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Abstract 
Current database management system technology 
is not well equipped to provide adequate support 
for what has been deemed the 3rd wave of 
computing -- Ubiquitous Computing. Such 
applications require systems that are sufficiently 
lightweight and customisable to provide high 
performance while consuming minimal power, 
yet extensible enough to adapt to a constantly 
changing environment. Current DBMS 
architectures inherently do not provide this level 
of customisation or adaptability. Therefore we 
suggest an alternative where database systems 
shake off their relatively static monolithic 
structure and become open sets of fine-grained 
components providing a collection of key 
information provision services and moreover 
have the ability to adapt. This paper explores the 
motivation for componentisation and how 
modern operating systems research can influence 
the DBMS architecture. If components are the 
answer, then are we announcing the end of 
database management systems as we currently 
know them, or are we just describing a database 
machine for the 21st century? 

1 Introduction 
Traditional database management workhorses such as 

transaction based computing in finance and number 
crunching in scientific applications will certainly be 
around for some time. However with computing devices 
becoming more ubiquitous and pervasive due to increased 
power in small devices, mobility, and use of the web, we 
are beginning to see new challenges regarding the 

management of data.  Since data in such environments are 
predicted to be less centralised and themselves pervasive, 
the concept of a ‘Database Management System’ is 
essentially defunct.  That is, over the years we have come 
to view the database as large structured sets of persistent 
data. It is this view that has essentially kept the 
architecture of the management system static since the 
seventies. Data contained in pervasive computing systems 
cannot be viewed as a single base (physical or virtual), 
therefore a radically new way of looking at data 
management is required. 

Pervasive data systems can be viewed like an 
extremely distributed database except that datasets are 
much more fine-grained, versioning is more important, 
and data representation is highly heterogeneous. The 
types of computers supporting these are typically anything 
from a set of sensors, PDAs, mobile phones and webpads 
etc. to servers. What is required of such services are 
things like the ability to trust the data (something that is 
assumed more readily in traditional DBMS), the ability to 
cope with slightly out-of-date data, and the ability of a 
query’s answer to change as requirements change 
dynamically at run time. At an architectural level the 
system must be able to cope with units failing – perhaps 
mid way through answering a query (and being replaced 
with minimal maintenance or the whole processing 
‘jumping’ to another device to continue/finish). Running 
in embedded and smaller capacity devices means that it 
must be as lightweight as possible and able to adapt its 
own functionality at run-time (i.e. be self-reconfigurable 
or self-healing thus reducing systems’ administration and 
maintenance). Most importantly, since the architecture 
becomes more adhoc and thus complex, strong software 
engineering standards must be encouraged to avoid 
systems misbehaving.  

Currently a DBMS controls the organisation, storage 
and retrieval of data whilst regulating the security and 
integrity of the database, it accepts requests for data from 
the application programs and instructs the operating 
system (OS) to transfer the appropriate data. As a 
resource manager the OS and DBMS function in a very 
similar way but with differing levels of abstraction. The 
broad functionality of the modern DBMS has meant that 
typical DBMS architectures have become bloated 
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compromising the DBMSs ability to meet changing 
application demands, but moreover it disables its ability to 
self-regulate and dynamically change which potentially 
renders it unusable by many modern and future 
applications. 

An established solution to providing self-configuring 
systems, that are lightweight and highly flexible, is that of 
component-based architectures. Most component-based 
research has focused on relatively thick-grained 
components, at the level of middleware and COTS. The 
DBMS community, who have recognised for some time 
that finer-grained componentisation of the DBMS is 
required [23], have thus far only examined thick-grain 
components [12]1. However, this paper presents a fine-
grained component architecture. The reader will readily 
see that the DBMS no longer exists in this architecture as 
the boundaries between a DBMS and the Operating 
System (OS) have become blurred – in fact, there is no 
DBMS or OS in this architecture just components and 
hardware and some ‘intelligence’. Essentially we believe 
that to have a truly fine-grained DBMS we must have 
fine-grained components throughout (i.e. including the 
OS). By dissolving the software into its elementary units, 
then using these as building blocks that are configured/re-
configured based on the ‘intelligence’ we should result in 
resource management that was truly adaptive whilst 
remaining lightweight. 

