
The Database Machine: Old Story, New Slant?

Julie A. McCann

Department of Computing
Imperial College London, UK

jamm@doc.ic.ac.uk

Abstract
Current database management system technology
is not well equipped to provide adequate support
for what has been deemed the 3rd wave of
computing -- Ubiquitous Computing. Such
applications require systems that are sufficiently
lightweight and customisable to provide high
performance while consuming minimal power,
yet extensible enough to adapt to a constantly
changing environment. Current DBMS
architectures inherently do not provide this level
of customisation or adaptability. Therefore we
suggest an alternative where database systems
shake off their relatively static monolithic
structure and become open sets of fine-grained
components providing a collection of key
information provision services and moreover
have the ability to adapt. This paper explores the
motivation for componentisation and how
modern operating systems research can influence
the DBMS architecture. If components are the
answer, then are we announcing the end of
database management systems as we currently
know them, or are we just describing a database
machine for the 21st century?

1 Introduction
Traditional database management workhorses such as

transaction based computing in finance and number
crunching in scientific applications will certainly be
around for some time. However with computing devices
becoming more ubiquitous and pervasive due to increased
power in small devices, mobility, and use of the web, we
are beginning to see new challenges regarding the

management of data. Since data in such environments are
predicted to be less centralised and themselves pervasive,
the concept of a ‘Database Management System’ is
essentially defunct. That is, over the years we have come
to view the database as large structured sets of persistent
data. It is this view that has essentially kept the
architecture of the management system static since the
seventies. Data contained in pervasive computing systems
cannot be viewed as a single base (physical or virtual),
therefore a radically new way of looking at data
management is required.

Pervasive data systems can be viewed like an
extremely distributed database except that datasets are
much more fine-grained, versioning is more important,
and data representation is highly heterogeneous. The
types of computers supporting these are typically anything
from a set of sensors, PDAs, mobile phones and webpads
etc. to servers. What is required of such services are
things like the ability to trust the data (something that is
assumed more readily in traditional DBMS), the ability to
cope with slightly out-of-date data, and the ability of a
query’s answer to change as requirements change
dynamically at run time. At an architectural level the
system must be able to cope with units failing – perhaps
mid way through answering a query (and being replaced
with minimal maintenance or the whole processing
‘jumping’ to another device to continue/finish). Running
in embedded and smaller capacity devices means that it
must be as lightweight as possible and able to adapt its
own functionality at run-time (i.e. be self-reconfigurable
or self-healing thus reducing systems’ administration and
maintenance). Most importantly, since the architecture
becomes more adhoc and thus complex, strong software
engineering standards must be encouraged to avoid
systems misbehaving.

Currently a DBMS controls the organisation, storage
and retrieval of data whilst regulating the security and
integrity of the database, it accepts requests for data from
the application programs and instructs the operating
system (OS) to transfer the appropriate data. As a
resource manager the OS and DBMS function in a very
similar way but with differing levels of abstraction. The
broad functionality of the modern DBMS has meant that
typical DBMS architectures have become bloated

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 2003 CIDR Conference

compromising the DBMSs ability to meet changing
application demands, but moreover it disables its ability to
self-regulate and dynamically change which potentially
renders it unusable by many modern and future
applications.

An established solution to providing self-configuring
systems, that are lightweight and highly flexible, is that of
component-based architectures. Most component-based
research has focused on relatively thick-grained
components, at the level of middleware and COTS. The
DBMS community, who have recognised for some time
that finer-grained componentisation of the DBMS is
required [23], have thus far only examined thick-grain
components [12]1. However, this paper presents a fine-
grained component architecture. The reader will readily
see that the DBMS no longer exists in this architecture as
the boundaries between a DBMS and the Operating
System (OS) have become blurred – in fact, there is no
DBMS or OS in this architecture just components and
hardware and some ‘intelligence’. Essentially we believe
that to have a truly fine-grained DBMS we must have
fine-grained components throughout (i.e. including the
OS). By dissolving the software into its elementary units,
then using these as building blocks that are configured/re-
configured based on the ‘intelligence’ we should result in
resource management that was truly adaptive whilst
remaining lightweight.

The next section discusses component-based
computing from both the OS and DBMS architecture
points of view. An introduction to adaptive systems and
how they relate to component-based systems for self-
reconfiguration follows this. We then introduce our
Adaptive Data Management architecture and discuss it
briefly using simple scenarios based on a ubiquitous
computing environment to illustrate how adaptivity can be
embedded in components. Finally we conclude and, using
our experiences, try to speculate what the future issues
might be.

1.1 Component-based Systems
There is no universally agreed definition of the term

component. In this paper we define a component in terms
of its use; where objects are fundamentally a
programmers' tool, components are concrete entities
consisting of implementation and interfaces. The
boundaries between components are concrete and are
present in a running system. Therefore, we term
component-based OS or DBMS as those in which the
Kernel is decomposed into building blocks or components
such as schedulers, memory/buffer managers and security
managers etc.

