
Topology Synthesis of Analog Circuits Based on
Adaptively Generated Building Blocks ∗

Angan Das and Ranga Vemuri
Department of Electrical and Computer Engineering

University of Cincinnati
Cincinnati, Ohio 45221-0030, USA.

{dasan, ranga} @ececs.uc.edu

ABSTRACT
This paper presents an automated analog synthesis tool for topol-
ogy generation and subsequent circuit sizing. Though sizing is in-
dispensable, the paper mainly concentrates on topology generation.
A new kind of GA is developed, where a fraction of the offsprings
in each generation is built from building blocks or cells obtained
from previous generations. The cells are stored in a hierarchically
arranged library that also contains information on the preferred
neighborhood of each cell. The adaptively formed cell library starts
only with basic elements and gradually includes functionally use-
ful and bigger blocks, pertinent to the design. The techniques have
been applied to synthesize an operational amplifier and a ring os-
cillator design. Results show that with reasonable computational
effort, topologies have evolved that are designer understandable.

Categories and Subject Descriptors
J.6 [COMPUTER-AIDED ENGINEERING]: Computer-aided de-
sign (CAD).

General Terms
Algorithms, Design.

Keywords
Automated design, topology generation, genetic algorithm.

1. INTRODUCTION
In today’s world, with ever increasing design complexity and

constantly shrinking device sizes, the microelectronics industry faces
the need to develop an entire system on a single chip (SoC) [11].
Although efficient CAD techniques exist for handling digital sec-
tions on a SoC, automated synthesis tools for the irreplaceable ana-
log sections are still immature and incomplete. Circuit-level analog
synthesis comprises of two steps — Topology formation and Siz-
ing of the topology [11]. Though sizing has attained considerable
success in both industry as well as academia, the former is still not
so fortunate in this regard. Topology selection and topology gen-
eration are two approaches, though entirely different, to topology

∗This work was supported by National Science Foundation under
award numbers CCF-0429717 and CNS-0421092.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8–13, 2008, Anaheim, California, USA.
Copyright 2008 ACM 978-1-60558-115-6/08/0006 ...$5.00.

formation. Research in topology selection [4, 6, 8] has almost been
discontinued owing to its heavy designer-dependency and huge set
up effort, specific to each different kind of application.

On the other hand, with the advent of evolutionary techniques
like Genetic Algorithm (GA) and Genetic Programming (GP), topol-
ogy generation gained popularity. Evolutionary synthesis techniques
were introduced in [5, 7]. But they required substantial computa-
tional overhead and produced functionally correct but unfamiliar
circuits. To overcome this limitation, Dastidar et al. [2] and Wang
et al. [12] blended some design knowledge, although minimal, with
the evolutionary aspects. They used a fixed set of user-defined
building blocks and connectivity rules to evolve analog circuits.

Unfortunately, in [2, 12], the building block library used is spe-
cific to the class of circuits designed. Hence it needs to be rebuilt
for each different kind of design. In one of our earlier works, AT-
LAS [1], we have used adaptively generated building blocks to
eliminate this drawback. But in ATLAS, unlike good design prac-
tice, these blocks are placed randomly with respect to each other
while generating a circuit. Moreover, the tool makes and breaks
solutions in every generation. This approach does produce good
building blocks, but not always good circuits. In summary, ATLAS
somewhat lacks the advantages of a typical GA or GP.

In an attempt to alleviate all of the above drawbacks, we intro-
duce a GA-based framework for topology synthesis of analog cir-
cuits. It incorporates the advantages of both ATLAS and that of a
conventional GA/GP. The primary contributions of this work are:

• Circuit topologies are generated through well defined rules,
with the help of building blocks contained in a hierarchically
arranged block (also termed as cell) library.

• The library initially consists of basic elements only. It grad-
ually extends to include bigger and functionally useful cells,
specific to the design, as the synthesis progresses.

• Each library block also contains a list of its neighboring blocks.
During circuit formation, good blocks and their good neigh-
bor blocks are selected, adjacently placed, and connected.

• A GA is developed, where reproduction occurs in two ways.
One fraction of the solutions is produced conventionally, while
the rest is produced afresh from the better library blocks.

