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Abstract-- Semantic smoothing, which incorporates synonym and sense information into the language models, is 

effective and potentially significant to improve retrieval performance. The previously implemented semantic smoothing 
models, such as the translation model which statistically maps document terms to query terms, and a number of other 
works that have followed have shown good experimental results. However, these models are unable to incorporate 
contextual information. Thus, the resulting translation might be fairly general and contains mixed topics. To overcome 
this limitation, we propose a novel context-sensitive semantic smoothing (CSSS) method that decomposes a document into 
a set of weighted context-sensitive topic signatures and then translate those topic signatures into query terms. The 
language model with such a context-sensitive semantic smoothing is referred to as the topic signature language model in 
this paper. In detail, we implement two types of topic signatures depending on whether an ontology exists in the 
application domain or not. One is concept extracted by an ontology-based approach; the other is multiword phrase 
extracted by Xtract if there is no ontology available in the application domain. The translation probabilities from each 
topic signature to individual terms are estimated through the EM algorithm. Document models based on topic signature 
translation are then derived. The new smoothing method is evaluated on TREC 2004/2005 Genomics Track based on the 
ontology-based concept, and TREC Ad hoc Track (Disk 1, 2 and 3) using multiword phrases. Both experiments show 
significant improvements in terms of average precision and overall recall over the two-stage language model (TSLM) as 
well as the language model with context-insensitive semantic smoothing (CISS). 

. 
Index Terms-- Information Retrieval, Language Models, Semantic Smoothing, Topic Signature, Concept Pair, 

Multiword Phrase.  
 

I. INTRODUCTION 
he language modeling approach to information retrieval (IR), initially proposed by Ponte 

and Croft [21], has been popular with the IR community in recent years due to its solid 

theoretical foundation and promising empirical retrieval performance. In essence, this approach 

centers on the document model estimation and the query generative likelihood calculation for 

ranking according to the estimated model. However, it is challenging to estimate an accurate 

document model due to the sparsity of training data. On one hand, because the query terms may 
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not appear in the document, we need to assign a reasonable non-zero probability to the unseen 

terms. On the other hand, we need to adjust the probability of the seen terms to remove the effect 

of the background collection model or even irrelevant noise. Thus, the core of the language 

modeling approach to IR is to “smooth” document models. Zhai and Lafferty [26, 28] propose 

several effective background smoothing techniques that interpolate the document model with the 

background collection model.  

A potentially more significant and effective method is semantic smoothing that incorporates 

synonym and sense information into the language model [15]. Berger and Lafferty [2] 

incorporate a kind of semantic smoothing into the language model by statistically mapping 

document terms onto query terms using a translation model trained from synthetic document-

query pairs. The translation model is context-insensitive (i.e., it is unable to incorporate sense 

and contextual information into the language model), however, and therefore the resulting 

translation may be mixed and fairly general. For example, the term “mouse” without context may 

be translated to both “computer” and “cat” with high probabilities. Jin et al. [14] and Cao et al. 

[4] present two other ways to train the translation probabilities between individual terms, but 

their approaches still suffer the same context-insensitivity problem as [2]. Thus, it is urgent to 

develop a framework to semantically smooth document models in the language modeling (LM) 

retrieval framework. 

In this paper, we propose a novel context-sensitive semantic smoothing (CSSS) method based 

on topic decomposition. A document is decomposed into a set of weighted topic signatures and 

then those topic signatures are translated into individual terms for the purpose of document 

expansions. We define a topic signature as either an ontology-based concept or an automated 

multiword phrase. Because a concept or a multiword phrase itself contains contextual 
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information and its is usually unambiguous, the translation from topic signatures to individual 

terms should have higher accuracy and result in better retrieval performance, compared to the 

semantic translations between single words. For example, “mouse” in conjunction with 

“computer” could be a topic signature and the signature might be translated to “keyboard” with 

a high probability, but to “cat” with a low probability due to additional contextual constraints.  

We develop an ontology-based algorithm to extract concept-based topic signatures and adopt 

an existing algorithm referred to as Xtract [23] to identify phrase-based topic signatures. 

Furthermore, we develop an EM-based algorithm to estimate probabilities of translating each 

topic signature into individual terms in the vocabulary. The new smoothing method is tested on 

collections from two different domains in order to show its robustness. The extraction of 

concepts needs domain ontology. Thus we evaluate the effectiveness of concepts on TREC 

Genomic Track 2004/2005. The extraction of multiword phrases does not need any external 

human knowledge and can be applied to any public domains. Therefore we test the effectiveness 

of multiword phrases on TREC Disk 1, 2, and 3. The experimental results show that significant 

improvements are obtained over the two-stage language model (TSLM) [28] as well as the 

language model with context-insensitive semantic smoothing (CISS).  