We have known since the industrial revolution that
componentisation reduces production costs and the time-

1 The author’s initial chapter discusses the requirements for truly
componentised DBMS yet subsequent chapters in the book outline
middleware level componentization.

to-market. However for a long time many of our current
fundamental applications such as OS and DBMS, have
been frozen executables primarily assembled for a single
processor where the configuration of the application was
exclusively under the control of the developer. However
the monolithic nature of these systems was primarily due
to performance restrictions and not lack of foresight of the
software architect.

The past ten years has heralded the emergence of
software engineering frameworks and languages designed
to support component-based application design. The
advantages are two-fold: the assembly of applications
from pre-fabricated software components is timely, and
developers can purchase interoperable software
components off the shelf. Further, facilitated primarily by
object technology, we can see that today's emerging
component-based systems are no longer two-tier client-
server models tied to a single platform. Instead they are
multi-tier, distributed and dynamically reconfigured
across a heterogeneous computing base.

Until the 1980s almost all OS were inflexible in nature
with all systems services incorporated into a monolithic
kernel in which costly system calls were implemented by
trapping from user mode. As all services were
precompiled into the kernel it was impossible to load
them on demand. Furthermore, reconfiguration, such as
connecting a new device, required recompiling the entire
kernel. In the mid 1980s, microkernels were introduced as
a result higher demand from distributed systems users.
Microkernels deployed object oriented software. They
were relatively lean and efficient, realizing only necessary
OS functions, by moving all services (that is, Networked
File System, Shared Memory etc.) to the user-level. This
resulted in an increased level of flexibility. Nevertheless,
they were not adaptable and the microkernel was not
lightweight or efficient.

Many researchers considered the major factor limiting
both system flexibility and performance to be the fixed
high-level of abstraction [8, 9]. It is for this reason that
OS research began to search for better abstractions for
finer granularity in system services [8]. These systems are
termed extensible kernels. Elimination of unnecessary
abstraction, pushing the interface nearer to the hardware,
ensured a significant performance improvement [9].
However they lacked the ability to tailor the OS to the
application and be re-configured at runtime to adapt OS
processing on demand. Consequently research looked at
decomposing very core of the OS to be into its logical
components.

Nevertheless, modern OS design community has been
relatively slow in the uptake of component-based
engineering mainly for exactly the same reason
monolithic systems prevailed for so long – performance2.

2 Similarly, one revolution that made early versions of Unix interesting
was that it was not coded in Assembler but in a high-level language, C,
to gain the software engineering benefits that high-level languages

The two most notable research efforts into component-
based operating systems is SawMill [18], based on the L4
µ-kernel and Pebble [10].

1.2 DBMS Componentisation
Work on evolving the architecture the DBMS

architecture has followed a very similar path to that of the
OS but has to some extent lagged behind. For example
some research has been carried out on adapting
lightweight DBMS (LWDB) [4, 27, 16]. Often, these
systems omit features found in traditional DBMS, and
include more specialised features which maximise per-
formance. Such systems are very limited to particular
applications and most were custom built and remained
monolithic.

Research has also considered extensible systems to
tailor a DBMS to a particular application, [2, 13, 7, 3].
These, though very much in the right direction, were
essentially customisable monolithic DBMSs, their
architecture being layered resulting in performance
overhead problems, which would not suit the types of
applications, we wish to focus on. However focus on
performance not the only issue. To provide the amount of
flexibility and runtime adaptability for modern
applications, component-based DBMS are required. That
is, decoupling DBMS services allows the functionality
required at a given time to be swapped in on demand.
This is impossible in DBMS architectures that are
monolithic regardless of how lightweight and extensible
they are.

Some work is closer to our thinking, for example [28]
looked at a tool that took Smallbase [16] and decomposed
it into components, the primary objective being reuse
identification rather than architectural flexibility or
dynamism. Since they restricted themselves by using C,
any form of adaptivity and re-configuration is impossible.
Nevertheless, the components were relatively fine-grained
–resource manager level, and the system did demonstrate
reasonable performance. Further, [6] presents a similar
architecture to the one we present here, with very much
the same reasoning. That is, we agree that the ‘feature-
overload’ of modern DBMS architectures will cause
future problems. They too suggest that the DBMS
processing be broken down into specific functions such as
a select-project-join processor (SPJ) and that the system
should be self-tuning. However their solution radically
differs in that our suggested components are targeted at a
finer-grain and at lower level operations (such as get-
page). Further we are not tied to a single data model
(relational) nor are we suggesting strictly limited data
types (quite the opposite). Finally the Universal Glue i.e.
their equivalent of our ‘intelligence’ is targeted at the
middleware level; a much higher level of abstraction

provide. This was hitherto resisted as it was thought that the object code
for the OS compiled from a high-level language would perform too
poorly.

compared with our policy style glue which we in Section
3.