• A library generated out of a synthesis run can be reused in the
future to speed up synthesis for the same class of designs.

• The tool generates analog circuit topologies that match hand-
crafted designs, and are thereby designer understandable.

The rest of the paper is organized into the following sections.
Section 2 introduces the synthesis methodology. Section 3 de-
scribes the GA reproduction mechanisms. Section 4 deals with
the adaptive library formation procedure. Section 5 discusses the
SA-based sizer and associated fitness evaluation. Section 6 demon-
strates the application of our techniques to synthesize an opamp
and a ring oscillator design. Section 7 finally concludes the work.

44

4.2

Yes

No

No

No. of gen. + 1

SA-based circuit sizer

Cell Library

Topology generation

Fitness (F) / Performance
evaluation

F = FMAX ? /
Max # gen. reached

?

New cell formation
& Library update

Performance
specifications

Selection of cells &
Neighborhood

End

Reproduction –
Selection, Crossover

& Mutation

Fig. 1: Synthesis flow

2. SYNTHESIS METHODOLOGY

2.1 Synthesis Flow
Fig. 1 gives the overall flow of the GA-based synthesis frame-

work. As in a GA, one generation of solutions (chromosomes)
gives birth to the next generation. Initially, the various GA run
parameters and design specifications are provided by the user. A
hierarchical building block or cell library is maintained throughout
the synthesis process. The library initially contains basic elements
like PMOS, NMOS and current sources only. It gradually includes
bigger and more design-pertinent cells as generations progress. A
topology is formed by connecting these cells, based on some struc-
tural constraints. The topology is subsequently sized with a SA-
based sizer and the performance is evaluated. A new generation
is formed and the procedure continues till the desired fitness is
achieved, for the allowable number of generations. In this respect,
here, more and more solutions need to be generated only after the
library is adequately formed. A better formed library always pro-
vides better cell choices. So we gradually increase the number of
chromosomes or solutions with the advancement of generations.

After each generation, the cell library is updated with neces-
sary information acquired from the present set of circuits. Thereby,
present cells and their neighboring cells are ranked in the form of
a roulette wheel, and new cells are added. From the second gener-
ation onwards, two parents reproduce through selection, crossover
and mutation to give rise to two new children. These constitute a
certain fraction of offsprings. The remaining offsprings are pro-
duced afresh (like the first generation) by selecting and joining bet-
ter library cells. But this time onwards, the library being extended
with new cells, the chosen cells are not limited to simple PMOS
and NMOS only. Moreover, the positioning of cells with respect to
each other i.e. cell neighborhoods, are also no more random. Fit-
ter adjacent cells for each chosen cell are selected from the library
along with the original cell and are interconnected appropriately.

2.2 Building Block: Blackbox Approach
In this work, a block or cell represents a moderately sized cir-

cuit level netlist of basic elements like NMOS, PMOS and current
sources. The cell is considered as a blackbox as shown in Fig. 2,
with the following terminal information —

• Number of terminals.
• Terminal signal type: The signal is of 3 types: voltage only

(like gate of a transistor); current only (like current source
terminals); and mixed (like drain or source of a transistor).

M2M1

 1 Mixed In
 2 Mixed In
 3 Voltage -
 4 Mixed Out
 5 Mixed Out

 Cell Blackbox representation
1 2

3

45

1 2

3

45

Terminal_no Type Direction

Fig. 2: Blackbox representation of an example cell

• Terminal signal direction: For current only and mixed ter-
minals, the three directions of current are ‘in’ (like PMOS
source), ‘out’ (like PMOS drain), and ‘in + out’ (like junc-
tion of PMOS and NMOS drains).

The blackbox also stores information on whether the cell con-
tains input and output (i/o) nodes, and power connections (Vdd,
Gnd). The former helps us to soon identify a potential set of circuit
i/o gateway configurations, while the latter aids us to avoid con-
necting terminals to Vdd/Gnd forcefully during circuit formation.

