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Abstract

Symmetry reduction and control of the Hamiltonian system of a 2D rigid €ircu
lar cylinder dynamically interacting with a point vortex external to it is préseén
This dynamic model is an idealized example in an inviscid framework of fully
coupled solid-fluid systems interacting in the presence of vorticity and dtesp
tial applications to problems in engineering and in nature involving the interactio
of coherent vortices with bodies moving (primarily) under their influerides dy-
namics of the system generically gives rise to two types of vortex orbitéveta
the moving cylinder: bound and scattering orbits. The control input afumded
external force acting through the cylinder center-of-mass is thendadebeploit-
ing theSt-symmetry in the system, symplectic reduction is employed to formulate
an St-invariant control system, that preserves the momentum map, on the two
dimensional symplectic reduced space. On this reduced space, hoetptimal
and optimal controllers, the latter using Pontryagin’s maximum princip&ejrar
vestigated with the control objective of changing the vortex orbit fromunbddo

a scattering type and vice versa.

Keywords:fully-coupled, point vortex, cylinder, optimal control, reduction, scat-

tering
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1 INTRODUCTION

It has become increasingly important in the past few yeagsitoa better knowledge of
the nonlinear fully-coupled dynamics of interacting sdligid systems especially for
the following applications: the building of energy-effistesmall autonomous vehicles
(underwater and aerial), an improved understanding ofe@laroblems in nature such
as fish swimming and bird/insect flight, the study of partieleen flows and the ever-
important topic of vortical structures interacting with witeg bodies at high Reynolds
numbers, such as aircraft, ships etc. In fact, dtbrthese applications one wants to
understand the role of coherent vortical structures in tieanity of the solid body
on the motion of the body. The topic of vorticity interactimgth solid bodies has
of course been well-addressed in the aeronautics literaéspecially in the areas of
aeroelasticity and vortex-induced oscillations. Thesipus approaches, however,
have typically been either (a) in a linearized frameworkiQiif a framework that does
not account for the full coupling of the solid and fluid dynamiMoreover, in most of
these approaches the body is held in place or undergoesipessmotions.

From a dynamics and control point of view it is interestingitst study the problem
in a setting in which the body is allowed to move freely undher $tress field induced
on its boundary by the fluid flow and in which the simultaneailience of the motion
of the body on the fluid is also completely accounted for. 8ghently, constraining
or control forces can be imposed on this fully-coupled dyicahmodel. In particular,
a finite-dimensional model to which dynamical systems anatrob theoretic ideas
can be applied would be desirable. With this goal in mind, el such a finite

dimensional model in this paper in which, however, we makeftproximation that the



flow is inviscid and, consequently, the stress field on the/limdnly the pressure field.
The dynamics of this model is fully-coupled but onljthin this inviscid framework.

The point vortex model in theoretical fluid mechanics is ayapfinite dimen-
sional approximation of a fluid flow with coherent vorticatugttures [14, 15]. It is
a kinetic energy conserving model of the fluid and thus doe¢socount for the dis-
sipative and other effects of viscosity. Hamiltonian poiottex based models of a
solid cylinder interacting with vortical structures haveen recently constructed by
Shashikanth, Marsden, Burdick and Kelly (SMBK) [26) 25] ahthost simultaneously
by Borisov, Mamaev and Ramodanov (BMR) [22, 4, 3]. In thesel@®a moving 2D
rigid cylinder dynamically interacts witN point vortices external to it.

In this paper, the SMBK model is considered for the case ofeuldr cylinder
and wherN = 1, i.e. there is only one point vortex in the flow. This fourdinsional
Hamiltonian system is symmetric under a diagonal actioB'aind has an associated
conserved momentum map. The dynamics of this system isratitg[4]. The motion
of the vortex relative to the moving cylinder is typically aunded orbit or a scattering
orbit. The terminology of scattering orbit, borrowed frorwkBardt and Aref [7], refers
to orbits that are in the vicinity of the cylinder for a finitenqiod of time but move to
infinity, relative to the moving cylinder, for time approaet both positive and neg-
ative infinity. This dynamic model is extended to a controldmloby the addition of
a control force acting through the center of mass of the dgiinsee Figure 1. The
St-symmetry and the Hamiltonian structure of the drift vedteld are then exploited
to construct ars'-invariant control system which leaves the momentum magriant.

This control system lies on the two-dimensional symple@ituced space [13] and is



a planar single-input control system and is thus more anieriatanalysis than the
original four-dimensional control system.

The control problem investigated on the symplectic redusgate is motivated
by a fairly general consideration relevant to all the ailams mentioned previously.
Namely, there are situations in which the presence of colematicity in the vicinity
of the moving body is favorable to the dynamics or motion & blody and there are
situations in which it is not. An example of the former woukdlthe transfer of impulse
to the body by coherent vortex structures shed in the wakeiofiing fish or flying
birds [28] and an example of the latter would be the destabgieffect on the motion
of an aircraft or a ship by a strong coherent vortical strectn its vicinity. As a more
specific example of the unfavorable effects of vorticesyhke hazard problem which
has been a concern for a long time in the aircraft industry §2®uld be mentioned.
This is the problem of smaller aircraft taking off or landitap closely in the wake
of larger aircraft and risking interaction with the tradirvortices shed off the wing
tips of the larger aircraft and their consequent destabgieffects. It is reasonable in
such flows to expect scenarios in which the solid body, urtkeratction of a control
input, would like to either have a vortex (vortices) in itopimity or break free of
it (them). It is of course true that in examples like thesefthiel dynamics is more
complicated than in our idealized model. Apart from 3D argtwus effects, such as
vortex shedding, merging and filamentation, there could éssignificant turbulence
effects. But, nevertheless, as a start it is interestingosepand try to answer the
following question in our idealized model: what are the cohaws for the force on

the circular cylinder to change the vortex orbit from a botma scattering type and



vice-versa?