2 Self-Adaptive Systems
An adaptive system is one that can modify its

behaviour based on stimulus produced either from within
its system or from external sources. Pervasive computing
requires that the units and their service have a degree of
autonomy and therefore adaptivity would have to be quite
self-contained. The more autonomy the unit requires, the
more complex the processing where the system may have
to evolve new behaviours. This is where the major
tradeoffs lie – the more ‘intelligent’ the system is the
more complex the task to decide how to adapt is. This is
in terms of the processing and information storage of
monitoring feedback, the change optimisation and the cost
of the reconfiguration itself

Two major areas of computing have examined this
subject from different angles. Artificial intelligence has
focused on the rules and mechanisms to allow open-
adaptive systems to evolve new behaviours, focusing on
very narrow application areas [25]. Alternatively Software
Engineering has considered component-based architecture
configuration languages and adaptation policy
management [22]. Thus far, closed-adaptive systems have
only been considered. Either way, an adaptive OS and
DBMS architecture must not preclude the type of adaptive
system it supports. This means that the system must be
able to provide facilities for dynamic reconfiguration, the
ability to store adaptivity rules, and the ability to react to
those rules in a way that does not compromise
performance. There is no point in a system reacting to a
problem so slowly that system fails before it can do
anything about it. Furthermore componentisation itself
must not produce excessive overheads.

Typically adaptive systems have been designed in a
non component-based fashion. This is to allow the system
itself to change or evolve functionality. However these
systems will become difficult to maintain and engineer.
Furthermore, without componentisation lightweightedness
is compromised (i.e. the parts of the system not required
at a given time remain in the architecture bloating the
system). Therefore we advocate trading-off adaptive
flexibility for a more component-based architecture as a
good compromise. However if the componentisation is
fine-grained the added flexibility can be maintained to a
degree e.g. a function consists of a number of small
building blocks, which can be composed and recomposed
to adapt the functionality at runtime.

Constraints/
Switching

Rules

Adaptivity Manager

ACID
manager

Component
Arch. Model

Environment

Monitors

Component Arch.
Implementation

plan

Plan
Change

Change
detection

Figure 1 Adaptation Framework

This past two years has begun to see some research in
adaptivity for DBMS. The nature of Internet applications
querying data from highly heterogeneous distributed
databases over wide-area networks has encouraged
exploration into adaptive query processing. Here the
optimiser is initially unable to accurately estimate a
query’s cost due to the lack of histograms, statistics and
metadata from the diverse data sources. Therefore,
adaptive query processing is where the optimiser adapts
its execution in response to monitored data sizes and
transfer rates as the query is being executed. This research
has entailed examination of incremental updates, query
materialisation points for data reuse, and result
approximation. Examples of this work are pipelined hash
join [31], hash ripple join [14] and the Xjoin [29]. Most of
this work is with relational data and concerns aggregation
queries as examples [1, 15], however some have looked at
XML [17]. Nevertheless this work has been very focused
and has not examined the complete database systems
architecture.

3 Adaptive Data Management
Architecture

This section presents a general architecture to support
adaptive data management. It is the basic framework used
in the subsequent applications illustrated below. Figure 1
illustrates a general component-based adaptive system
architecture. The main feature is that this system can self-
(re)configure with the help from monitors, which provide
environmental data (e.g. current performance statistics).

The typical tools used to develop such systems consist
of architecture description languages (ADLs) and
constraint solvers [22]. An architecture is generally
considered to consist of components and their
interactions. Architectural description languages allow the

software engineer to formally abstract the architecture so
as to reason about it. An ADL can give a global view of
the system and when augmented with constraints, the
validity of change (the reconfiguration of components)
can potentially be evaluated at runtime [22, 11].

Sophisticated adaptive systems can be composed of
components that in turn are composed of sub-components.
In our architecture a component consists of both the
application logic, the architectural description of itself
(i.e. the component structure) and a copy of the switching
rules relevant to it as well as a lightweight adaptivity
manager. A session manager is fed information from
monitors or gauges (which aggregate raw monitor data for
more lightweight processing). The current configuration
operation is being monitored by the session monitor who
constantly checks constraints and, if broken, consults the
switching rules to decide how best to overcome the
problem. When adaptivity is triggered the component
architecture model allows an alternative execution plan to
be designed. The session manager decides how to
instantiate the alternative component architecture and
passes his alternative over to the Adaptivity Manager. The
Adaptivity Manager then carries out the unbinding and
rebinding of components (establishing any glue necessary
to achieve the binding). To do this it must ensure the
instantiation adheres to transactional style prosperities.
That is, the switch can be backed off if something goes
wrong.

The architecture described here is essentially a closed-
adaptivity model however it is hoped that the design is
general and flexible enough to implement an open model.
That is, the actual component architecture model, the
constraints and switching capabilities do not themselves
adapt. It could be argued that an open-adaptivity model
would compromise the black-box nature of component-
based software engineering, as access to sub-components
is required to update their inner structures etc.

In a highly adaptive system the component can
migrate, as can the data component. This is where the
component migrates to a part of the system to ensure a
constraint is not broken (an example of this is illustrated
in the next section).

4 Ubiquitous Computing DB Scenarios
Ubiquitous computing highlights an interesting set of
simple scenarios with regards to data management in that

 Data
Component

Version Adaptivity
Rules

Standard
Metadata

N 1

N

1

N
1

Figure 2 Data Component Structure

it consists of a number of very differing devices of
varying (usually low) capacities, storing data of very
differing structures. Ubiquitous computing requires not
only the system to adapt for performance and fault-
tolerant reasons, but do so in a lightweight manner.