2.3 Hierarchical Cell Library
The building blocks or cells are stored in a hierarchically ar-

ranged library. The term hierarchy pertains to the pattern of ar-
rangement of cells within the library. The levels are defined based
on the presence (1) or absence (0) of the aspects — input node(s),
output node(s) and power rails (Vdd, Gnd, etc.) in a cell, apart from
the cell elements. The different levels, as shown in Fig. 3, are:

1. Level_1: The top-level library is divided on the basis of vari-
ous combinations of i/o nodes present. For e.g., for a 2-input
1-output design, there will be 23 = 8 level_1 libraries.

2. Level_2: The level_1 library is further subdivided based on
the power rail content. For e.g., for only Vdd and Gnd rails,
there will be 22 = 4 level_2 libraries for each level_1 library.
All level_1 and level_2 libraries also contain fitness-based
ranked lists (roulette maps) of the cells contained within them.

3. Level_3: Each level_2 library in turn has variable number
of sub-libraries, depending on the combination of basic ele-
ments, like PMOS and NMOS, present within a cell.

4. Level_4: The lowest level contains the cell elements and
their terminal information. Each cell also contains an oc-
currence count and a fitness, signifying the number of times
it is used in circuit formation and its appropriateness for the
same. Also, at this level, each cell contains a ranked list of
its own adjacent or neighboring cells.

Main cell library

000 001 010

00 01

111

11

2 PMOS

M2

M1

M2M1

2 NMOS

Level_1

Level_2

Level_3

Level_4

<In_1 – In_2 – Out>

<Gnd – Vdd>

Element combinations

Netlist & Terminal info
No. of occurrences, Fitness
Adjacency list of cells

Fig. 3: Hierarchical cell library (shown for a 2-inp 1-out design)

45

Vertical
net

Horizontal
net

Stages

V
er

tic
al

 d
iv

is
io

ns

Library cells fill up some/all of the mesh pockets The mesh has
variable number of divisions (vertically) and stages (horizontally)

In
pu

t(s
)

O
ut

pu
t(s

)

Vdd

Stage-1

 D
iv

-1

Cell (Blackbox)

Fig. 4: Extendible mesh structure for placing cells

This hierarchical nature of the library provides some distinct ad-
vantages. First, during circuit formation, it helps us in choosing
cells as per power rail and i/o requirements. We decide on a level
and eventually select a cell from the roulette map at that level. Sec-
ondly, once a cell is chosen and placed, its neighborhood may be
populated with cells from its own adjacency list within the library.
Finally, the hierarchy helps in verifying the presence or absence of
a cell (say test cell) during library extension, to avoid its redundant
inclusion. Required flag variables for levels 1-3 are generated for
the test cell and we search up to level_3 (if it exists) trivially. If
found, then only a level_4 exhaustive search is executed.

2.4 Circuit Formation
Circuit formation is an important part of the synthesis frame-

work. In this aspect, we follow a procedure similar to [1], with
minor changes regarding the choice of cells from the library. Thus
the topology is generated through the following steps —
1) Mesh structure for placing cells: As shown in Fig. 4, a very sim-
ple mesh structure consisting of successive stages, with each stage
having vertical divisions, serves as the backbone for the circuit.
Stages are interconnected through horizontal nets while divisions
through vertical nets. The mesh dimension is user-defined. Cells
fill up some or all of the mesh pockets during circuit formation.
2) Combination sequence of i/o containing cells: A one time tree is
formed containing all the possible i/o containing sequences. For
eg., for 2-input (say In1 and In2) 1-output (say Out) design, the
various paths of the tree are (In1)-(In2)-(Out), (In1+Out)-(In2), etc.
3) Placing i/o cells: For the i/o sequence selected, the input cells fill
up the pockets starting with stage-1 forwards, and output cells vice-
versa. Regarding vertical positioning, Vdd cells are placed starting
from the upper division downwards, and Gnd ones vice-versa.
4) Placing other cells: The remaining empty pockets are filled with
non-i/o cells. There is no preference for horizontal positioning, but
the vertical positioning follows the same guideline as for i/o cells.
5) Choices of cell selection from library: A cell can be selected ei-
ther from the library in general i.e. level_1 and level_2 maps or
from the adjacency list of already placed cells. In the initial gen-
erations, we do more of the former and gradually shift to the latter
when the library has enough information on desired neighborhoods.
6) Cell terminal connections: The cell terminals are interconnected
amongst themselves in ways governed by terminal types. Voltage
terminals are joined either to mixed or to voltage terminals of pre-
vious stages. Current terminals are connected to mixed terminals of
other cells in same stage, depending on the direction and availabil-
ity. Mixed terminals are connected to current or to mixed terminals
in the same stage. These nodes are also preserved for connection to
voltage nodes of succeeding stages. In all cases, however, uncon-
nected terminals get a preference over the already utilized ones.

