ2 and η2 = |||K1 − K2|||2 =

∫∫
(K1 − K2)

2; for r = 1 or 2, define

ψ̄2j =
∑

p+1≤`≤p+q ψ1`

∫
ψ1` ψ2j , and let ψ̄2j denote the projection of ψ2j onto the

space of functions spanned by ψ1,pk+1, . . . , ψ1,pk+qk
.

Given k ≥ 1, let Jk be the set of indices j such that pk + 1 ≤ j ≤ pk + qk.

Let B denote the qk × qk matrix with (j1, j2)th component bj1j2 = η−1
∫∫

(K2 −
K1)ψ1j1 ψ1j2 . Then B is symmetric, and its eigenvalues, γpk+1, . . . , γpk+qk

say,

are all real, with respective orthonormal eigenvectors cpk+1, . . . , cpk+qk
satisfying

Bcj = γjcj for pk + 1 ≤ j ≤ pk + qk. The sum of the squares of the components of

B is bounded by 1, and so ‖cTj B‖ ≤ 1, implying that |γj | ≤ 1 for each j.

Write cj = (cj,pk+1, . . . , cj,pk+qk
)T. Let ek > 0 denote a lower bound to the

minimum spacing between adjacent γj ’s; note that ek is assumed strictly positive.

Observe that, by definition of Jk, θ1j = θ(k), say, not depending on j, for all j ∈ Jk.

Order the values of γpk+1, . . . , γpk+qk
as γ(pk+1) ≤ . . . ≤ γ(pk+qk). Let π denote the

permutation of pk + 1, . . . , pk + qk that takes pk + j to π(pk + j) = pk + `j , defined

such that γpk+`j
= γ(pk+j). Ties can be broken arbitrarily; it follows from (5.2),

below, that if ek > 0 is kept fixed then ties do not occur if η is sufficiently small. A

proof of the lemma below is given in a longer version of this paper (Hall et al. 2007).

Lemma. If (5.1) holds then, for each k ≥ 1 for which qk is finite, there exist con-

stants Ck8, Ck9 > 0, depending only on the eigenvalue sequence θ11, . . . , θ1,pk+qk+1,

on ek > 0 and on |I|2 sup |K1|, such that, for η ≤ Ck8 and pk + 1 ≤ j ≤ pk + qk,

∣∣∣θ2j − θ(k) − η γπ(j)

∣∣∣ ≤ Ck9 η
2 . (5.2)



22

5.2. Proofs of Theorems 1 and 3. Theorem 1 follows from the lemma on taking

K1 = K and K2 = K̂, whereas Theorem 3 follows on letting K1 = K̂ and K2 = K̂∗.

In the context of Theorem 1, to treat the joint distribution of n1/2 (θ̂j − θj) (for

any finite number of values of j) and M0 = n1/2
∑

j (θ̂j − θj), we note that the

latter quantity has the simple and explicit representation in (4.3), which simplifies

asymptotically to:

M0 =

∫ {
n−1/2

n∑

i=1

Xi(u)
2 −K(u, u)

}
du+ op(1)

=
∞∑

j=1

{
n−1/2

n∑

i=1

(
ξ2ij − θj

)}
+ op(1) .

Therefore, Mj1j2 (for any finite collection of values of (j1, j2)) and M0, both defined

at (4.3), are jointly, asymptotically distributed asNj1j2 and Z0; see (4.4). Theorem 3

may be treated similarly.

5.3. Proof of Theorem 2. Assume, without loss of generality, that E(X) = 0, and

define ξij =
∫
Xi ψj , Vij1j2 = ξij1 ξij2 − δj1j2 θj1 , Uj1j2 = n−1

∑
i Vij1j2 and

L̂(u, v) =
1

n

n∑

i=1

{Xi(u)Xi(v)−K(u, v)} .