The problem presented in this paper may also be viewed, frgegpmetric control
perspective, as a nice example of utilizing the underlyirsgriftonian structure and
symmetries, when they exist, of the drift field to formuladetrol laws. Indeed, setting
itin the intersection area of geometric control theory aodex dynamics, the problem
is quite novel.

However, control of Hamiltonian cylinder-point vortex meaisdl per se is not a new
idea and neither is the control objective we study. Prevap®oaches have consid-
ered the cylindefixed in placein the flow of a uniform stream and are typically set
in a non-geometric-control setting. Important examplesthe work of Kadtke and
Novikov [9], who were probably the first to consider the pevhlof the capture of a
point vortex, i.e. changing its orbit type from scatteringobund (the vice-versa ob-
jective was not considered)gRtek, Kadtke and Pedrizzetti [17], Protas [20] and Li
and Aubry [10]. It is worthwhile to emphasize the differeadsetween these previ-
ous works and our model, namely: (i) our control-free model fully coupled model
(within an inviscid framework) in which the cylinder is frée move under the action
of the pressure field on it surface and is not held in place ositained in any way,
(i) we make explicit use of geometric mechanics ideas swdHamiltonian structure,
symmetries and momentum maps to construct our control nasak(iii) we consider
optimal control using Pontryagin’s maximum principle. osild also be pointed out
that optimal control of idealized interacting fluid-soligsteems has been considered
before by [5, 6, 8] but in all those models there is zero vigtin the flow. Some

results on the time-optimal control and local accessibdit the model in this paper,



Figure 1: A 2D rigid circular cylinder dynamically interaeg with one point vortex
external to it and with a control force acting through itstegmf mass.

without invoking symmetries, may be found in [12].

The structure of the paper is as follows. In Section 2 we lyriefliew the SMBK
Hamiltonian model for a circular cylinder amdivortices. In Section 3, for the cable-1
we implement the techniques of symplectic reduction andinlthe symmetry reduced
spaces and Hamiltonian vector fields. In Section 4, we coacisér single-input control
system on the symplectic reduced space. The control inpufasce acting through
the cylinder center. In Section 5 we investigate both notiogd and optimal control
trajectories for this system with the control objective banging the vortex orbit type
from bound to scattering and vice versa. For the optimalrobmte use Pontryagin’s
maximum principle to minimize total impulse or ‘fuel consption’ cost. Finally, in

Section 6 a few concluding remarks are made and future directliscussed.

2 TheSMBK model

In this section, some features of the SMBK model for geniraiich are relevant for

the casd\N = 1 that is studied in this paper will be presented.



2.1 Equations of motion

Recall that in the SMBK model [26] the control-free equasiaf motion of a 2-D rigid
circular cylinder dynamically interacting witN point vortices in an inviscid frame-
work ar£v

dL

a:—erk, 1)
dl; oH .
r]a——JTH, j=1.. N, (2)

whereV is the velocity of the body center of mads,is the position vector of the
jth point vortex in the body-fixed framé, is the unit vector normal to the plang=
< 2 _01 ) is the canonical symplectic matriX,; is the strength of thgth point

vortex, I = Z'j\l:]_rj andL is the linear momentum of the system (i.e. fluid linear

impulse plus cylinder linear momentum) given by:

L—cV+%F-I-><k+R2§k><I'-< Xi Vi ) (3)
- 1Y J '
=1 =1

In the aboveR is the radius of the cylinder and= 2rR? denotes the mass plus the
"added mass” of the cylinder. Note that due to the free-dhipridlary conditions at the
cylinder surface the angular velocity of the cylinder plagsrole in the dynamics of
the system.

The system state space is
P:= (R?)* x (R™N\(AUBY) =Ry xR,

whereA denotes the set of all collision configurations of the poottices, i.e. config-

urations in which two or more vortices occupy the same poitié planeBN denotes

1All quantities in the equations are with reference to a bfidgd frame whose origin is at the body
center-of-mass.



N copies of the regiolB = St ¢ R? occupied by the body. The excluded sét,J BV,
is therefore the set containing all collisions configunasiof the vortices, amongst
themselves and with the cylinder.

The Hamiltonian functioid is the body+fluid kinetic energy minus infinity terms
and is not explicitly written here for generbll. For the caséN = 1, it is written in
the next section. The Poisson bracket structure is briefigugised in Appendix A. For

more details on all these see [26].
Notation for pairings
In the rest of this paper, the notatidn) stands for the canonical inner-product on

Euclidean spac®&N, viewed, also, as the canonical pairing betw@&hand its dual
space(RN)".

3 Symmetry and reduction of thedynamicsfor N =1
Consider the one point vortex cadé £ 1). In this case/ (1) and (2) represent a four
dimensional system. L&t = (Ly, Ly,xl,yl)T, where the pairgy, Ly andxy, y; are the
components of andl,, respectively.