Gnd

Vdd

P1A P1B

P1C P1D

Gnd

Vdd

P2A P2B

P2C P2D

Gnd

Vdd

P1A P2B

P1C P2D

Gnd

Vdd

P2A P1B

P2C P1D

Parent - 1 Parent - 2

Offspring - 1 Offspring - 2

(a)

Gnd

Vdd

P1A P1B

P1C P1D

Gnd

Vdd

P2A P2B

P2C

Gnd

Vdd

P1A P1B

P2C

Gnd

Vdd

P2A P2B

P1C P1D

Parent - 1 Parent - 2

Offspring - 1 Offspring - 2

(b)

Fig. 5: Crossover - (a) Horizontal crossover swaps stages; (b)
Vertical crossover swaps vertical divisions

7) Treatment of floating terminals: In case of floating terminals, volt-
age terminals are biased with an external Vsource. For current termi-
nals, the lone current source is deleted. Mixed terminals with only
‘in’ or ‘out’ are connected to appropriate power rails. ‘In + out’
ones are undisturbed, since they are technically non-floating.
8) Checking stage inter-connections: Despite being simulatable, if
there is no path from input to output, we simply discard the circuit.

3. REPRODUCTION MECHANISMS

3.1 Crossover
From the second generation onwards, a certain number of new

circuits are built through mating of parent circuits, obtained from
the previous generation. The parents are selected as per the roulette
wheel strategy [3], and are subsequently subjected to crossover.
Crossover involves exchange of certain circuit portions or subcir-
cuits between the two participating parent circuits to produce two
new offspring circuits, as shown in Fig. 5. In this respect, the two
types of crossover mechanisms, applied with equal probability, are:

• Horizontal crossover: Here, the subcircuit is a randomly cho-
sen complete stage or group of adjacent stages of the parent
circuit. As shown in Fig. 5(a), stage-2 of of parent-1 con-
sisting of blocks P1B and P1D is swapped with stage-2 of
parent-2 having blocks P2B and P2D , to produce two off-
springs. This process is analogous to one-point crossover.

• Vertical crossover: Likewise, here the subcircuit comprises
of all the blocks of all stages contained in any randomly cho-
sen vertical division or a group of adjacent divisions of the
parent circuit. Fig. 5(b) clearly demonstrates the process.

In both the above mechanisms, if the number of terminals dif-
fer for the two subcircuits swapped, then we connect the floating
terminals in ways as already discussed above.

3.2 Mutation
Mutation introduces diversity. The mutation mechanism adopted

herein comprises of — adding a cell; deleting a cell; replacing a
cell with another library cell; and swapping two cells either be-
tween two vertical divisions, or between two horizontal stages. All
of these mechanisms are applied with equal probability. Alike
crossover, floating terminals are adjusted accordingly.

46

4. ADAPTIVE FORMATION OF LIBRARY
A certain number of offsprings in each generation are produced

from the better library cells. The betterness of a cell is judged
as per its appropriateness to the design under consideration. This
requires continuous evaluation of the existing cells and addition of
new cells, as per the required design, i.e. adaptive update of the
library. Adaptivity emerges from the fact that the fitness of the
present circuit decides on how well its building blocks and their
placement qualify to be prospective cells for future generations of
circuits. The procedure is shown in Alg. 1 and is explained below:

4.1 Impact of Subcircuit
Here, we assume that the appropriateness or merit of subcircuit

has an impact on the total circuit performance. This is especially
true for analog circuits [11]. This impact is quantitatively analo-
gous to the fitness of the subcircuit. Therefore, when a parent pro-
duces an offspring, the change in fitness from parent to offspring
owes to the difference of two factors — a) Impact of the outgoing
subcircuit and b) Impact of the incoming subcircuit. For e.g., in
Fig. 5(a), the fitness difference between offspring-1 and parent-1 is
raised due to incoming P2B and P2D , and lowered owing to out-
going P1B and P1D . In this way, the impact or fitness of all the
subcircuits (Fsubckt) are computed after each crossover operation.