To illustrate how we think this would operate, we have
a subset of a ubiquitous system that consists of a sensor, a
Laptop and a PDA. The Laptop and PDA can make use of
the sensor’s data (which is streamed in XML format).
Further the PDA and Laptop can share data. The systems
architecture with interesting components, for this is
described in figure 3.

The data is divided into the structure described in
Figure 2. Example data could be OO structured data
concerned with a person or a relational table used for
transaction processing or an XML stream. The metadata
represents the standard metadata found in traditional
databases e.g. attribute statistics, triggers etc. The
Adaptability Rules are the list of rules associated with the
adaptivity constraints3 and the action(s) to be taken when
the session manager has detected that a constraint has
been broken. The list of versions is indications of where
alternatives can be found. Versions are not necessarily
exact replicas; they could be compressed versions of the
data (perhaps with associated decompression code) or be
out-of-date. They also could be lower quality versions or
summaries of the data.

The first scenario: inter-query adaptation. The query
has been initiated by a PDA and requires data from the

3 Note that these constraints are not the same as operation constraints
such as integrity, these constraints work at the sub-operation level.

Laptop or another PDA over a wireless network. The data
component takes the form4:

 Personal data <id, name, address, age, metadata etc>,
 <Select BEST (PDA, Laptop)>,
 <Select NEAREST (PDA, Laptop);

When the query enters the system and the optimiser draws
up an initial pre-optimisation plan. The optimiser
activated at this point may be on the PDA device itself or
be run on another device (e.g. the Laptop) either way the
DBMS uses the PDA optimisor to build the initial plan.
The Session Manager then takes the plan and checks the
monitors that are feeding into it. Currently the PDA and
Laptop monitors are providing performance of
themselves. Further the network performance monitor is
providing current bandwidth statistics. The DBMS
understands the function BEST to mean the best device in
terms of capacity and current load. At the moment the
Laptop is better as it is not being used and has much more
capacity compared with the PDA to that version is
delivered to the PDA that initiated the original query.
Functions like NEAREST could indicate the closest data
resource and the constraint rules themselves can be
prioritised. That is BEST, like NEAREST, is
parameterised with representations of the two computing
nodes to be compared.

4 Here we are using tuple structures to describe the data component and
its constraints. Alternatives such as XML could equally be used as could
more formal logics. As the example constraints are for illustrative
purposes only they are acknowledgeably simple.

Change?
Re-optimisation

plan

Optimisor suite
PDA Laptop

Distributed

Query

Parser

Session
manager

Adaptivity
Manager

State manager

Pre - optimisation
plan

Distributed query monitor Sensor Device
driver

Self
Monitor

PDA memory
manager

Self
Monitor

Self Monitor

Network
performance

Monitor

Figure 3 Component Architecture from an adaptivity point of view

The second scenario: system adaptation. This is
where the Laptop has asked for the information from the
sensor device. The Laptop was plugged into the
electricity and Ethernet (i.e. docked) when the request
was initiated but in the meantime it has been unplugged
and is now working off the battery and wireless network.
This is an example of architectural reconfiguration.

Figure 4 shows the configuration of the components
composing the management system within the Laptop.
Some of the components may be already stored on the
Laptop (e.g. wireless device driver) or can be retrieved of
the network (e.g. wireless optimisor). This diagram is
illustrated using the graphic form of the Darwin
configuration language5 [22]. The query is initially part of
the docked session, but must switch over to the wireless
session when the Laptop is disconnected.

Figure 5 shows the difference between the
components that are activated during both sessions.
Essentially the relevant device driver components will be
swapped out and e.g. the wireless network driver
activated (not in figure). Further the query optimisor was
initially taking static resources into account and now the
wireless_optimisor must activate and amend the query
plan accordingly. This means that while the sensor is
streaming the original optimiser initially planned for a
strong high bandwidth connection, now it cannot
guarantee this and so decides to send a compressed
version of the data thus using more resources on both the
sensor and the Laptop while saving communication time.
The original query plan included safe points which allow
the system to stop streaming at a safe time and continue
the other version’s stream. The Adaptivity manager

5 The diagram uses the graphical form of the Darwin architectural
description language. Darwin views components in terms of both
services they provide (to allow other components to interact with them)
and services they require (to interact with other components). A
provided service is represented by a filled circle and a required service is
represented by an empty circle. Components are shown as rectangles.

ensures this happens in a consistent manner and provides
an amended query plan accordingly (see final scenario).

The final scenario: intra-query adaptation. Again the
Laptop is issuing a relational query, which involves heavy
join processing with updates as opposed to a simple
stream of information. Here the statistics provided by the
metadata are not quite accurate enough for the pre-
optimisor to build the optimal plan. It becomes obvious
that the original cost calculations need revised; therefore
the Session Manager indicates to the Adaptivity Manager
that this is the case. The Session Manager is itself
componentised in that it can have optimisor functionality
added for data processing. The query plan is revised to
perhaps change the join’s inner-loop to the outer-loop or
add an index to one of the tables. The components that
carry out this are called upon and linked into the query
pipeline at run-time. The Session Manager provides the
Adaptivity Manager with a revised plan and hands off
query execution. The adaptivity manager brings the query
to a consistent state maintained by the State Manager6
component. The query then continues from this point.