The contribution of this paper is three-fold. First, it proposes a new document representation 

using a set of weighted terms and topic signatures. The new scheme also explores the 

relationship between individual terms and more complicated topic signatures. Second, it 

develops an EM-based algorithm to estimate the semantic relationships between topic signatures 

and individual terms and further uses those semantic relationships to smooth the document 

model, which is referred to as context sensitive semantic smoothing (CSSS) in this paper. The 

smoothed document models can be used not only for text retrieval, but also for many other text 
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mining applications such as text clustering. Third, it empirically proves the effectiveness of 

context-sensitive semantic smoothing for language modeling IR. 

The remainder of this paper is organized as follows. In Section 2, we review previous work 

related to topic signatures. In Section 3, we first formally define topic signatures and present the 

methods for the topic signature extraction; then we describe in details the method of context-

sensitive semantic smoothing. Section 4 shows the experimental results on TREC 2004/2005 

Genomics Track collections, where topic signatures are implemented as concept pairs. Section 5 

shows the experimental results on TREC Disk 1, 2 and 3, where multiword phrases are used as 

topic signatures. Section 6 concludes our paper. 

II. RELATED WORK 
 
The idea of topic decomposition and translation for language modeling IR is not new. It was 

used for query expansion as well as document expansion in literature. Song and Bruza adopted 

information flow (IF) for query expansion in [24]. The context of a concept is represented by a 

HAL vector; the degree of one concept inferring another can then be computed through vector 

operators. Song and Bruza also invented a heuristic approach to combine multiple concepts, 

which enabled information inference from a group of concepts (premises) to one individual 

concept (conclusion). Thus, their query expansion technique was somehow context-sensitive. 

However, it could not be used to expand (smooth) document models. Besides, the degree to 

which one individual concept could be inferred from another combined concept was not 

theoretically motivated; its robustness needs to be further validated. 

Similarly, Bai et al. [1] used significant term pairs to expand query models. The combination of 

two terms is helpful to disambiguate their context and thus can capture more sense of the query. 

The expanded query model based on significant term pairs looked like as follows: 
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Here the first term is a unigram query model for smoothing purpose and the second term (query 

expansion) is based on topic decomposition and translation. The topic decomposition term 

is simply assumed to be uniformly distributed.  The topic translation term 

 is estimated based on term co-occurrence statistics. The coefficient λ controls the 

influence of the expansion component. Like the information flow approach, this approach is also 

inappropriate for document model expansions because the distribution of term pairs in a 

document is obviously not uniform. Besides, the co-occurrence based estimation algorithm tends 

to assign higher probability values to general terms than specific terms. 
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Berger and Lafferty proposed the statistical translation model for the first time in [2]. With this 

model, a term in a document is statistically mapped to query terms as described in the formula 

below: 

∑=
w

dwlwqtdqp (2)       )|()|()|(   

where t(q|w) is the translation probability from document term w to query term q and l(w|d) is 

the unigram document model. The translation model achieved significant improvement over the 

simple language model on two TREC collections [2]. However, the model only captures the 

semantic relationship between individual words and is unable to incorporate the contextual 

information into the translation procedure. In addition, the training of translation probability 

requires a large number of real query-document pairs, which are very difficult to obtain. For this 

reason, Berger and Lafferty used synthetic data in the experiment.  Besides, a document often 

contains a considerable number of unique terms and thus the model expansion through 
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translation is computationally intensive. 

The cluster language model [16] may be the first trial of topic decomposition and translation 

for document model expansions. Liu and Croft [16] incorporated cluster information into 

document model estimation: 
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Nd is the length of the document and μ is a parameter for smoothing. The document clusters are 

very similar to our topic signatures in the sense that both use a set of documents with similar 

context rather than a single document to estimate a more accurate topic model. However, in their 

cluster model, a document is associated with a single cluster, which may become problematic for 

especially long documents, whereas a document can have multiple topic signatures in our model. 

Furthermore, the clustering for a large collection is extremely inefficient. Last, lots of  decisions 

need to be made empirically for clustering, based on the domain knowledge and the collection 

(e.g. the number of clusters, clustering algorithm, static clustering or query-specific clustering), 

while the topic signature model does not have these problems. 