4.2 Division of Fitness
The process of manually forming a topology in analog design

comprises of two sequential steps, viz.

• Selection of correct building blocks.

• Placing the blocks appropriately with respect to each other
and interconnecting them.

Hence the fitness of a subcircuit containing some cells is propor-
tional to two factors — what are the cells present, and how are these
cells placed. Now, in this CAD framework, since we are unaware
of all the different design heuristics and equations, so we assume
flat proportionality constants for the above factors. Thereby, the to-
tal subcircuit impact or fitness (Fsubckt) is divided into two parts —
one owing to presence of blocks (Fpresence) and the other owing to
their adjacency (Fadjacency). Quantitatively,

Fsubckt = Fpresence + Fadjacency

Fpresence = α ∗ Fsubckt, Fadjacency = β ∗ Fsubckt; where α + β = 1

4.3 Update of Existing-Cell Parameters
The fitness Fpresence is assumed to be equally contributed by all

the participating cells. The required updates for each such cell are:

• No. of occurrences (Ncell): The cell’s occurrence count in the
main library increments by unity, each time the cell is used.

• Gross Fitness (Gross_Fcell): The average gross fitness of a
cell denotes the appropriateness of the cell for the design.
This quantity is updated through the cell’s equal share of the
corresponding differential fitness.

• Net Fitness (Net_Fcell): For ranking candidates, we use net
fitness. This measure gives weightage to both Gross_Fcell

and Ncell, with γ and δ being the proportionality constants.

• Adjacency list of cells: The adjacency list for each cell con-
tains three parameters for each adjacent cell. They are — the
number of times they have been placed adjacently, connec-
tivity information, and adjacency fitness measure. The count
and fitness for each connectivity gets updated as per the same
governing equations given above for a cell. But this time
the contribution comes from Fadjacency, being equally divided
among the adjacent cells of the cell under consideration.

Algorithm 1: Cell library update for each reproduction

Input: Gen-(n) cell library, gen-(n) parents and offsprings
Output: Updated cell library: For gen-(n+1) formation
procedure Cell library update
Update of existing-cell parameters
forall subcircuit portions ∈ parents P1, P2 do

Fsubckt = corr_fitness_diff (Pi, Oi); i ∈ {1, 2}
forall cells ∈ the subckt do

Presence based fitness
Fcell = Fpresence/X; // X → No. of cells in subckt
Gross_Fcell = Gross_Fcell∗Ncell+Fcell

Ncell+1
;

Ncell = Ncell + 1;
Net_Fcell = γ ∗Gross_Fcell + δ ∗Ncell; // γ + δ = 1
Adjacency based fitness
Fadjacent cell = Fadjacency / (No. of adj. cells for the cell);
Calculate Gross_Fadjacent cell and Net_Fadjacent cell in
the same way as that for the cell;

end
end
Addition of new cells
Extract new cells out of the two offsprings;
Fnew cell = Foffspring - parent ∗ η ∗ gen_no/ (No. of new cells);
Rank all cells and their adjacent cells as per net fitness values;

4.4 Formation of New Cells
New cells are extracted out of a circuit formed and they serve

to extend the library. To this end, the connections surrounding
each node of each element are evaluated, element combinations
are formed, and the combination qualifies to represent a new cell
if certain conditions are satisfied [1]. These conditions prevent the
inclusion of otherwise functionally meaningless element combina-
tions as cells. Subsequently, it is checked to ensure that the cell is
not already present in the library. If absent, it is appended to it with
a generation proportionate fitness (scaling factor - η). This step en-
sures that as the generations progress, new cells get included with
appreciable fitness. Adjacency lists are also extended in a similar
fashion. Fig. 6 shows how two simple cells in gen-1 gradually com-
bine with other cells to produce bigger and functionally useful new
cells. For eg., Fig. 6(a) shows an NMOS producing a differential
pair, which further produces that with a constant current biasing.