The Hamiltonian function and the Poisson brackets now asstina following

form:

r2 1/1 rz., .-
H('—Jl):E['Oga-FE §<L7|—>—a<|-><r1|1,k>+?a ]I, (4)

wherea(|[l1]);R) = 1 R2/(||I1]|?), and

(F.G}i=T OF 0G _0F 0G\ 1 (0F oG _0oF 0G
T OL a0 dLkaly ) Ti\dxdyr  dyiox
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respectively. Note that & a < 1. The Hamiltonian (4) is the kinetic energy of the
body+fluid systenminusinfinite contributions. These contributions arise due to tw
standard reasons (see, for example, §213): (i) the singular nature of the velocity
field of the point vortices and (ii) the fact that the flow dom& unbounded.

The control-free vector fielt{X) = (f1(X), f2(X), f3(X), f4(X))T is then given by:

JH M
f1(X) = —rlaT_y =0 (Ly+T1xa), )
oH I,
fz(X) = r]_TLX = ? (LX_ rlyla)7 (6)
1 0oH
fa(X) = =2,
3(X) M0y
_ R (Lg-yD+2byxays Tay
R 21 a
1
+C(—Lx+r1yla(2—a)),
1 0oH
fa(X) = —= 2
4( ) rl 3X17
_ R L)ty Tix
R c ZE

— % (Ler |_1X1a(27 a)) .

Note that sincéfl1|| > R> 0, the vector field i€ onP.

To formulate our control problem and to arrive at conclusitreoretically is, rel-
atively speaking, difficult to do directly on the unreducedifdimensional system.
With this in mind, we try to exploit the Hamiltonian structuand symmetries in the
system to reduce the system dimension and then formulateotpnoblems directly
on the symmetry reduces spaces.

Next, we give details of the symmetry reduction and obtatnsymmetry reduced
spaces. For an explanation of the ideas used in this seatidoding the differential

geometric notation, the reader is referred to [11].

11



3.1 Sl-symmetry and momentum maps

The Hamiltonian functiord and the Poisson bracket are invariant under the following

diagonal action of the rotation gro on P:
CDA'(Lall):(A’LaA'Il)? (7)

whereA € SO(2) and®, : P — P denotes th&' action of elemena € SO(2).

This diagonalS' action admits a momentum mapy : P — g* = R* = R com-
puted in the standard fashion [11] i.e. the infinitesimalagator,p(X), of the action
should be a Hamiltonian vector field relative to the bracket the Hamiltonian func-
tion defined by theéR-valued momentum map. The infinitesimal generator is easily

computed as
&p(X) = (—Ly,Lx, —Y1,%1)¢&

and the momentum map as

1/L|?
3900 = 5 (AL -rapuai?).

By Noether’s Theorem, this quantity is conserved by the dyina. Note that both the
group action and the momentum map can be generalized inighgfoaward manner

for generaN for the casd = ZiN I #0.

3.1.1 Symplectic Reduction

In terms ofp andq (see Appendix C), the momentum map is

1 L2
Jsl(X)ZE <|r|l|—r1|||1||2> =r—pl—r1q:u (8)
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Choose(p, ¢, 0) as coordinates fodgll(u) , where@ and 8 are angle coordinates in
the physical plane of the vectdrsandl, respectively.

The inclusion may, :ngl(u) — Pis given, using polar coordinates By by
ill(pv (P,e) = (p7 (1/r1)(p/r1_ u)7(pa 9)
SinceP is also a symplectic manifold with symplectic form given by
1
Q= l_—d(p/\dp+ r,dqnde,
1
the inclusion map defines a presymplectic forrnlgfi(u) by pullback:
. 1
i,Q=—(—dpAdp+dpAdb)
M

The symmetry group that acts dgl(u) is alsoS' since it is Abelian (i.e the coadjoint

isotropy group is the full group). The projection mep: ngl(y) — Py, where
Py =Jg'(H)/S',

is given in coordinates by, (p,,0) = (p,a), wherea = ¢ — 6.
The symplectic forn,, on P, defined by [13]
i, Q=mQ,,
is then given by
1
Qu=—(—dpada)
M

Next, we obtain the reduced Hamiltonibp : P, — R by restriction of((4):

re b
hy(p,a) = E%IIOQ <2pu> 9)
1 D . 1b2)
+=p+b,/—sina+-— |, 10
C(p D eina 30 (10)
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whereb = 2p, — M2R? andp, = p— 1. Note the following inequalities,

r2R2 b
pu>?>0, b>0, 0<m<1 (12)

Reduced Hamiltonian Vector Field:  The Hamiltonian vector field oR, is obtained

as
dp_ o
dt ~ 'oa’
:—Eb ﬂcosa, (12)
c \ pu
da _ ohy
dat  top’

5 2
dmbp, ¢ \\py V P 2pp \V P\ Pu

+ % (2— W) (13)

4p3
The trajectories of (12) and (13) are given by the level csinfethe reduced Hamilto-

nian functionh, and are shown in Figure 2.

4 Control system on the symplectic symmetry reduced
Space

In the presence of a control input in the form of an externatdd- acting through
the center of mass of the body(centroid= origin of body-fixed frame), as shown in
Figure 1, the equations of motidn/ (1) and (2) in the unredspede become:

dL

G = VxTkEF (14)
diy oH
Mgt = o (15)

The system (14) and (15) can be re-written in the form of amMedisional affine

control system [16]:

14
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Figure 2: Level curves of the reduced Hamiltonian functigrfor the following pa-

rameter valueR = 1,I'; = 1 andu = —0.75. They-axis representp and thex-axis
representsr. The levels of the curves decrease in value going down-tinds.

dXx
whereG = (g1,02) andg; andg; are, in general, 4-dimensional vector fields. The
vectoru = (ug,up)T is the control input vector with elementg and uy being the
components of the external for€an the x andy directions respectively.