Then,

|||L̂|||2 =
∞∑

j1=1

∞∑

j1=1

U2
j1j2 ,

∣∣|||K̂ −K||| − |||L̂|||
∣∣ ≤

∫
X̄2 = Op

(
n−1

)
. (5.3)

Let ξj be as in (2.5). The second part of (4.2) implies that

∫∫
E(XX −K)2 =

∞∑

j1=1

∞∑

j1=1

E(ξj1 ξj2 − δj1j2 θj1)
2 <∞ . (5.4)

Since E(W ) equals the double series in (5.4) then (5.4) implies part (a) of Theorem 2.

Note that

∞∑

j1=r1+1

∞∑

j2=r2+1

nE
(
U2

j1j2

)
=

∞∑

j1=r1+1

∞∑

j2=r2+1

E
(
ξj1 ξj2 − δj1j2 θj1

)2
. (5.5)
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Together, (5.4), (5.5) and the first part of (5.3) imply that, for each ε > 0,

lim
r1,r2→∞

lim sup
n→∞

P

(
n

∣∣∣∣|||L̂|||
2 −

r1∑

j1=1

r2∑

j2=1

U2
j1j2

∣∣∣∣ > ε

)
= 0 . (5.6)

Define U = (uj1j2) to be a qk × qk matrix, with j1, j2 ∈ J and uj1j2 =

n1/2
∫∫

L̂ ψj1 ψj2 = n1/2 Uj1j2 . It can be shown from (5.2), on taking K1 = K

and K2 = K̂, that if k < ν then the sum of n (θ̂j − θ(k))2, over j ∈ Jk, equals the

sum of the eigenvalues of U2, identical to the trace of U2, plus a remainder op(1).

Of course, the trace of U2 equals
∑

j1∈Jk

∑
j2∈Jk

u2
j1j2

. Therefore,

∑

j∈Jk

(
θ̂j − θ(k)

)2
=

∑

j1∈J`

∑

j2∈J`

U2
j1j2 + op

(
n−1

)
. (5.7)

It can be proved using a conventional central limit theorem that, for each fixed

s1, s2 ≥ 1, the joint distribution of n1/2 Uj1j2 , for 1 ≤ j` ≤ s` and ` = 1, 2, converges

weakly to the joint distribution of Wj1j2 , for j1, j2 in the same range. This property,

(5.6), (5.7) and both parts of (5.3) imply (4.8), and hence also part (b) of Theorem 2.

Part (c) follows from a bootstrap version of these arguments, which is similar.
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Table 1. Coverage probabilities of confidence intervals at nominal level 0.9 for the model
(1).

Coverage probabilities for
Method θ1 θ2 θ3 ρ1 ρ2 τ

m-out-of-n m/n = 1 0.818 0.860 0.598 0.670 0.578

bootstrap m/n = 3/4 0.830 0.848 0.620 0.702 0.594

m/n = 1/2 0.842 0.846 0.620 0.722 0.602

m/n = 1/4 0.876 0.854 0.644 0.772 0.636

m/n = 1/8 0.892 0.844 0.644 0.792 0.670

Tie-respecting β = 0.1 0.902 0.902 0.902 0.892 0.892 1.000

bootstrap 0.3 0.902 0.902 0.902 0.892 0.892 1.000

based on TD1 0.5 0.902 0.902 0.902 0.892 0.892 1.000

0.7 0.902 0.902 0.898 0.886 0.886 0.992

0.9 0.866 0.866 0.848 0.812 0.812 0.910

Tie-respecting β = 0.1 0.902 0.902 0.900 0.888 0.888 0.996

bootstrap 0.3 0.870 0.870 0.864 0.838 0.838 0.938

based on TD2 0.5 0.812 0.820 0.762 0.668 0.668 0.742

0.7 0.764 0.806 0.642 0.448 0.448 0.448

0.9 0.786 0.852 0.576 0.532 0.468 0.138

Note: Based on 500 pseudo-samples of size n = 400. TD1 stands for the tie-diagnostic
based on the bootstrap estimate of the distribution of

∣∣∣∣∣∣K̂ −K
∣∣∣∣∣∣, and TD2 for the diag-

nostic based on the bootstrap estimate of the distribution of supj≥1
|θ̂j−θj|. The numbers

in the rightmost column are the values of τ = P (p̂2 = 3), the probability of identifying
correctly the ties among θj for 1 ≤ j ≤ 4 in this case.
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Table 2. Coverage probabilities of confidence intervals at nominal level 0.9 for the model
(2).