The next section discusses component-based 
computing from both the OS and DBMS architecture 
points of view. An introduction to adaptive systems and 
how they relate to component-based systems for self-
reconfiguration follows this. We then introduce our 
Adaptive Data Management architecture and discuss it 
briefly using simple scenarios based on a ubiquitous 
computing environment to illustrate how adaptivity can be 
embedded in components. Finally we conclude and, using 
our experiences, try to speculate what the future issues 
might be. 

1.1 Component-based Systems 
There is no universally agreed definition of the term 

component.  In this paper we define a component in terms 
of its use; where objects are fundamentally a 
programmers' tool, components are concrete entities 
consisting of implementation and interfaces. The 
boundaries between components are concrete and are 
present in a running system. Therefore, we term 
component-based OS or DBMS as those in which the 
Kernel is decomposed into building blocks or components 
such as schedulers, memory/buffer managers and security 
managers etc. 

We have known since the industrial revolution that 
componentisation reduces production costs and the time-
                                                           
1 The author’s initial chapter discusses the requirements for truly 
componentised DBMS yet subsequent chapters in the book outline 
middleware level componentization.  

to-market. However for a long time many of our current 
fundamental applications such as OS and DBMS, have 
been frozen executables primarily assembled for a single 
processor where the configuration of the application was 
exclusively under the control of the developer. However 
the monolithic nature of these systems was primarily due 
to performance restrictions and not lack of foresight of the 
software architect. 

The past ten years has heralded the emergence of 
software engineering frameworks and languages designed 
to support component-based application design. The 
advantages are two-fold: the assembly of applications 
from pre-fabricated software components is timely, and 
developers can purchase interoperable software 
components off the shelf. Further, facilitated primarily by 
object technology, we can see that today's emerging 
component-based systems are no longer two-tier client-
server models tied to a single platform. Instead they are 
multi-tier, distributed and dynamically reconfigured 
across a heterogeneous computing base.  

Until the 1980s almost all OS were inflexible in nature 
with all systems services incorporated into a monolithic 
kernel in which costly system calls were implemented by 
trapping from user mode. As all services were 
precompiled into the kernel it was impossible to load 
them on demand. Furthermore, reconfiguration, such as 
connecting a new device, required recompiling the entire 
kernel. In the mid 1980s, microkernels were introduced as 
a result higher demand from distributed systems users. 
Microkernels deployed object oriented software. They 
were relatively lean and efficient, realizing only necessary 
OS functions, by moving all services (that is, Networked 
File System, Shared Memory etc.) to the user-level. This 
resulted in an increased level of flexibility. Nevertheless, 
they were not adaptable and the microkernel was not 
lightweight or efficient. 

Many researchers considered the major factor limiting 
both system flexibility and performance to be the fixed 
high-level of abstraction [8, 9]. It is for this reason that 
OS research began to search for better abstractions for 
finer granularity in system services [8]. These systems are 
termed extensible kernels. Elimination of unnecessary 
abstraction, pushing the interface nearer to the hardware, 
ensured a significant performance improvement [9]. 
However they lacked the ability to tailor the OS to the 
application and be re-configured at runtime to adapt OS 
processing on demand. Consequently research looked at 
decomposing very core of the OS to be into its logical 
components. 

Nevertheless, modern OS design community has been 
relatively slow in the uptake of component-based 
engineering mainly for exactly the same reason 
monolithic systems prevailed for so long – performance2. 

                                                           
2 Similarly, one revolution that made early versions of Unix interesting 
was that it was not coded in Assembler but in a high-level language, C, 
to gain the software engineering benefits that high-level languages 



The two most notable research efforts into component-
based operating systems is SawMill [18], based on the L4 
µ-kernel and Pebble [10].   

1.2 DBMS Componentisation 
Work on evolving the architecture the DBMS 

architecture has followed a very similar path to that of the 
OS but has to some extent lagged behind. For example 
some research has been carried out on adapting 
lightweight DBMS (LWDB) [4, 27, 16]. Often, these 
systems omit features found in traditional DBMS, and 
include more specialised features which maximise per-
formance. Such systems are very limited to particular 
applications and most were custom built and remained 
monolithic.  