6 Note that the state-manager component is only called upon at this time,
as it was not needed by the previous two examples, as they were not
carrying out an update.

Session Factory

create_ms create_ds new_s

Mobile
Session

Docked
Session

Query

init

query

docked mobile

Figure 4 Darwin description of mobile CBMS

doc
Optimisor

transaction
manager

request result

init query

Persistance

sched_d

pessimistic
Lock strong

cache

log
manager

wireless
Optimisor

transaction
 manager

request

result

init query

Pre-presentation
 PDA sched_m

opt_
Lock

weak-
cache

Figure 5 Darwin description of switchover between

docked (top) and wireless (bottom) session

5 What we have done in this area
This section introduces two projects (Go!, and Patia
respectively) that are examining various aspects of the
adaptive component-based data management architecture
we describe above. We introduce the foundations of our
system, which demonstrates that even the OS kernel can
be componentised in a fine-grained manner without
compromising performance indicating that a DBMS can
also achieve this level of flexibility. We then briefly look
at how adaptation is used in our component-based
adaptive Webserver – this demonstrates similar behaviour
to the general data management system in section 4.

5.1 Foundations – Go!
To obtain a highly flexible, configurable and yet
lightweight system componentisation must exist
throughout the architecture; i.e. including the OS ‘kernel’.
Our initial research lead us therefore to look at the
foundations of such a data management infrastructure;
component-based operating systems.

Our objectives are two-fold. Firstly our aim was to
minimise the core of the OS and therefore ideally any
service that has nothing to do with component
management (e.g. interrupt and device management)
would be handled outside that core. This helps with
lightweightedness and increases flexibility [19]. For an
OS to support applications such as mobile or ubiquitous
computing we also require that overheads in general and
inter-component communication be minimal. These aims
have led us to focus on the OS protection mechanism. We
envisaged that, in a decomposed system, separate
components should be responsible for these distinct tasks
to improve configurability, dynamism, robustness and
software engineering.

The reason that even the leanest research OSs
typically have interrupts etc within their core is because
the core manages protection as it alone has sufficient
privileges. When the CPU is in user mode a subset of
instructions become unavailable (e.g. instructions to
control interrupts). However, the disadvantage is that
separate processor modes (kernel and user) prevent
protection function being cleanly separated from the

management function and as a consequence there is a
performance cost – context switching.

What was required was to overcome this problem by
focusing on protection mechanisms. The resulting concept
was SISR (Software -based Instruction-Set
Reduction)[21]. What is unique to SISR is that there no
longer are two process modes thus the switching
overheads between user and kernel mode is eliminated.
Instead, on loading, code is scanned for illegal operations
and if detected the code is rejected insuring adequate
process protection. That is, SISR removes the need for
two separate processing modes by making use of code-
scanning and segmentation memory protection (rather
than paging like Unix etc). The unit of protection in SISR
is the component, which is protected through its own data
segment and is of a given type (which has its own
segment). When a component instance is active on a CPU,
the instance’s data segment and type’s code segment are
referenced by the CPU’s data and code segment registers
respectively. Memory protection is enforced because
SISR considers a segment-register load a privileged
operation.

User level components are prevented by loading
segment registers because code-scanning ensures that no
components’ text section will contain such instructions.
This means that loading new values into code, data, and
stack segment registers implements a context switch
(which amounts to only 3 cycles on a Pentium).

A truly component-based OS can be seen as a zero-
kernel system, where the kernel has been replaced by a set
of components that cooperate to provide services usually
found in traditional kernels. However, to invoke services
on other components a privileged component known as
the ORB7 is used to load segment registers to ‘switch a
context’. This is the nearest part of the OS analogous to a
kernel. For example, if component A wishes to evoke a
service on component B then it indirects via the ORB
component (which loads new code and data segments to
perform the protected intra-machine Remote Procedure
Call -- RPC). This is done by migrating the thread from
caller to callee on the call and back again on return, as
illustrated in Figure 6. These have the advantage of
reducing the basic RPC times. These aspects of the OS are

7 like a Corba ORB however its functionality is more fundamental and it
does not conform to the CORBA standard.

call ret

The ORB

Client component Server component

Figure 6: Components invoke services via the ORB

Operating
System

Number of RPC
(in cycles)

BSD (Unix) 55,000
Mach2.5 3,000
L4 665
Go! 73

Table 1: Relative RPC performance

Internet

Client

Server Agent

Adaptivity
Manager

Session
Monitor

Atom
Server

Network
Environment
Monitor

Performance/

constraints
cache

Content
Handler

Server agent
creator

Atom
DataAtom

Data
Atom
DataAtom

Data Atom
Data

System
Environment
Performance

Data

Atom/Constraints
Database(s)

System
Environment

Monitor

Figure 7 Overview of the Patia Webserver architecture

described in much more detail in [19].
The architecture then consists of an ORB and a library

operating system, which contains the components
composing the OS. As a proof-of-concept we have built
the Go!8 OS, which has been developed for IA32 based
architectures. So far, it has demonstrated that SISR offers
greatly reduced protection overheads while allowing
simpler and more decomposed architectures. The resulting
relative performance improvement can be summarised in
Table 1.