To formulate arSt-invariant control system which leaves the momentum map in-

variant, we stipulate that the force vector field = (F«,Fy,0,0) : P — TP on P be

Sh-invariant, i.e. it should satisfy

Xe (A-X) = D®p-Xe (X) = A-Xe (X)

whereD®, : TP — TP denotes the derivative of tH# action (7). The last equality
follows since, for thisS' action, the derivative map® = da.

To proceed further down to the reduced spBggthe force vector field o should

15



not only beS'-invariant but should also leave the momentum map valugieva For
the momentum map (8) to be invariant under the control systector fieldXy, the

following must be satisfied
H, g =0,
where.Z denotes the Lie derivative. However,
Lo dg = Ly da + L g

whereXy is the Hamiltonian vector field on the unreduced spRc&inceXy leaves

the momentum map invariant, it follows that

2
B g =Bedg = £ (FL).

And thus we arrive at the following constraint for the foregdito leave the momentum

map invariant under the flow of (14) and (15):
(F,L)=0

If we ignore the trivial option, then this implies that thede must always be perpen-
dicular to theL vector.

To summarize, in order to obtain a control system directljr@reduced spad®,,
the following two conditions are sufficient: (i) the forceléiés S*-invariant and (ii) the
force vectorF is always perpendicular to the linear momentum vekttor

Note that in polar coordinates the force terms take theviotig form on the unre-
duced space{F,L)/|L| and(L x F)/||L||?, and appear on the right sides of equa-
tions (44) and[(4b), respectively. After imposing the abovementum map con-

straint on the force, the former term disappears and therlstm can be written as

16



+||F||/(2,/P), the sign depending on whethEris rotated 90 counter-clockwise or
clockwise fromL.
Thus, we obtain the following'-invariant single-input affine control system (with-

out any momentum map constraint) on the reduced sBace

dp
at =Xy, 17)
da a u

Wherexhpu andxﬁu are the components of the drift vector field (right sides afaeq
tions (12) and (13) respectively) and= +||F||. Writing it in the form of (16) and in-
troducing the notatioX, = (p,a) € Py, we see thaG(X,) = g(Xy) = (0,1/(2\/p))

consists of just a single vector for this system.

5 Vortex capture and vortex scattering on momentum
level sets

It is obvious from Figuré 2 that the vortex orbits relativeth® moving cylinder are
either bound orbits or scattering orbits. Examples of sutlit®in the physical plane
are shown in Figurgs/ 3 ahd 4. In this section, we discuss @datrs to change the
vortex orbit from one type to another. Before proceeding,paese to introduce the

following standard notation for concatenation of curveg [ be used later.

Notation ~Given curvesl; : [to,t;] — RN andd; : [ty,t] — RN wherety < t; < t,, the
curve

d=dy*dy,

17
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Figure 3: Bound vortex and cylinder orbits for parameteugalR=1T1 =1, u =
—0.75 andk = —0.01. The plot on the left shows the orbit of the vortex in theyod
fixed frame of the moving cylinder and the plot on the rightw&dahe cylinder orbit
(dashed) and vortex orbit in a spatially fixed frame.

is defined as
d(t) = dl(t), te [to,tl),
= dz(t), te [tl,tz].

The control objectives for vortex capture and vortex scatein the S'-invariant

control systenXc on Py, given by(17) and (18), are now stated.

Control objectivefor vortex capture: To design a controller that will move the vortex
from a given point in a scattering orbit of energy-momentatue(k;, 1) to a point in

a bound orbit of energy-momentum valke, ).

Control objective for vortex scattering: To design a controller that will move the
vortex from a given point in a bound orbit of energy-momentaiae ki, ) to a point

in a scattering orbit of energy-momentum valke, 1t).

18
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Figure 4: Scattering vortex and cylinder orbits for paranetlues:R= 1,1 = 1,

U = —0.75 andk = 0.031. The plot on the left shows the orbit of the vortex in the
body-fixed frame of the moving cylinder and the plot on théntighows the cylinder
orbit (dashed) and vortex orbit in a spatially fixed frame.

5.1 Control without optimality criteria (‘bruteforce’ control)

In this subsection, we first look at how to achieve the aboatedtcontrol objectives

with no bounds on the control force and no optimality crieri

Scattering orbit to bound orbit with dp/dt < 0 at initial time: We first address
the case of transferring the vortex from a scattering orb# toound orbit when the
initial point on the control trajectory hasp/dt < 0. Without controls, the value of
dp/dt reaches zero and continues to positive values as the vartegspast the point
of minimum approach. It is obvious from (12) and Figure 2t tloa such a pointx
changes continuously froifrr/2)~ to (11/2) .

In general, a control input with the following sufficient ot necessary) feature
can steer the system to satisfy the stated control objedhieecontrol trajectory moves
down in thek-p plane while maintainingr between—m/2 and /2. From [(12) it
follows that such a control trajectory will eventually Hiigt contour curve, in Figure 2,

at the required energy levk} of the desired bound orbit of the vortex.