Research has also considered extensible systems to 
tailor a DBMS to a particular application, [2, 13, 7, 3]. 
These, though very much in the right direction, were 
essentially customisable monolithic DBMSs, their 
architecture being layered resulting in performance 
overhead problems, which would not suit the types of 
applications, we wish to focus on. However focus on 
performance not the only issue. To provide the amount of 
flexibility and runtime adaptability for modern 
applications, component-based DBMS are required. That 
is, decoupling DBMS services allows the functionality 
required at a given time to be swapped in on demand. 
This is impossible in DBMS architectures that are 
monolithic regardless of how lightweight and extensible 
they are.  

Some work is closer to our thinking, for example [28] 
looked at a tool that took Smallbase [16] and decomposed 
it into components, the primary objective being reuse 
identification rather than architectural flexibility or 
dynamism. Since they restricted themselves by using C, 
any form of adaptivity and re-configuration is impossible. 
Nevertheless, the components were relatively fine-grained 
–resource manager level, and the system did demonstrate 
reasonable performance. Further, [6] presents a similar 
architecture to the one we present here, with very much 
the same reasoning. That is, we agree that the ‘feature-
overload’ of modern DBMS architectures will cause 
future problems. They too suggest that the DBMS 
processing be broken down into specific functions such as 
a select-project-join processor (SPJ) and that the system 
should be self-tuning. However their solution radically 
differs in that our suggested components are targeted at a 
finer-grain and at lower level operations (such as get-
page). Further we are not tied to a single data model 
(relational) nor are we suggesting strictly limited data 
types (quite the opposite). Finally the Universal Glue i.e. 
their equivalent of our ‘intelligence’ is targeted at the 
middleware level; a much higher level of abstraction 
                                                                                              
provide. This was hitherto resisted as it was thought that the object code 
for the OS compiled from a high-level language would perform too 
poorly.   

compared with our policy style glue which we in Section 
3. 

2 Self-Adaptive Systems 
An adaptive system is one that can modify its 

behaviour based on stimulus produced either from within 
its system or from external sources. Pervasive computing 
requires that the units and their service have a degree of 
autonomy and therefore adaptivity would have to be quite 
self-contained. The more autonomy the unit requires, the 
more complex the processing where the system may have 
to evolve new behaviours. This is where the major 
tradeoffs lie – the more ‘intelligent’ the system is the 
more complex the task to decide how to adapt is. This is 
in terms of the processing and information storage of 
monitoring feedback, the change optimisation and the cost 
of the reconfiguration itself 

Two major areas of computing have examined this 
subject from different angles. Artificial intelligence has 
focused on the rules and mechanisms to allow open-
adaptive systems to evolve new behaviours, focusing on 
very narrow application areas [25]. Alternatively Software 
Engineering has considered component-based architecture 
configuration languages and adaptation policy 
management [22]. Thus far, closed-adaptive systems have 
only been considered. Either way, an adaptive OS and 
DBMS architecture must not preclude the type of adaptive 
system it supports. This means that the system must be 
able to provide facilities for dynamic reconfiguration, the 
ability to store adaptivity rules, and the ability to react to 
those rules in a way that does not compromise 
performance. There is no point in a system reacting to a 
problem so slowly that system fails before it can do 
anything about it. Furthermore componentisation itself 
must not produce excessive overheads. 

Typically adaptive systems have been designed in a 
non component-based fashion. This is to allow the system 
itself to change or evolve functionality. However these 
systems will become difficult to maintain and engineer. 
Furthermore, without componentisation lightweightedness 
is compromised (i.e. the parts of the system not required 
at a given time remain in the architecture bloating the 
system). Therefore we advocate trading-off adaptive 
flexibility for a more component-based architecture as a 
good compromise. However if the componentisation is 
fine-grained the added flexibility can be maintained to a 
degree e.g. a function consists of a number of small 
building blocks, which can be composed and recomposed 
to adapt the functionality at runtime. 
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Figure 1 Adaptation Framework 

This past two years has begun to see some research in 
adaptivity for DBMS. The nature of Internet applications 
querying data from highly heterogeneous distributed 
databases over wide-area networks has encouraged 
exploration into adaptive query processing. Here the 
optimiser is initially unable to accurately estimate a 
query’s cost due to the lack of histograms, statistics and 
metadata from the diverse data sources. Therefore, 
adaptive query processing is where the optimiser adapts 
its execution in response to monitored data sizes and 
transfer rates as the query is being executed. This research 
has entailed examination of incremental updates, query 
materialisation points for data reuse, and result 
approximation. Examples of this work are pipelined hash 
join [31], hash ripple join [14] and the Xjoin [29]. Most of 
this work is with relational data and concerns aggregation 
queries as examples [1, 15], however some have looked at 
XML [17]. Nevertheless this work has been very focused 
and has not examined the complete database systems 
architecture. 
 