Latent topic models such as pLSI [13] assume that a document is generated by a set of topic 

models with certain distribution. Each topic model is further about the distribution of words in a 

given vocabulary. With topic model assumption, a document is modeled as follows: 
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Here k is the total number of topics in the corpus. The parameter  is the probability of 

topic t

)|( itwp

i generating word w. The parameter is the probability of document d being 

generated by topic t

)|( dtp i

i. Within the framework of latent topic models, a document can be associated 
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with multiple topics and thus it overcomes the limitation of the cluster language models. 

Hoffman evaluated the pLSI model for retrieval tasks within the framework of vector space 

model [13]. The pLSI model significantly outperformed the LSI model as well as the standard 

raw term matching method. However, the size of four testing collections is far from the 

representative of realistic IR environments and the baseline model is also far from the state of the 

art, making the effectiveness of the pLSI model on retrieval unclear.  

The idea of topic signature is actually very similar to the latent topic. The major difference lies 

in their implementations, i.e. the estimation of parameters. The number of free parameters  

 and  )  in the latent topic models is mainly in proportion to the number of 

documents for a large collection, which will cause serious overfitting problem when Expectation 

Maximum (EM) algorithm [8] is used for model estimations. The estimation process also lacks 

scalability because all parameter should be estimated simultaneously. The worst is that when a 

new document is coming, there is no way to estimate the topic mixture . In our approach, 

we explicitly extract topic signatures from documents in the corpus. Thus, we can estimate each 

topic signature model  separately. Furthermore, we can simply use maximum likelihood 

estimator to approach  no matter the document is new or not. In short, the estimation of 

the topic signature language model is very efficient and scalable as well as applicable to new 

testing documents. 

)|( dtp i |( itwp

)|( dtp i

)|( itwp

)|( dtp i

Wei and Croft [25] proposed a LDA-based document model for ad-hoc retrieval. Unlike the 

pLSI model where topic mixture is conditioned on each document, the LDA model samples topic 

mixture from a conjugate Dirichlet prior that remains same for all documents [3]. This change 

can solve the overfitting problem and the problem of generating new document in pLSI. To 

make up the possible information loss, the LDA model is further interpolated with a simple 
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language model. The final document model is: 
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The LDA model improved the retrieval performance of both simple language model and the 

cluster language model on five TREC collections [25]. The LDA model is estimated through 

Gibbs sampling which is computationally intensive. Thus, compared to the topic signature 

language model, the LDA model still suffers from the computing intensity as well as lack of 

scalability. 

III. TOPIC SIGNATURE LANGUAGE MODELS 

In this section, we describe topic signature language models in details. First, we define two 

types of topic signatures and introduce the extraction algorithms. Second, a statistical model (i.e. 

a distribution of words) is estimated for each topic the corresponding topic signature represents. 

Third, topic signature models are used for the document expansion (smoothing). Last, we discuss 

the scalability and complexity of the estimation of the topic signature language model. 

A. Context-Sensitive Topic Signatures 
 

The implementation of topic signatures plays a crucial role in our context-sensitive semantic 

smoothing approach. First, the topic signature must be context-sensitive and thus it should 

contain at least two terms, unless word sense is adopted. Second, sub-terms of a topic signature 

should have syntactic relation. Otherwise, we cannot count their frequency in a document and it 

becomes difficult to estimate their distributions. Third, it should be easy and efficient to extract 

topic signatures from texts. Following these criteria, we recommend two types of topic 
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signatures. One is the ontology-based concept and the other is the multiword phrase. In this sub-

section, we formally define these two types of topic signatures and briefly introduce the 

extraction algorithms. 

1) Ontology-based Concept as Topic Signature 
 

In our previous work [32], we implemented topic signatures as concept pairs inspired by 

Harabagiu and Lacatusu’s topic representations [10].  Formally, a topic signature is defined with 

two order-free components as in t(wi, wj), where wi and wj are two concepts related to each other 

syntactically and semantically. Because two concepts in a pair help to determine the context for 

each other, the meaning of a concept pair is often unambiguous and its semantic translation to 

individual concepts is very specific and accurate. However, the combination of two concepts 

causes a large vocabulary space which makes it inefficient to index large collections. The 

distribution of concept pairs is also quite sparse and thus it is difficult to obtain sufficient data 

for many concept pairs to estimate their translation probabilities to individual concepts. Aware of 

the unambiguousness of a concept in an ontology, we simply use ontology-based concept as 

topic signatures in this paper. 