VIN+ VIN-

VOUT

VIN+ VIN-
VIN+

VDD

VDD

VDD

VDD

Gen = 1 Gen = x Gen = y

Gen = 1 Gen = m Gen = n (n > m > 1)

(y > x > 1)

Path - 1

Path - 2

(a)

(b)

Fig. 6: Results showing (a) an NMOS and (b) a PMOS gradu-
ally giving rise to bigger and functionally meaningful new cells

47

5. SIZER AND FITNESS EVALUATION

5.1 Sizing of the Topology
The merit of a topology can never be estimated before sizing it

properly. The circuit sizer used in this work is based on the sim-
ulated annealing (SA) algorithm. Further details could not be fur-
nished owing to the size constraints of the paper. Despite several
other sizing approaches including recent ones [9] in place, the SA is
implemented primarily because it is appreciably fast in sizing hun-
dreds of unknown circuits; it could be executed in the batch mode;
and it requires minimal set-up effort, only in the form of tuning.
The inputs to the sizer comprise of the range and granularity of
the design variables like dimensions of transistors, voltage source
values and current source values. The circuit performance param-
eters are measured through HSPICE simulations. The related cost
function for fitness evaluation is described below in section 5.2.

5.2 Fitness Evaluation
Fitness signifies the quality of a solution. Now, most of the ana-

log circuit design problems are multi-objective optimization prob-
lems. To obtain the globally optimal solution to this problem, we
adopt the widely popular normalized weighted sum approach for
multi-criteria optimization. The weighted differences between the
obtained values and expected values for each criterion are summed
up and the result is normalized to a value between zero and unity.
All performance specifications are denoted by four values (increas-
ing in the given order) viz. absolute minimum (min_p), lower
limit (lower_p), upper limit (upper_p) and absolute maximum
(max_p). Quantitatively, the normalized error function ε for ob-
jective i in a design involving P objectives is given by:

εi =

lower_pi−obt_pi
lower_pi−min_pi

when obt_pi < lower_pi,
obt_pi−upper_pi

max_pi−upper_pi
when obt_pi > upper_pi,

0 when lower_pi <= obt_pi <= upper_pi.

The total deviation (E) and the fitness function (F) are given by:

F =
1

1 + E
, where E =

P∑
i=1

ωi ∗ εi and
P∑

i=1

ωi = 100%

6. EXPERIMENTS AND RESULTS
The synthesis tool has been coded in C++. The program was run

on a Sun Workstation having two 750 MHz UltraSPARC-3 proces-
sors and 2GB RAM, with Solaris 10 OS. The technology used is
0.18µ, though it is capable of running equally well on all technolo-
gies. The various proportionality constants used are α = 0.75, β =
0.25, γ = 0.95, δ = 0.05, and η = 0.05. The range of variables
as input to the sizer comprises of (in format - min:granularity:max)

Table 1: Design Specifications and Obtained values

PARAMETERS ω
(%)

Specifications Obtained
values

Operational amplifier
DC Gain 40 ≥ 60 dB 60.28 dB
Bandwidth 30 ≥ 700 MHz 741.7 MHz
3dB frequency 30 ≥ 2.5 MHz 2.53 MHz
Slew rate − − 8.19 V/µs
3-stage ring oscillator
Oscillation frequency 70 ≥ 2.0 GHz 2.1 GHz
Amplitude (Vdd = 2.5V) 30 ≥ 1.75V 1.82V

VIN+ VIN- VOUT

1.98

28

28.08 28.08 1.44

26.46

1.98

15.84

19.08

27.927.9

VDD = 5V

26.46

Fig. 7: Operational amplifier circuit generated for design
experiment-1 (All transistor widths are in µ, L = 0.36µ)

W_tran - 0.36:0.18:36µ; Vsource - 0.5:0.1:5.0V; and Isource - 0.1:0.1:
40µA, the symbols carrying their usual meanings. L_tran = 0.36µ
is fixed for sizing convenience. In this work, the number of solu-
tions should increase progressively as discussed earlier. So we start
with 100 chromosomes, that is increased by 10 after each set of
10 generations. Also, 20% of the circuits in each generation are
formed using library cells and rest 80% through GA reproduction.