3 Adaptive Data Management 
Architecture 

This section presents a general architecture to support 
adaptive data management. It is the basic framework used 
in the subsequent applications illustrated below. Figure 1 
illustrates a general component-based adaptive system 
architecture. The main feature is that this system can self-
(re)configure with the help from monitors, which provide 
environmental data (e.g. current performance statistics).  

The typical tools used to develop such systems consist 
of architecture description languages (ADLs) and 
constraint solvers [22]. An architecture is generally 
considered to consist of components and their 
interactions. Architectural description languages allow the 

software engineer to formally abstract the architecture so 
as to reason about it. An ADL can give a global view of 
the system and when augmented with constraints, the 
validity of change (the reconfiguration of components) 
can potentially be evaluated at runtime [22, 11]. 

Sophisticated adaptive systems can be composed of 
components that in turn are composed of sub-components. 
In our architecture a component consists of both the 
application logic, the architectural description of itself 
(i.e. the component structure) and a copy of the switching 
rules relevant to it as well as a lightweight adaptivity 
manager. A session manager is fed information from 
monitors or gauges (which aggregate raw monitor data for 
more lightweight processing). The current configuration 
operation is being monitored by the session monitor who 
constantly checks constraints and, if broken, consults the 
switching rules to decide how best to overcome the 
problem. When adaptivity is triggered the component 
architecture model allows an alternative execution plan to 
be designed. The session manager decides how to 
instantiate the alternative component architecture and 
passes his alternative over to the Adaptivity Manager. The 
Adaptivity Manager then carries out the unbinding and 
rebinding of components (establishing any glue necessary 
to achieve the binding). To do this it must ensure the 
instantiation adheres to transactional style prosperities. 
That is, the switch can be backed off if something goes 
wrong.  

The architecture described here is essentially a closed-
adaptivity model however it is hoped that the design is 
general and flexible enough to implement an open model. 
That is, the actual component architecture model, the 
constraints and switching capabilities do not themselves 
adapt. It could be argued that an open-adaptivity model 
would compromise the black-box nature of component-
based software engineering, as access to sub-components 
is required to update their inner structures etc.  

In a highly adaptive system the component can 
migrate, as can the data component. This is where the 
component migrates to a part of the system to ensure a 
constraint is not broken (an example of this is illustrated 
in the next section). 

4 Ubiquitous Computing DB Scenarios 
Ubiquitous computing highlights an interesting set of 
simple scenarios with regards to data management in that 
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it consists of a number of very differing devices of 
varying (usually low) capacities, storing data of very 
differing structures. Ubiquitous computing requires not 
only the system to adapt for performance and fault-
tolerant reasons, but do so in a lightweight manner. 

To illustrate how we think this would operate, we have 
a subset of a ubiquitous system that consists of a sensor, a 
Laptop and a PDA. The Laptop and PDA can make use of 
the sensor’s data (which is streamed in XML format).  
Further the PDA and Laptop can share data. The systems 
architecture with interesting components, for this is 
described in figure 3. 

The data is divided into the structure described in 
Figure 2. Example data could be OO structured data 
concerned with a person or a relational table used for 
transaction processing or an XML stream. The metadata 
represents the standard metadata found in traditional 
databases e.g. attribute statistics, triggers etc. The 
Adaptability Rules are the list of rules associated with the 
adaptivity constraints3 and the action(s) to be taken when 
the session manager has detected that a constraint has 
been broken. The list of versions is indications of where 
alternatives can be found. Versions are not necessarily 
exact replicas; they could be compressed versions of the 
data (perhaps with associated decompression code) or be 
out-of-date. They also could be lower quality versions or 
summaries of the data. 

The first scenario: inter-query adaptation. The query 
has been initiated by a PDA and requires data from the 
                                                           
3 Note that these constraints are not the same as operation constraints 
such as integrity, these constraints work at the sub-operation level. 