As can clearly be seen from Table1, Go! consumes
many orders of magnitude less cycles than BSD which
shows the ballpark figure of basic procedure call
overheads of a modern Unix system. Furthermore, the
component core (namely the ORB) uses very little
memory -- the space required per component is just 32
bytes for each interface [20]. This is around two orders of
magnitude improvement over page-based protection
models found traditional operating systems.

5.2 Patia Webdata Architecture
A project overlapping with the Go! project is Patia9

[26]. It is based on our adaptivity architecture and
combines some agent-based technology. The amount of
DBMS data that is being served via a Webserver has
increased exponentially. Poor performance (or lack of
response) is becoming more common, which is
accentuated by unexpected flash crowds. Adaptivity in
Webserver architectures can be achieved at the inter-
request level and the intra-request level and can help with
not only improving server performance but also network
performance. An example of inter-request level
adaptivity would be that a page has been delivered and
when the client requests a given graphic the version of the
graphic sent is one which best suits the monitored

8 Go! stands for Greg’s Operating System.
9 Patia is a shortened form of Hypatia, scholar of the ancient world

bandwidth between the server and that client. Intra-
request adaptivity could be that while the server is
delivering some streaming media (e.g. audio) the codec of
the stream is chosen to best suit the bandwidth, and if the
bandwidth should change during mid delivery, then a new
less bandwidth hungry codec is swapped in [23]. These
examples illustrate how adaptivity helps performance,
however adaptivity can help with fault tolerance. For
example if a monitor detects, through some from of trend
analysis, that the number of requests are beginning to
peak beyond a given threshold then it can dynamically
spread its processing (e.g. to non-Webserver machines
like a typing-pools’ word processing computers), which
can help with flash crowds.

To achieve flexibility both the data and the webservice
applications are componentised. This means that the
components that compose a webpage can be distributed
over many machines. This can provide the advantage of
intra-request parallelism as well as fault-tolerance where
replication is used.

Each unit of data is known in Patia as an Atom. We are
assuming that the web pages are composed of things like
graphic/text/streams etc. In this scenario we define the
Atom as the smallest web object that cannot be sub-
divided10. Examples of this would be a video stream,
graphic, a navigation button, a text frame etc. Webpage
Atoms are distributed over the nodes in the system11 and
some may be replicated.

For each atom there is a unique identifier, name and
set of constraints. The Atom follows the data structure of
Figure 3 and its tuple structure is:

Atom = <a_id, name, type, <constraint>>

10 We had considered that an Atom should be an object that it is best not
to further sub-divide this means that the Atom can be a complete web
page with text and graphics.
11 We are not considering partitioning mechanisms in this scenario.

The Webserver code is also componentised. Figure 7

illustrates these components. The request comes into the
system; is received by a service-agent component who
takes this request finds the appropriate Atom and serves it
to the client. The client may make subsequent requests
directly to that service-agent who delivers the embedded
objects.

Table 2 lists a section of our atom metadata. Note
constraint 455 for atom 123 – this is a constraint which is
used for fault tolerance in say for example the case of
flash crowds. Here the session monitor receives processor
utilisation from the respective monitor, when it detects
that the utilisation rises above 90% the server agent is
required to run on a different node (one of node1 or node2
delivering Page1.html). The different node could be a
under-utilised machine in the typing pool that contains a
replica of Page1.html. The action SWITCH indicates to
the session manager that not only should the Adaptivity
Manager save the data state, but also the processing state,
as it is this that is about to migrate. That is, essentially the
whole service-agent is mobile making the Adaptivity
Manager’s task more complex.

6 Our Vision
As earely as 1991 Mark Weiser had a vision the next (3rd)
wave of computing would no longer consist of
mainframes or networks of PCs, but that computing
would become ubiquitous and pervasive [30]. The key
distinction between this type of computing and today’s
systems is not really that of extreme distribution of data
and processing over many small devices (though it is an
important difference), but that computing should be calm.
Weiser defined calm to be systems that did not require the
user to ask what the computer could do for them; rather
the system works out how it can best serve the user. This
is essentially user empowerment. Such a system cannot

expect the user to carry systems housekeeping or
technical support therefore systems must become more
self-aware, adaptive and essentially self-healing.
Consequently calmness is a fundamental challenge to us,
as the added intelligence does not come without a cost.
Therefore we believe that the system must be dissolved
into its elementary elements, which are fine-grained and
augmented with ‘intelligence’. This is analogous to
natural systems where cells and organisms evolve
(usually) to best suit environments and demands.
 It is our conjecture that future systems must be
composed of well-defined file-grained self-reflective
components and that this extra functionality does not
impair performance. To this end we have investigated an
alternative OS (Go!) composed of components and has
shown that not only is it possible to dissolve the OS
kernel in a fine-grained way, but that to do so can actually
improve both the speed and space requirements of the OS.
In parallel we have been examining the addition of rules
and constraints to component-based systems architectures
such as audio and Webservers (Kendra and Patia
respectively) and experimenting with the very many
levels of adaptivity [23, 26]. Both these systems are in
relatively embryonic form at the moment and we are only
beginning to look at how we can combine both elements
of research aided by ADLs. Having said that this work is
beginning to highlight some open issues and areas that
need further examination. Some of the more important are
listed below:
• For systems composing of thin/small clients and

servers interacting with highly distributed data and
with varying degrees of replication for fault-
tolerance, novel physical data structures are required.