Two different design benchmarks, an operational amplifier and a
three stage ring oscillator, were synthesized using the framework.
The design specifications and the relative weightage given to each
objective are provided in Table 1. These parameters are decided af-
ter carefully considering several such hand designed circuits [10].
For the opamp, slew rate is not used for evolution purposes. It is
only a performance metric reported for the obtained design. For
simulation purposes, HSPICE is used owing to three advantages.
First, it gives maximum accuracy. Second, unlike symbolic meth-
ods, it does not require any setup overhead. Finally, this helps us to
integrate the tool into any existing industrial framework.

6.1 Design I: Operational Amplifier
An operational amplifier or opamp is a very commonly used ana-

log circuit having a wide range of applications comprising of com-
parators, filters, pre-amplification stages, signal converters and so
on [10]. The opamp designed is a single-ended opamp. A load
capacitance of 5pF is provided at the output node for slew rate per-
formance. During the synthesis run, the tool soon started evolving
formidable designs from the 100th generation onwards. However,
the totally compliant design was obtained in the 152nd generation
and is shown in Fig. 7. Table 1 shows that all the specifications
were satisfied by the generated design.

A careful observation of Fig. 7 shows that the circuit actually

VIN+ VIN-

VDD

VDD
VDD

VIN-

Cell-1

Adjacency list of
cell-1

Adjacency list of
Cell-2

Cell-2

Fig. 8: Preferred adjacent cells of some highly-ranked cells

48

VDD = 2.5V

VIN+

VOUT-VOUT+

VIN-

VIN+

VIN-

VOUT+

VOUT-

Stage-1 Stage-2 Stage-3

VIN+

VIN- VOUT+

VOUT- VIN+

VIN- VOUT+

VOUT-

1.7V 3.6

10.88.64

2.883.6

2.161.8

(i) (ii) 0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

O
sc

ill
at

or
 o

ut
pu

t:
V

ou
t+

 (V
ol

t)

Time (ns)

VDD

VIN+

VOUT+

Cell-1

Adjacency list of cell-1 Cell-2

VIN+

VOUT-VOUT+

VIN-

VDD VDD

Adjacency list of cell-2

(a) (b) (c)

Fig. 9: Three stage ring oscillator design → (a) (i) Prototype circuit (ii) Synthesized circuit for a single stage (All transistor widths
are in µ, L = 0.36µ); (b) Output waveform; (c) Some of the fitter library cells and their adjacent cells

consists of building blocks easily identifiable by the analog de-
signer. It includes a differential pair, current mirror and diode con-
nected load among others. This helps in perceiving the operation
of the circuit. Out of the 105 new cells formed, some of the fittest
cells and their adjacent cells are shown in Fig. 8. Fig. 8 clearly
shows that the adjacency list together with the cells consists of well-
known and understandable blocks that range from differential pair
with current source, to current mirrors, cascode formation, etc.

In order to compare with previous works that synthesize with
known building blocks, a second run of the experiment was con-
ducted, this time with a good library obtained after the above first
run. A fixed 100 chromosomes were used for each generation. The
compliant circuit was obtained in the 26th generation, i.e. 2600
designs needed to be explored. This is better than [12] where an
almost similar design was obtained after exploring 2732 designs.
Also, [12] synthesized the circuit with all-correct building blocks,
obtained from a standard text book. More to add, the functional
constraints for inter-connecting the blocks were also designer certi-
fied. This easily proves the efficacy of our tool over previous works.

A synthesis run was also performed with a normal GA (i.e. no
adaptive formation) with the offsprings produced only through cross-
over and mutation. The required design was not achieved even
within 500 generations. This experiment establishes the merit of
our adaptive technique of offspring formation over normal GAs.