Laptop or another PDA over a wireless network. The data 
component takes the form4: 
   
  Personal data <id, name, address, age, metadata etc>, 
    <Select BEST (PDA, Laptop)>, 
    <Select NEAREST (PDA, Laptop); 
 
When the query enters the system and the optimiser draws 
up an initial pre-optimisation plan. The optimiser 
activated at this point may be on the PDA device itself or 
be run on another device (e.g. the Laptop) either way the 
DBMS uses the PDA optimisor to build the initial plan. 
The Session Manager then takes the plan and checks the 
monitors that are feeding into it. Currently the PDA and 
Laptop monitors are providing performance of 
themselves. Further the network performance monitor is 
providing current bandwidth statistics. The DBMS 
understands the function BEST to mean the best device in 
terms of capacity and current load. At the moment the 
Laptop is better as it is not being used and has much more 
capacity compared with the PDA to that version is 
delivered to the PDA that initiated the original query. 
Functions like NEAREST could indicate the closest data 
resource and the constraint rules themselves can be 
prioritised. That is BEST, like NEAREST, is 
parameterised with representations of the two computing 
nodes to be compared.  

                                                           
4 Here we are using tuple structures to describe the data component and 
its constraints. Alternatives such as XML could equally be used as could 
more formal logics. As the example constraints are for illustrative 
purposes only they are acknowledgeably simple. 
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The second scenario: system adaptation. This is 
where the Laptop has asked for the information from the 
sensor device.  The Laptop was plugged into the 
electricity and Ethernet (i.e. docked) when the request 
was initiated but in the meantime it has been unplugged 
and is now working off the battery and wireless network. 
This is an example of architectural reconfiguration. 

Figure 4 shows the configuration of the components 
composing the management system within the Laptop. 
Some of the components may be already stored on the 
Laptop (e.g. wireless device driver) or can be retrieved of 
the network (e.g. wireless optimisor). This diagram is 
illustrated using the graphic form of the Darwin 
configuration language5 [22]. The query is initially part of 
the docked session, but must switch over to the wireless 
session when the Laptop is disconnected.  

Figure 5 shows the difference between the 
components that are activated during both sessions. 
Essentially the relevant device driver components will be 
swapped out and e.g. the wireless network driver 
activated (not in figure). Further the query optimisor was 
initially taking static resources into account and now the 
wireless_optimisor must activate and amend the query 
plan accordingly. This means that while the sensor is 
streaming the original optimiser initially planned for a 
strong high bandwidth connection, now it cannot 
guarantee this and so decides to send a compressed 
version of the data thus using more resources on both the 
sensor and the Laptop while saving communication time. 
The original query plan included safe points which allow 
the system to stop streaming at a safe time and continue 
the other version’s stream. The Adaptivity manager 
                                                           
5 The diagram uses the graphical form of the Darwin architectural 
description language. Darwin views components in terms of both 
services they provide (to allow other components to interact with them) 
and services they require (to interact with other components). A 
provided service is represented by a filled circle and a required service is 
represented by an empty circle. Components are shown as rectangles. 

ensures this happens in a consistent manner and provides 
an amended query plan accordingly (see final scenario).  

The final scenario: intra-query adaptation. Again the 
Laptop is issuing a relational query, which involves heavy 
join processing with updates as opposed to a simple 
stream of information. Here the statistics provided by the 
metadata are not quite accurate enough for the pre-
optimisor to build the optimal plan. It becomes obvious 
that the original cost calculations need revised; therefore 
the Session Manager indicates to the Adaptivity Manager 
that this is the case. The Session Manager is itself 
componentised in that it can have optimisor functionality 
added for data processing. The query plan is revised to 
perhaps change the join’s inner-loop to the outer-loop or 
add an index to one of the tables. The components that 
carry out this are called upon and linked into the query 
pipeline at run-time. The Session Manager provides the 
Adaptivity Manager with a revised plan and hands off 
query execution. The adaptivity manager brings the query 
to a consistent state maintained by the State Manager6 
component. The query then continues from this point. 

 

                                                           
6 Note that the state-manager component is only called upon at this time, 
as it was not needed by the previous two examples, as they were not 
carrying out an update. 
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5 What we have done in this area 
This section introduces two projects (Go!, and Patia 
respectively) that are examining various aspects of the 
adaptive component-based data management architecture 
we describe above. We introduce the foundations of our 
system, which demonstrates that even the OS kernel can 
be componentised in a fine-grained manner without 
compromising performance indicating that a DBMS can 
also achieve this level of flexibility. We then briefly look 
at how adaptation is used in our component-based 
adaptive Webserver – this demonstrates similar behaviour 
to the general data management system in section 4. 