19



This feature can be achieved by, for example, a controllewfach

da
(%),

with a control input of the form

u=—2,/pX?. (20)

and the closed loop control system is described by the emsati

@ — _Eb ﬂcosa
dt /. c \ pu o
da

(&).=°

Scattering orbit to bound orbit with dp/dt > O at initial time: It is obvious from
Figure 2 that in this case, at initial time, lies in the intervait/2 < a < 3m/2. Thus,
one can initially have a control input whose objective isttarged p/dt from a positive
value to a negative value which can be achieved by decreasimgm its initial value
greater tharr/2 to a value less tham/2. Once this has been achieved the control
input (20) can be implemented.

Therefore, an example of a control input in this case is,
U= UuzxxUj,
whereu; is any control input that satisfies, at each time instantith&bn, theinequal-
ity
U < —2/PXy,,

andu, is of the same form as (20). t§ denotes initial timet; denotes the time when

Uy is turned on and, denotes the final time, then the closed loop control system is

20



described by the equations:

dp\ _ T, /P (9P _ T [P
(dt)c_ Cb pucosa,te[to,tl),.(dt c_ Cb pucosal,te[tl,tz]

da a . (da
<dt>c = u1+2\/5xhu,t € [to,t), : (dt)c =0,t € [t1,t2],

wherea; = a(t).

Bound orbit to scattering orbit with dp/dt > 0 at initial time: In this casea at
initial time lies betweemnt/2 and 31/2 and it is obvious, referring to (12) and Figlre 2,
that the control input can again be of the form/(20). Note thate is really no need to
consider separately the casp/dt < 0 at initial time due to the periodicity in the sign
of dp/dt in the bound orbit. One can allow an initial uncontrolledgstdo allow for

the sign ofd p/dt to change to positive.
5.2 Optimal control and some ‘bang-bang’ non-optimal cases
We now consider optimal control of the problems discussetérprevious subsection

and also discuss some ‘bang-bang’ non-optimal cases.

The Pontryagin Hamiltonian [19, 18] for the control syst&lid)(and((18) is given
by:
Hp (Xp, A, u) = ATXq, +ATg(X 0 )u+ Ao o,

whereA = (A1, Az) is the adjoint vector satisfying the equations

dAr _ dHe
dt  dp
0 p oXa
_ Py (P, 0 (1) o210, (21)
ap ap ap 2,/p ap
p a
d  oHp 9%y, Xy 9f
Gt da - da M a2 aq (22)

21



Ao is a non-positive constant and the cost functica fttf fo(Xy,u) dt.

Total impulseor ‘fuel’ cost. Consider now the point-to-point transfer problem from
specified pointX1, on energy-momentum levéks, 1), at specified initial time; to
unspecified poinXz, on energy-momentum levéky, 1), at unspecified final time
with boundedu (—1 < u < 1). Moreover, we choos&(X,u) =| u| so that the cost

function being minimized is the total impulse

.t2
J:/ lul dt
Jy

The Pontryagin Hamiltonian, takimg = —1 (the case of abnormal controlleAg,= 0,

is discussed briefly later), becomes

Hp (X, A U) = ATXq, +ATg(Xpu)u— | ul,

—)\thp + XS+ /\\f —|u] (23)

A necessary condition for an extrem{a;,, A*,u*) is that it maximizeHp with respect

to u. This implies that

u'=1 when > \F (24)
u'=0, when—-1< 2\/*» (25)
U= -1, whenzr < -1, (26)
O<u" <1, whenzr 1 27)
—1<u* <0, Whenz\ﬁ -1, (28)

Following the terminology in time-optimal control, we wilefer to the controller in

the last two cases asngularcontrollers.
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Transver sality conditions The actual poinK» on the target energy-momentum level
set (curve)ky, 1) at which the controller is turned off is determined by thengneer-
sality conditions:

(A*(X2(t2)))"t(X2(t2)) = O,

wheret denotes the unit tangent vector field on the target energpentum level
curve. But since this curve is a level curve lgf, indeed an integral curve of the
control-free vector field, it follows thdtis parallel toX,, at all points on the curve so

the transversality condition becomes equivalent to

(A" (X2(t2))) X, (X2(t2)) = 0

From [23) and the zero value bfs along extremal trajectories it follows that at the
final point

A1,
2/p

if u* = +1 at the moment the controller is turned off. Note that thagversality

(29)

condition is automatically satisfied by a singular extremal
In Figurée 5, the trajectories of the control system in thax )-plane for the bound-
ary values ofu are shown. These curves are obtained as level curves of tiieko

Hamiltonian functions defined as

r2 b 1 P 10?2\ /P
+ -1 = = L il yF
hu(p,a)_4nlog< )+C<p+b sina + )+

2py Pu 4pu |_;|_7
_ r2 b 1 P, 1\ P
hu(paa)—4n|09<2pu>+c<p+b puSIl’la—F4pu)—rl

Before studying optimal trajectories, we look briefly atrigabang non-optimal

control U= +1).
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Figure 5: Level curves of the functiorhif (thin line) andh,, (thick line) for the
following parameter valuefR = 1,I'; = 1 andu = —0.75. They-axis representp and
thex-axis represents.

‘Bang-bang’ non-optimal control: scattering orbit to bound orbit From Figuré 2,

it is obvious that for the vortex to be placed on a bound orb#ome specified energy
level it is sufficient for the control trajectory to hit thertieal line a = 311/2 (in the
p-a plane) at the peak valuanax of the bound orbit. From Figure 5 it is easily seen
that this can be achieved by a ‘bang-bang’ controller witmast one switch i.e by a

control trajectory of the form
Y=VY-1*xV41,

wherey, 1 is the control trajectory, withi = +1, starting from the initial poin¢po, ao)
on the scattering orbit ang 1 is the control trajectory, withi = 1,ﬁassing through
the final point(pmax 37/2), provided these two trajectories intersectAs seen from

Figures 2 andl5, these intersections do indeed occur foga tarmber of trajectories.