6.2 Design II: Three-stage Ring Oscillator
A three stage ring oscillator design is set as our second bench-

mark. An oscillator is used in clock generation, as prototype cir-
cuits to test new semiconductor processes, and so on [10]. Now, it is
known that a ring oscillator is basically a cascade of similar stages
where the output of one feeds to the input of the next, as shown in
the prototype system level circuit in Fig. 9(a)(i). Hence, designing
only a single stage of the whole circuit suffices the purpose.

Starting only with MOS transistors and current sources, the fully
compliant circuit was obtained in the 73rd generation. The cor-
responding circuit for a stage is shown in Fig. 9(a)(ii). With the
initial voltage at Vout+ of stage-1 set to 0V, the output waveform
obtained is given in Fig. 9(b). After an initial settling transient, it
keeps on repeating the same pattern. The circuit has an oscilla-
tion frequency of 2.1 GHz. [2] synthesized a similar design with
well-defined blocks after 63 generations, each consisting of 600

Table 2: Synthesis Results

Results Design-I Design-II

No. of generations required 152 73

No. of library cells produced 105 68

chromosomes. Our technique thereby converged faster compared
to [2]. Also, the final design obtained is designer perceivable. It
comprises of identifiable blocks like differential pair and diode-
connected loads. Moreover, the block library formed consists of
well known blocks like differential pairs adjacent to diode loads,
set of biased transistors, etc., as shown in Fig. 9(c).

7. CONCLUSION
A GA-based topology synthesis framework has been introduced

that is capable of synthesizing human understandable analog de-
signs from the very basic elements. A building block library is
used that has been generated adaptively, thus alleviating the need
to supply a circuit-specific block library initially. The library not
only contains information about the required blocks, but also their
desired position and connectivity, with respect to other blocks. The
framework has been able to synthesize an opamp and a three stage
ring oscillator design. For industrial relevance, the tool has mini-
mal application dependency, uses minimal design knowledge, and
is flexible enough to be applied to any existing framework.

8. REFERENCES
[1] A. Das and R. Vemuri. An automated passive analog circuit synthesis

framework using genetic algorithms. In Proc. of IEEE International
Symposium on Circuits & Systems (ISCAS), May 2008.

[2] T. R. Dastidar, P. P. Chakrabarti, and P. Ray. A synthesis system for
analog circuits based on evolutionary search and topological reuse.
IEEE Transactions on Evolutionary Computation, 9(2), Apr. 2005.

[3] D. E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Prof., 1 edition.

[4] R. Harjani, R. A. Rutenbar, and L. R. Carley. OASYS: A framework
for analog circuit synthesis. IEEE Trans. on CAD, 8(12), Dec. 1989.

[5] J. R. Koza, F. H. Bennett III, D. Andre, M. A. Keane, and F. Dunlap.
Automated synthesis of analog electrical circuits by means of genetic
programming. IEEE Trans. on Evolutionary Comp., 1(2), 1997.

[6] W. Kruiskamp and D. Leenaerts. DARWIN: CMOS Opamp synthesis
by means of a genetic algorithm. In Proc. of DAC, Jun. 1995.

[7] J. D. Lohn and S. P. Colombano. A circuit representation technique
for automated circuit design. IEEE Trans. on Evol. Comp., 1999.

[8] P. C. Maulik, L. R. Carley, and R. A. Rutenbar. Integer programming
based topology selection of cell-level analog circuits. IEEE
Transactions on CAD, 14(4), 1995.

[9] T. McConaghy, P. Palmers, G. Gielen, and M. Steyaert. Simultaneous
multi-topology multi-objective sizing across thousands of analog
circuit topologies. In Proc. of Design Automation Conference, 2007.

[10] B. Razavi. Design of Analog CMOS Integrated Cir. McGraw-Hill.
[11] R. A. Rutenbar, G. G. E. Gielen, and B. A. Antao. Computer-Aided

Design of Analog Integrated Circuits and Systems. Wiley-IEEE
Press, May 2002.

[12] X. Wang and L. Hedrich. An approach to topology synthesis of
analog circuits using hierarchical blocks and symbolic analysis. In
Proc. of Asia and South Pacific Design Automation Conf., Jan. 2006.

49