5.1 Foundations – Go! 
To obtain a highly flexible, configurable and yet 
lightweight system componentisation must exist 
throughout the architecture; i.e. including the OS ‘kernel’. 
Our initial research lead us therefore to look at the 
foundations of such a data management infrastructure; 
component-based operating systems. 

Our objectives are two-fold. Firstly our aim was to 
minimise the core of the OS and therefore ideally any 
service that has nothing to do with component 
management (e.g. interrupt and device management) 
would be handled outside that core. This helps with 
lightweightedness and increases flexibility [19]. For an 
OS to support applications such as mobile or ubiquitous 
computing we also require that overheads in general and 
inter-component communication be minimal. These aims 
have led us to focus on the OS protection mechanism. We 
envisaged that, in a decomposed system, separate 
components should be responsible for these distinct tasks 
to improve configurability, dynamism, robustness and 
software engineering. 

The reason that even the leanest research OSs 
typically have interrupts etc within their core is because 
the core manages protection as it alone has sufficient 
privileges. When the CPU is in user mode a subset of 
instructions become unavailable (e.g. instructions to 
control interrupts). However, the disadvantage is that 
separate processor modes (kernel and user) prevent 
protection function being cleanly separated from the 

management function and as a consequence there is a 
performance cost – context switching. 

What was required was to overcome this problem by 
focusing on protection mechanisms. The resulting concept 
was SISR (Software -based Instruction-Set 
Reduction)[21]. What is unique to SISR is that there no 
longer are two process modes thus the switching 
overheads between user and kernel mode is eliminated. 
Instead, on loading, code is scanned for illegal operations 
and if detected the code is rejected insuring adequate 
process protection. That is, SISR removes the need for 
two separate processing modes by making use of code-
scanning and segmentation memory protection (rather 
than paging like Unix etc). The unit of protection in SISR 
is the component, which is protected through its own data 
segment and is of a given type (which has its own 
segment). When a component instance is active on a CPU, 
the instance’s data segment and type’s code segment are 
referenced by the CPU’s data and code segment registers 
respectively. Memory protection is enforced because 
SISR considers a segment-register load a privileged 
operation.  

User level components are prevented by loading 
segment registers because code-scanning ensures that no 
components’ text section will contain such instructions. 
This means that loading new values into code, data, and 
stack segment registers implements a context switch 
(which amounts to only 3 cycles on a Pentium). 

A truly component-based OS can be seen as a zero-
kernel system, where the kernel has been replaced by a set 
of components that cooperate to provide services usually 
found in traditional kernels. However, to invoke services 
on other components a privileged component known as 
the ORB7 is used to load segment registers to ‘switch a 
context’. This is the nearest part of the OS analogous to a 
kernel. For example, if component A wishes to evoke a 
service on component B then it indirects via the ORB 
component (which loads new code and data segments to 
perform the protected intra-machine Remote Procedure 
Call -- RPC). This is done by migrating the thread from 
caller to callee on the call and back again on return, as 
illustrated in Figure 6. These have the advantage of 
reducing the basic RPC times. These aspects of the OS are 

                                                           
7 like a Corba ORB however its functionality is more fundamental and it 
does not conform to the CORBA standard. 
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Figure 6: Components invoke services via the ORB 
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Figure 7 Overview of the Patia Webserver architecture

described in much more detail in [19]. 
The architecture then consists of an ORB and a library 

operating system, which contains the components 
composing the OS. As a proof-of-concept we have built 
the Go!8 OS, which has been developed for IA32 based 
architectures. So far, it has demonstrated that SISR offers 
greatly reduced protection overheads while allowing 
simpler and more decomposed architectures. The resulting 
relative performance improvement can be summarised in 
Table 1. 

As can clearly be seen from Table1, Go! consumes 
many orders of magnitude less cycles than BSD which 
shows the ballpark figure of basic procedure call 
overheads of a modern Unix system. Furthermore, the 
component core (namely the ORB) uses very little 
memory -- the space required per component is just 32 
bytes for each interface [20]. This is around two orders of 
magnitude improvement over page-based protection 
models found traditional operating systems. 