However, if pmax lies below the separatrix of the 1 trajectories then such a bound

2Keeping in mind the directions of the control trajectoriesFigure 5, it should also be noted that the
switch occurs at a point right of the vertical lime= 37/2.
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orbit may be inaccessible from a scattering orbit using §sbang’ control.

‘Bang-bang’ non-optimal control: bound orbit to scattering orbit Similar con-
siderations apply but with the order of the control trajeiet® switched. Assuming the
‘peak’ of the bound orbit (see Figure 2) is above the separatthe y_; trajectories a
control trajectory of the form

Y=Vq1xV-1,

wherey._1 is the control trajectory starting from the initial poiffo, ao) on the bound
orbit andy, ; is the control trajectory passing through the final pémt a1), achieves

the desired transfer.

521 Optimal and almost optimal control

From [24),[(26),/(25)/(27) and (28), it follows that an exrtid trajectory should be a

concatenation of ‘bang-bang’, singular and control-fres2

‘Bang-bang’ extremal arcs. A feature of extremal trajectories is thel is zero

along extremals. Thus, for the boundary values of

* * A*
implies that
Al_xf?(l— (Athﬁzﬁ : (31)
n

= F(3, X (p,a"), %5 (7, a"), p"),

3Note that in this subsection, we will also be referring tod¢beresponding arcs of optimal trajectories in
the p-a plane.
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Figure 6: Black regions defining the domains in which theropticontrol trajectory
can lie for the normal ‘bang-bang’ case, with= 1 in the left plot andu* = —1 in
the right plot, for the following parameter value®= 1,y =1 andyu = —0.75 . The
y-axis representp and thex-axis represents.

assuminngf’; + OH Simultaneous satisfaction of (31) and the adjoint equati{@1i)
and [(22) written for the extremal, gives relations betwdenadjoint vectors and the
state vectors along an extremal trajectory whén= +1. In other words, along a

‘bang-bang’ extremal arc,

Af =Af(ph 0%, U =41),

A=A (pa*u =+1).

Only the second pair of these relations is important sineesiin ofA; determines the
value of the optimal controllar*. These relations are given in Appendix B1.

A ‘bang-bang’ extremal arc necessarily has to satisfy (225), (42) and (43). The
black regionsD, andD_ in the left and right plots in Figure| 6, respectively, are the
regions in thep-a plane whergA;)" /(2,/p*) > L withu* =1 and(A})~/(2\/p*) <

—1 with u* = —1. It follows that ay, 1 arc of an optimal trajectory can occupy only

4This is an assumption we will make throughout this sectionesthe caseqf; = 0 does not give rise to
any non-trivial optimal arcs.
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D,, ay_1 arc of an optimal trajectory can occupy oridy and bothy,; andy_; arcs
can occupyD, ND_ if non-empty.

The imposition of the transversality conditian (29) is eglent to fixing the final
point of the optimal trajectory as the point of intersectaifrthe target curve with the
boundaries oD, (if u* = 1 at the moment the controller is turned off) or with the
boundaries oD_ (if u* = —1 at the moment the controller is turned off). However,
not all boundaries of the black regions in Figlire 6 are ragotaindaries i.e bound-
aries across whict;)*/(2,/p*) and(A;)~ /(2/p*) changecontinuously The val-
ues of (A3)~/(2\/p*) and (AJ)*/(2,/p*) blow up to positive and negative infinity
as one approaches from either side, respectively, the mmendaries in the left plot
and the top boundaries of the black ‘cup’ and ‘dome’ in théntriglot of Figure 6.
Hence, a ‘bang-bang’ arc has to end on the outer boundarigsedéft plot, where
(A3)*/(2/p") =1, or on the bottom boundary of the black ‘cup’ in the righttplo

where(A;)~/(2/p*) = —1, to satisfy the transversality condition.

Singular extremal arcs. For the singular controller cases,

N =22p, A =F 2/ /X (32)
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Substituting eacliA;, AJ) pair in (21) gives, in both cases, a relation of the form

R B B
2p* Pt da* “\2 da*
p Xhl-l (xhp>

n

O O N T A
2p* xP da*r  [up\2 da*
R (x5)

oo
(33)

* * p*

1 1 9%, X 9%,

S U ==2p X, it | e - s—— | #0,
u 2p Xh“ Jda (thu> Jda

valid when 0<| u* |< 1, and

0 a* a* 0 p*
u* = indeterminate if2—1*+ % ;;hﬁ: — Al 5 (9)((;: =0. (34
P %o (thu>

Substituting[(32) in[(22) on the other hand gives a relatimye in thep-a plane)

C(p*,a*) = 0 of the form

Ty a p* p* a*
_ APy, 9% K, _zﬁaxh“
th* dar  \/p* da*
n
a* p* a*
X&oXE 1 1 oxg

(th*)z da* 2p* thZ da*

=2/,
n

=0. (35)

C(p",a*):

It follows from (34) and[(35) that the singular controlleirisieterminate and a singular
arc of the optimal trajectory has to coincide with (a portdjithe curve defined by (35)
which is plotted in Figure 7. In Figure 8, the curves of FigR@end Figuré 7 are shown

superimposed.