• More work on adaptive data operators like the Join
algorithms mentioned in section 2 is required.
Currently this work has mainly focused on Joins for
aggregation queries, however this needs to be
broadened.

• Self-learning systems must be lean and tractable.
• Continuation of work on reconfigurable specification

languages for components data is required. Current
ADL’s are a good start but they are either domain
specific or implementations reconfigure far too
slowly. Further, typically ADL’s with adaptive
capacity only focus on closed-adaptive systems so
more work on systems that learn from previous
adaptations are required.

However the single most important observation we
have noticed is concerned with the nature of the adaptive
systems themselves. This was first noticed in our Kendra
system, which is a simple adaptive audio server [23].
Thus far we are beginning to observe that our system has
the potential to behave in a similar fashion to that of
biological systems. That is, with finer-grained systems
there are lots of (tuning) variables, many feedback loops
to drive the adaptivity etc., and it was quite difficult to

Cons-
traint

Atom Constraint logic

450 123 Select BEST (node1.Page1.html,
 node2.Page1.html)

455 123 If processor-util > 90% then
SWITCH ((node1.Page1.html,
 node2.Page1.html)

595 153 If bandwidth > 30 < 100 Kbps
then BEST (
 node1.videohalf.ram(time parms),
 node2.videohalf.ram(time parms),
 node3.videohalf.ram,(time parms))
else node3.videosmall.ram(time
parms).

Table 2 Snapshot of Atom metadata for Patia
Webserver showing Constraints

attribute elements of performance to the processing and
decision-making carried out by the system. The Kendra
system was relatively simple, how much more complex is
a truly adaptive system whereby thousands of self-aware
components should eventually find their best solution to a
given task (perhaps evolving the solution as it goes
along)?

An opinion, specific to the nature of the CIDR
conference, is that for this research to be fruitful holistic
systems research is required. This is true for not only
database system research but computer science in general.
Primarily due to the funding of short-term projects, much
systems research has been focused on in a narrow but
deep way e.g. a single join algorithm, caching etc. This
means we see very few publications showing how
architectures or technologies that essentially have been
around for 20+ years can be scrapped and replaced.
Perhaps there is an argument that overly deep and focused
work has detracted researchers away from the art of
computer science producing exciting and genuinely new
systems. However we acknowledge that the work
presented in this paper certainly does not answer all the
questions it highlights, we hope that the nature of the kind
of architecture presented would encourage holistic
research and specifically target the bigger problems e.g.
cost of reflection, interfacing components etc.

Finally, back in 1983 Boral predicted the demise of
the Database Machine (DBM) and he was right to an
extent [5]. DBM architectures based on specialised
hardware or tightly coupled to specific specialised
machines were always going to be problematic. However
as componentisation dissolves the DBMSs architecture
into components and that this is integrated, without
boundaries, with the operating system (which in turn only
activated the components that are required by the DB
function, thus tailoring the architecture down to the
metal), means that at that instant the system becomes
effectively a Database Machine but potentially without
the problems of standardisation and portability of the past.

7 Acknowledgements
Though there is a single author on this paper there are

many who have contributed to it from brainstorming to
carrying out PhD’s or Post Docs under my supervision.
Thanks to David A. Bell for forcing me to look at
database components and their performance back in 1988
(my PhD). Further thanks to (and in no particular order):
Tim Wilkinson, Patty Kostkova, Steve Crane, Paul
Howlett, Alan Messer, Akmal Chaudhri, and Paul Brown.
These people I thank for their hard work and stimulation.
In particular I thank Greg Law who’s PhD showed that
we could have fine-grain components ‘down to the metal’.

Finally, thank you to the reviews for their very helpful
comments where helped shape some of the arguments
more clearly.

8 References

1. Avnur R. Hellerstein J. M. ‘Eddies: Continuously
Adaptive Query Processing’, Proc. ACM SIGMOD
Int. Conf. Management of Data, Dallas, TX, May
2000.

2. Batory D., Barnett J., Garza J., Smith K., Tsukuda K.,
Twichell B., Wise T., ‘Genesis: An Extensible
Database Management System’, in IEEE
Transactions on Software Engineering, IEEE
November 1988

3. Boncz P., Kersten M.L.,’Monet: an impressionist
sketch of an advanced database system’, BIWIT'95-.
Basque Int. Workshop on Information Technology
Spain, July 1995

4. Booch G., Software Components with Ada,
Benjamin/Cummings, 1987

5. Boral H., DeWitt D. J. ‘Database Machines: An Idea
Whose Time Passed? A Critique of the Future of
Database Machines’. International Workshop on
Database Machines (IWDM), pp 166-187, 1983

6. Chaudhuri S. Weikum G. ‘Rethinking Database
System Architecture: Towards a Self-tuning RISC-
style Database System’, Proceedings of the 26th
International VLDB conference, September 2000

7. Carey M., DeWitt D., Graefe G., Haight D.,
Richardson J., Schuh D., Shekita E., Vandenberg S.,
‘The EXODUS Extensible DBMS Project’ in An
Overview, Readings in Object-Oriented Databases,
eds Zdonik S. and Maier D., Morgan-Kaufman, 1990

8. Cheung W.H., Loong A.H.S. ‘Exploring Issues of
Operating Systems Structuring: from Microkernel to
Extensible Systems’, Department of Computer
Science, The University of Hong Kong. Operating
Systems Review, Vol. 29, No. 4, October 1995,

9. Engler D.R., Kaashoek M.F., O'Toole J.W.,
‘Exokernel: An Operating System Architecture for
Application-Level Resource Management’, MIT
Laboratory for Computer Science. Proceedings of the
15th ACM SOSP, Colorado, USA, December 1995.