5.2 Patia Webdata Architecture 
A project overlapping with the Go! project is Patia9 

[26]. It is based on our adaptivity architecture and 
combines some agent-based technology. The amount of 
DBMS data that is being served via a Webserver has 
increased exponentially. Poor performance (or lack of 
response) is becoming more common, which is 
accentuated by unexpected flash crowds. Adaptivity in 
Webserver architectures can be achieved at the inter-
request level and the intra-request level and can help with 
not only improving server performance but also network 
performance.  An example of inter-request level 
adaptivity would be that a page has been delivered and 
when the client requests a given graphic the version of the 
graphic sent is one which best suits the monitored 
                                                           
8 Go! stands for Greg’s Operating System. 
9 Patia is a shortened form of Hypatia, scholar of the ancient world 

bandwidth between the server and that client. Intra-
request adaptivity could be that while the server is 
delivering some streaming media (e.g. audio) the codec of 
the stream is chosen to best suit the bandwidth, and if the 
bandwidth should change during mid delivery, then a new 
less bandwidth hungry codec is swapped in [23]. These 
examples illustrate how adaptivity helps performance, 
however adaptivity can help with fault tolerance. For 
example if a monitor detects, through some from of trend 
analysis, that the number of requests are beginning to 
peak beyond a given threshold then it can dynamically 
spread its processing (e.g. to non-Webserver machines 
like a typing-pools’ word processing computers), which 
can help with flash crowds. 

To achieve flexibility both the data and the webservice 
applications are componentised.  This means that the 
components that compose a webpage can be distributed 
over many machines. This can provide the advantage of 
intra-request parallelism as well as fault-tolerance where 
replication is used.  

Each unit of data is known in Patia as an Atom. We are 
assuming that the web pages are composed of things like 
graphic/text/streams etc. In this scenario we define the 
Atom as the smallest web object that cannot be sub-
divided10. Examples of this would be a video stream, 
graphic, a navigation button, a text frame etc. Webpage 
Atoms are distributed over the nodes in the system11 and 
some may be replicated.  

For each atom there is a unique identifier, name and 
set of constraints. The Atom follows the data structure of 
Figure 3 and its tuple structure is:  

 
Atom = <a_id, name, type, <constraint>> 

                                                           
10 We had considered that an Atom should be an object that it is best not 
to further sub-divide this means that the Atom can be a complete web 
page with text and graphics.  
11 We are not considering partitioning mechanisms in this scenario. 



 
The Webserver code is also componentised. Figure 7 

illustrates these components. The request comes into the 
system; is received by a service-agent component who 
takes this request finds the appropriate Atom and serves it 
to the client. The client may make subsequent requests 
directly to that service-agent who delivers the embedded 
objects. 

Table 2 lists a section of our atom metadata. Note 
constraint 455 for atom 123 – this is a constraint which is 
used for fault tolerance in say for example the case of 
flash crowds. Here the session monitor receives processor 
utilisation from the respective monitor, when it detects 
that the utilisation rises above 90% the server agent is 
required to run on a different node (one of node1 or node2 
delivering Page1.html). The different node could be a 
under-utilised machine in the typing pool that contains a 
replica of Page1.html. The action SWITCH indicates to 
the session manager that not only should the Adaptivity 
Manager save the data state, but also the processing state, 
as it is this that is about to migrate. That is, essentially the 
whole service-agent is mobile making the Adaptivity 
Manager’s task more complex. 

 

6 Our Vision 
As earely as 1991 Mark Weiser had a vision the next (3rd) 
wave of computing would no longer consist of 
mainframes or networks of PCs, but that computing 
would become ubiquitous and pervasive [30]. The key 
distinction between this type of computing and today’s 
systems is not really that of extreme distribution of data 
and processing over many small devices (though it is an 
important difference), but that computing should be calm. 
Weiser defined calm to be systems that did not require the 
user to ask what the computer could do for them; rather 
the system works out how it can best serve the user. This 
is essentially user empowerment. Such a system cannot 