Control-free extremal arcs. From Appendix B2, it follows that whed; is in the

interval defined by (25) the arc of an optimal trajectory lwbe a control-free arc or,
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Figure 7: Singular optimal arcs for the following paramefagiues:R= 1,1 = 1 and
U = —0.75. They-axis representp and thex-axis representq.

5 .
\\\\\
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\

Figure 8: The singular optimal arcs of Figlire 7 shown supeoised on the control-
free trajectories of Figure 2 (shown dashed).

in other words, the arc of a level curve of the system showrigar€e 2. Obviously, for
the control objectives of this paper, such an arc can lie onige interior of the set of

points of the optimal trajectory.

Abnormal controllers. For abnormal controllers, for whichg=0, the Pontryagin

Hamiltonian (23) is

A
Hp (X, A, U) :/\1XhFL+)\2XﬁL+2—\%u. (36)
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It follows that optimal controllers in this case should barig-bang’. SpecificallQ

A*
u =1, when—2— >0, 37
2y 7

A*
u*=—-1, when—2_ <0. 38
2r 9

Analysis as in Appendix B gives the following two relatioms A

24 1 N2
*\+ u a* _xP H — i
A2)"\ Fa (Xh“ Jr2\/5) i da ¢ w=1
p* a*
()\*)7 a)<hl.1 Xﬁ*— 1 - p* 0><h“ :O u*:_l
2 da \"M 2P v da ’

Since a zero value foY; is not allowed, it follows that abnormal ‘bang-bang’ extiam

arcs should satisfy the relations

J p* ) 0 a*

at X+ L)y 2 =0, u=1,
Ja* W 2yp* v da*

p* a*
PR U WUV W
dax W 2yp* b dar

The curves in the-a plane defined by the above relations are in fact the bourglafie
discontinuity (as discussed previously) of the black regim Figuré 6. These curves
for the most part are not coincident with the control trajeets of the system for the

boundary values afi* shown in Figuré 5.

Implementation issues. Before closing this section we briefly discuss some of the
implementation issues involved with this modethin this idealized framework i.e.
without consideration of 3D, viscous and turbulence effe€he main issue obviously

is the measurement of the state space variglhlds) and the parametér;. Sincel is

5Note that the singular case here, ig.= 0, impliesA; = 0 from the zero value condition on (36) (see
also footnoté %) and so is ruled out by the maximum principle.
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related tov andl through|(3), this is equivalent to the measuremeriMofy) andr ;.
Whereas the measurement of the cylinder velo¢ifg not an issue, the measurements
of the vortex position (relative to the moving cylindéy)and the vortex strength;
require some discussion.

In flows represented by our model, it is obviously impradttoadirectly measure
vortex characteristics from the moving body itself. In fasten in more stationary situ-
ations such as laboratory flows, accurate tracking of a xeeguires a fairly elaborate
diagnostic set-up involving illumination by laser sheetseding the flow, high-speed
cameras etc. A more practical but indirect way of obtainingex information is to
compute the pressure distribution around the body usingspre sensors located at
different points on the body surface. Subtracting from thagal) pressure distribu-
tion the pressure distribution due to the irrotational flesaciated with the motion of
the body,® one obtains the pressure distribution due to the vortex fldws pressure
distribution can be used to estimate the location and sthevfghe vortex.

The change in direction of the control force can be achievegractice, by manip-
ulation of aerodynamic surfaces on the body or by thrustoraw.

Finally, we should mention that the control methodology andlysis presented in
this paper can also be applied on the Poisson symmetry rédyeeeP/S" i.e. the
symmetry reduced space without the constraint of the mamemap. However, the

details of this case are not worked out in this paper.

6this pressure distribution can be obtained analyticaltysimple body geometries and numerically for
others and depends only on the body shape and its instangwelocity, see [14]
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6 Conclusionsand futuredirections

Control of an idealized model of a fully coupled dynamicaiiyeracting planar fluid-
solid system, in the presence of vorticity, is considerethis paper. In this model a
circular cylinder interacts with a point vortex externalito The control input is an
external force acting through the center of the cylinderplgiting the Hamiltonian
structure and symmetry in the problem, we are able to reduealimension of the
system and formulate a control system directly on the symymetiuced space. With
the control objective of changing the vortex orbit type friwund to scattering and
vice versa, both non-optimal and optimal control strategie studied, the latter using
Pontryagin’s maximum principle.

A detailed investigation of the structure of the optimal tohtrajectories of the
model revealed the following. Normal optimal control tiEmies, in general, are
combinations of ‘bang-bang’, singular and control-freesar The singular arcs, de-
spite their simple structure, can achieve the desired cboljective by themselves as
shown in Figuré 8. Moreover, the singular arcs connect dfimany different energy
levels. However, the singular controller is indetermin&e the other hand, noting the
almost vertical form of the singular arcs in Figlie 8 and thalgsis of ‘brute-force’
control in§5.1, it may be conjectured that a singular controller co@dpproximated
by (20) in regions where &| 2\/@('?“ |< 1. The ‘bang-bang’ arcs shown in Figure 5
have a restricted domain of validity in thea plane shown by the black regions in
Figure 6. Theu* = 1 arcs lie in a very small domain making them for most purposes
useless by themselves to achieve the control objectiveuThe—1 arcs have a bigger

domain of validity. In general, however, it can be seen thatlbang-bang’ controllers
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are limited in their ability to achieve the desired vortekibtransfer. Abnormal con-
trollers are again ‘bang-bang’ but the corresponding @bratrcs are either trivial or
have restricted use.