Coverage probabilities for
Method θ1 θ2 θ3 ρ1 ρ2 τ

m-out-of-n m/n = 1 0.864 0.888 0.756 0.882 0.786

bootstrap m/n = 3/4 0.872 0.888 0.770 0.890 0.776

m/n = 1/2 0.862 0.876 0.780 0.882 0.762

m/n = 1/4 0.852 0.874 0.778 0.870 0.770

m/n = 1/8 0.840 0.876 0.764 0.850 0.758

Tie-respecting β = 0.1 0.866 0.880 0.880 0.884 0.878 0.994

bootstrap 0.3 0.866 0.886 0.886 0.884 0.880 1.000

based on TD1 0.5 0.866 0.886 0.886 0.884 0.880 1.000

0.7 0.866 0.886 0.886 0.884 0.880 1.000

0.9 0.866 0.878 0.874 0.884 0.870 0.986

Tie-respecting β = 0.1 0.866 0.886 0.886 0.884 0.880 1.000

bootstrap 0.3 0.866 0.886 0.882 0.884 0.876 0.996

based on TD2 0.5 0.864 0.872 0.870 0.884 0.860 0.954

0.7 0.864 0.846 0.794 0.884 0.800 0.810

0.9 0.864 0.860 0.744 0.884 0.776 0.456

Note: Based on 500 pseudo-samples of size n = 400. The meanings of TD1 and TD2
are the same as in Table 1. The numbers in the rightmost column are the values of
τ = P (p̂2 = 1, p̂3 = 3), the probability of identifying correctly the ties among θj for
1 ≤ j ≤ 4 in this case.
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Table 3. Coverage probabilities of confidence intervals at nominal level 0.9 for the model
(3).

Coverage probabilities for
Method θ1 θ2 θ3 ρ1 ρ2 τ

m-out-of-n m/n = 1 0.860 0.884 0.876 0.878 0.864

bootstrap m/n = 3/4 0.872 0.872 0.886 0.886 0.854

m/n = 1/2 0.866 0.868 0.884 0.866 0.854

m/n = 1/4 0.838 0.854 0.880 0.826 0.852

m/n = 1/8 0.814 0.828 0.870 0.774 0.830

Tie-respecting β = 0.1 0.742 0.684 0.006 0.736 0.618 0.004

bootstrap 0.3 0.846 0.858 0.526 0.868 0.768 0.544

based on TD1 0.5 0.858 0.878 0.866 0.876 0.860 0.974

0.7 0.860 0.884 0.876 0.878 0.862 1.000

0.9 0.860 0.884 0.876 0.878 0.862 1.000

Tie-respecting β = 0.1 0.856 0.868 0.584 0.872 0.780 0.634

bootstrap 0.3 0.860 0.884 0.876 0.878 0.862 0.998

based on TD2 0.5 0.860 0.884 0.876 0.878 0.862 1.000

0.7 0.860 0.884 0.876 0.878 0.862 1.000

0.9 0.860 0.884 0.876 0.878 0.862 1.000

Note: Based on 500 pseudo-samples of size n = 400. The meanings of TD1 and TD2
are the same as in Table 1. The numbers in the rightmost column are the values of
τ = P (p̂2 = 1, p̂3 = 2, p̂4 = 3), the probability of identifying correctly the ties among θj

for 1 ≤ j ≤ 4 in this case.
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Figure 1: Coverage probabilities for θ2 = 1 as functions of the spacing s = θ2 − θ1 = θ3 − θ2 at nominal

level 0.9, based on 500 pseudo-samples of size n = 400. The solid curve corresponds to TD1 with β that

gives the best coverage performance, and the dashed is for the m-out-of-n with the optimal sampling

fraction m/n.
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