expect the user to carry systems housekeeping or 
technical support therefore systems must become more 
self-aware, adaptive and essentially self-healing. 
Consequently calmness is a fundamental challenge to us, 
as the added intelligence does not come without a cost. 
Therefore we believe that the system must be dissolved 
into its elementary elements, which are fine-grained and 
augmented with ‘intelligence’. This is analogous to 
natural systems where cells and organisms evolve 
(usually) to best suit environments and demands.  
 It is our conjecture that future systems must be 
composed of well-defined file-grained self-reflective 
components and that this extra functionality does not 
impair performance. To this end we have investigated an 
alternative OS (Go!) composed of components and has 
shown that not only is it possible to dissolve the OS 
kernel in a fine-grained way, but that to do so can actually 
improve both the speed and space requirements of the OS. 
In parallel we have been examining the addition of rules 
and constraints to component-based systems architectures 
such as audio and Webservers (Kendra and Patia 
respectively) and experimenting with the very many 
levels of adaptivity [23, 26]. Both these systems are in 
relatively embryonic form at the moment and we are only 
beginning to look at how we can combine both elements 
of research aided by ADLs. Having said that this work is 
beginning to highlight some open issues and areas that 
need further examination. Some of the more important are 
listed below: 
• For systems composing of thin/small clients and 

servers interacting with highly distributed data and 
with varying degrees of replication for fault-
tolerance, novel physical data structures are required. 

• More work on adaptive data operators like the Join 
algorithms mentioned in section 2 is required. 
Currently this work has mainly focused on Joins for 
aggregation queries, however this needs to be 
broadened. 

• Self-learning systems must be lean and tractable. 
• Continuation of work on reconfigurable specification 

languages for components data is required. Current 
ADL’s are a good start but they are either domain 
specific or implementations reconfigure far too 
slowly. Further, typically ADL’s with adaptive 
capacity only focus on closed-adaptive systems so 
more work on systems that learn from previous 
adaptations are required. 

However the single most important observation we 
have noticed is concerned with the nature of the adaptive 
systems themselves. This was first noticed in our Kendra 
system, which is a simple adaptive audio server [23]. 
Thus far we are beginning to observe that our system has 
the potential to behave in a similar fashion to that of 
biological systems. That is, with finer-grained systems 
there are lots of  (tuning) variables, many feedback loops 
to drive the adaptivity etc., and it was quite difficult to 

 
Cons-
traint  

Atom Constraint logic 

450 123 Select BEST (node1.Page1.html, 
                      node2.Page1.html) 

455 123 If processor-util > 90% then 
SWITCH ((node1.Page1.html, 
                   node2.Page1.html) 

595 153 If bandwidth > 30 < 100 Kbps  
then BEST (  
    node1.videohalf.ram(time parms),  
    node2.videohalf.ram(time parms),  
    node3.videohalf.ram,(time parms)) 
else node3.videosmall.ram(time 
parms). 

Table 2 Snapshot of Atom metadata for Patia 
Webserver showing Constraints 



attribute elements of performance to the processing and 
decision-making carried out by the system. The Kendra 
system was relatively simple, how much more complex is 
a truly adaptive system whereby thousands of self-aware 
components should eventually find their best solution to a 
given task (perhaps evolving the solution as it goes 
along)?   

An opinion, specific to the nature of the CIDR 
conference, is that for this research to be fruitful holistic 
systems research is required. This is true for not only 
database system research but computer science in general. 
Primarily due to the funding of short-term projects, much 
systems research has been focused on in a narrow but 
deep way e.g. a single join algorithm, caching etc. This 
means we see very few publications showing how 
architectures or technologies that essentially have been 
around for 20+ years can be scrapped and replaced. 
Perhaps there is an argument that overly deep and focused 
work has detracted researchers away from the art of 
computer science producing exciting and genuinely new 
systems. However we acknowledge that the work 
presented in this paper certainly does not answer all the 
questions it highlights, we hope that the nature of the kind 
of architecture presented would encourage holistic 
research and specifically target the bigger problems e.g. 
cost of reflection, interfacing components etc. 

Finally, back in 1983 Boral predicted the demise of 
the Database Machine (DBM) and he was right to an 
extent [5].  DBM architectures based on specialised 
hardware or tightly coupled to specific specialised 
machines were always going to be problematic. However 
as componentisation dissolves the DBMSs architecture 
into components and that this is integrated, without 
boundaries, with the operating system (which in turn only 
activated the components that are required by the DB 
function, thus tailoring the architecture down to the 
metal), means that at that instant the system becomes 
effectively a Database Machine but potentially without 
the problems of standardisation and portability of the past.  
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