10. Gabber E, Small C., Bruno J., Brustoloni J. and
Silberschatz A., ‘The Pebble Component-Based
Operating System’, Proceedings of the 1999 USENIX
Annual Technical Conference, Monterey, CA, USA,
June 6-11, pp. 267-282. 1999

11. Garlan D., Monroe R. T., Wile D., ’Acme: An
Architecture Description Interchange Language’, In
Proc. of CASCON '97, November 1997.

12. Geppert A., Dittrich K.R, Component Database
Systems Eds Dittrich K.R., Geppert A., Morgan
Kaufmann, ISBN 1-55860-642-4, 2001.

13. Haas L., Chang W., Lohman G., McPherson J.,
Wilms P., Lapis G., Lindsay P.., Pirahesh H., Carey
M., Shekita E., ‘Starburst Mid-Flight: As the Dust

Clears’, In IEEE Transactions on Knowledge and
Data Engineering, IEEE, March 1990

14. Haas P. and Hellerstein J. ‘Ripple joins for online
aggregation’. In Proc. of the ACM SIGMOD
Conference, 287-298, 1999.

15. Hellerstein J. M., Haas P.J., Wang H.J. ‘Online
Aggregation’, Technical Paper, IBM (1997)

16. Heytens M., Listgarten S., Neimat M., Wilkinson K.,
‘Smallbase: A Main-Memory DBMS for High-
Performance Applications’, HP Labs Technical
Report (March 1994)

17. Ives Z G., Levy A Y., Weld D. S., Florescu D.,
Friedman M. ‘Adaptive Query Processing for Internet
Applications’. IEEE Data Engineering Bulletin vol
23 no 2, pp 19-26, 2000

18. Jaeger T., Liedtke J., Panteleenko V., Park Y., Islam
N., ‘Security architecture for component-based
operating systems’. ACM SIGOPS European
Workshop. 9/98.

19. Kostkova P., Murray K., Wilkinson T., Component-
based Operating System, In 2nd Symposium on
Operating Systems Design and Implementation
Seattle, October 1996

20. Law G. A new protection Model for Component-
based Operating Systems, PhD Thesis, City
University, School of Informatics, London, 2001

21. Law G., McCann, J.A., 'A New Protection Model for
Component-Based Operating Systems', In Proc. of
IEEE Conference on Computing and
Communications, Phoenix, Arizona, Feb. 2000

22. Magee J., Dulay N., Eisenbach S. Kramer J.,
Specifying Distributed Software Architectures. In
Proc. of the Fifth European Software Engineering
Conference, Barcelona, 1995.

23. McCann J.A., Howlett P., Crane J.S., 'Kendra:
Adaptive Internet System', Journal of Systems and
Software, Elsevier Science, Volume 55, Issue 1, 5
November 2000, pp 3-17.

24. McCann J.A., Crane J.S., 'Component DBMS
Architecture for Nomadic Computing', 16th British
National Conference on Databases (BNCOD'98),
Cardiff, Springer-Verlag, 1998, pp 175-176.

25. Oreizy P., M. Gorlick M., Taylor R. N., Heimbigner
D., Johnson G., Medvidovic N., Quilici A.,
Rosenblum D. S., Wolf A. L.. ‘An Architecture-
Based Approach to Self-Adaptive Software’. IEEE
Intelligent Systems, vol. 14, no. 3, pp. 54-62,
May/June 1999.

26. Patia: Adaptive Webserver.
http://www.doc.ic.ac.uk/~jamm/research/patia.html

27. Singhal V., Kakkad S., Wilson P.,’ Texas: An
Efficient, Portable Persistent Store, Persistent Object
Systems’: In Proc. Fifth International Workshop on
Persistent Object Systems, September 1992

28. Thomas, D., ‘P2: A Lightweight DBMS Generator’,
PhD Thesis, University of Austin, Texas (1998)

29. Urhan T., Franklin M.J., Amsaleg L., ‘Cost-based
query scrambling for initial delays’. In Proc. ACM
SIGMOD International Conference on Management
of Data, 1998.

30. Weiser M., ‘Some Computer Science issues in
Ubiquitous Computing’, Communications of the
ACM, vol. 36, no. 7, pp 75-84, July 1993

31. Wilschut A. N., Apers P.M. G.: ‘Dataflow Query
Execution in a Parallel Main-Memory Environment.
In Proc. First International Conference on Parallel
and Distributed Information Systems (PDIS), pp 68-
77, 1991