For future investigations in this idealized framework (ith applications in mind)

the following extensions of this problem suggest themselve

Non-circular cylinder shapes. For non-circular cylinder shapes tB&symmetry is
broken. Moreover, the control free dynamics is also exmettebe non-integrable.
The control problem, with the same control objective, obgig becomes much more

challenging in this case.

Control by shape changes. Equally challenging would be to have the shape of the
cylinder as a control input rather than an external forceis Would make the model
more relevant to problems in biological and biomimetic lmion (fish swimming,
small autonomous underwater vehicles etc.). A swimmingeho#flarticulated rigid

links in potential flow (no vorticity) was proposed by Radf¢g21] and studied further

in [8].

Circular shapes, more vortices. Adding more vortices to the circular cylinder case
and steering the cylinder in a ‘sea’ of vortices is anothtgrigsting problem. However,
unless the vortices can be directly actuated the contraésysvill be largely under-
actuated and the target set of a point in state space maydmylaeduced. But for
simple control objectives with no bounds on the control éooc optimality criteria one

can actually obtain results for atynumber of vortices.
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Appendix

A Poisson bracket structure

The system (1) and (2), in the variablesandl; (j = 1,......,N), is Hamiltonian with

respect to the following Poisson bracket on the state sPace

{F,G} ={F |r,G |Pv}pointvorte>e if =0,

{F7 G} = {F |va6 ‘P\,}pointvortexﬁL {F |Fb7G ‘PD}Z—cocycle if 7é 0.

The component Poisson brackets in the above equations éo#oags. The first
bracket is the canonical point vortex bracket on the sfpace (R?N\ (A UBN)):
N
{F Ir» G IR }point vortex= j;@ iFI7;(G/T)).,
wherelJ; denotes the gradient operator with resped to
The second component bracket, which arises only in the [£a4@®, is on(R?)*

and is given by:

OoF 0G 0G oF
{F |PDaG |PD}chocycle— r <0Lyd|_x - 0|_ya|_x> (39)

This Poisson bracket is related to the 2-cocycle, which isa-valued map on
two copies of a Lie algebra and is defined when the momentumahépe related
symmetry (Lie) group lacks the property of Adequivariance [11] (the property of
commutability of the map with the given action of the symmejroup). The general
theory behind this idea is stated in Abraham and MarsdenAldiscussion on how
this 2-cocycle bracket arises in this problem can be fourj@5h

The equations (1) and (2) are then obtained in the usual maftmether words,
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for p(t) = (L(t),l;(t)) € P, an integral curve of the system,
dF dp
5 <Dp|: dt>_{F,H}

B A;(p*,a%)

B.1 Normal ‘bang-bang’ extremals

dAx dxhp* Xf? .. 0 1
L= A = [ A=+ A5 Sl ls7=1 ) (40)
dt ap* ap* op* \2V/p
" bl p* oxa*
Mg e Ty (41)
dt Jdarx ada*
oxP axﬁ .
where ¢ stands for—* along the extremal trajectory and so on. Imposing the

ap*
constraint/(31), these equations become

oF d; [ oF 2% L OF 0Xh°{f+ OF \ _p
oA; dt ath; ap* dxﬁ:} op*  ap*

oF XD oF OXE\
+( + X5

0xhp* oa* dxﬁu" da*

0th OXSl! o [/ 1

Az S+ A ,
0p op* ap* \ 2y/p*
dA; 0th oXi
it =~ da " a2

This gives a linear equation far;

axhp - axfgjj
dar aa*

p a*
1 X Xy, , < 1 )
= F+[A; + A5
o/\ (o”'p < 2 9p* 2] ap- \2/p
[ oF ﬁxhp;+ oF 0%, oF X o [ F I, , oF 0% .
p* & a* px % a* * )
axh“ op dxhu ap* dp axhu Jda axh“ Jda H
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Substituting for and its derivatives, one obtains two equationsiprone foru* =1,

(A3)" =23 furm
oxp,
=7 gar prs (42)
* 1 p*
Fat (X + 2 ) — X0

and the other fou* = -1

(A3)” =23 |w—1
oxp,

=7 oa”. prs (43)
Fat (X — 2 ) — X0

B.2 Normal control-free extremals

In this case, withu* = 0, the relation/(31) assumes the form

XS
A=A
n

which satisfies (40) and (41) identically and so, unlike i‘thang-bang’ case, one can-
not identify domains in the-a in which the control-free arcs of the optimal trajectory

should lie.
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C

Polar Coordinates (p, ¢,q,0)

Introducing polar coordinates= (p, ,q,0), wherep = |[L|?/2, g = ||l1]|?/2, and

writing a= (1— R2/(2q)), the unreduced vector field transforms as:

2
f(r) = %’ = fz%la\/pqcos(e —9) (44)
_dep T3/1 q._.
e e ) (@5)
d
fo(r) = 1 = ~ 2ay/Pacos 0 - 9)
do , rmR2 T
fa(r) = i (\/g(Z—a)sm(e—cp) - 87$q2a_ Cla(Z—a)>

Since polar transformations are not defined at the originatimve equations in-

dicate an apparent singularity in the vector field|at| = 0. This is not a genuine

singularity of the vector field. System trajectories passeatily, in factC”-smoothly,

through points wherk = 0. To understand the system behaviok at 0 one has to go

back to the equations written in the Cartesian coordinates.
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