A concept (w) is a unique meaning in a domain. It represents a set of synonymous terms in the 

domain. For example, C0020538 is a concept about the disease of hypertension in UMLS 

Metathesaurus (http://www.nlm.nih.gov/research/umls); it also represents a set of synonymous 

terms including high blood pressure, hypertension, and hypertensive disease. Therefore, 

concept-based indexing and searching helps to relieve the synonymy and polysemy problems in 

IR, especially genomic IR, where a term (e.g., a gene or a protein) might have many synonyms 

while also representing different concepts in different context [30]. 

In general, the extraction of concepts from texts is still a challenging problem. Fortunately, in 
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the domain of biology and medicine, a large ontology called UMLS [35] is developed, which 

makes the task of concept extractions easier. The extraction of biological concepts is a hot topic 

in bioinformatics and a survey of those methods can be found in [19]. However, most approaches 

segment a sequence of words into phrases, but do not further map the identified phrases into 

concepts. For this reason, we adopt MaxMatcher [31], a dictionary-based biological concept 

extraction tool, for UMLS concept extractions.  

In order to increase the extraction recall while remaining the precision, MaxMatcher uses 

approximate matches between the word sequences in text and the concepts defined in a 

dictionary or ontology, such as the UMLS Metathesaurus. It outputs concept names as well as 

unique IDs representing a set of synonymous concepts. The unique concept IDs are used as an 

index in our experiments. In the example shown in Figure 1, the underlined phrases are extracted 

concept names followed by the corresponding concept ID and semantic type.  The details of the 

algorithm for MaxMatcher can be found in our previous work [31]. MaxMatcher has been 

evaluated on the GENIA corpus [36]. The precision and recall reached 71.60% and 75.18%, 

respectively, using approximate match 

criterion.  

2) Multiword Phrase as Topic Signature 
 

The use of phrases has a long history in 

information retrieval. A typical method for 

utilizing phrases will identify phrases within queries (e.g., “star war”, “space program”), scan 

documents to identify query phrases, and score the document if it contains query phrases [20]. 

The recognition of query phrases within documents can be done in one of the following three 

manners [20]:  

Example Sentence: 
A recent epidemiological study (C0002783, research activity) 
revealed that obesity (C0028754, disease) is an independent risk 
factor for periodontal disease (C0031090, disease). 
 
Word Index: recent, epidemiological, study, research, activity, 
reveal, obesity, independent, risk, factor, periodontal, disease 
Concept Index: C0002783, C0028754, C0031090 
 
Fig. 1.  The demonstration of concept extraction and indexing. Stop words 
are removed and words are stemmed. 
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• Boolean: it is also called conjunctive phrases [5]. All subterms of a query phrase 

cooccur in a document. 

• Adjacent: Exact same form as the query phrase. 

• Proximity: All subterms of a query phrase occur in close proximity in a document. 

In this paper, we utilize multiword phrases in a different manner. We treat phrases frequently 

occurring in a given collection as topic signatures and try to find a set of individual words to 

represent the topic signature (the multiword phrase). Then we can expand a document language 

model by statistically mapping topic signatures into query terms (individual words). For this 

purpose, we identify multiword phrases within only documents. The definition of phrase in this 

paper is roughly equivalent to the definition of query phrases in traditional phrase models. It is 

sort of rigid noun phrase or collocations. It contains two or more individual words which are 

adjacent to each other in sequence. It often begins with an adjective or a noun and ends with a 

noun. The semantics of a phrase usually has the following types: 

• Organization: International Business Machine Corp. 

• Person: George Bush, Ronald Regan 

• Location: United States, Los Angels 

• Subject: Space Program, Star War 

We use a slightly modified version of Xtract [23] to extract phrases in documents. Xtract is 

designed to extract three types of collocations: predicative relations, rigid noun phrases, and 

phrasal templates. It begins with extracting significant bigrams using statistical techniques, and 

then expands 2-Grams to N-Grams, and finally adds syntax constraint to the collocations. In 

Fagan’s notion of phrases [5] [9], the phrases extracted by Xtract are kind of “syntactic” phrases 

because it imposes both statistical and syntactic constraint on phrases. In the original version, 
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two words are defined as a bigram if and only if they cooccur within a sentence and their lexical 

distance is less than five words. Because we are only interested in rigid noun phrases, the first 

word should be an adjective or a noun, the second word should be a noun, and their distance 

threshold is set to four words, in our implementation.  

Xtract uses four parameters, strength (k0), spread (U0), peak z-score (k1), and percentage 

frequency (T), to control the quantity and quality of the extracted phrases. In general, the bigger 

those parameters are, the higher quality but less quantity phrases Xtract produce. Smadja 

recommended a setting (k0, k1, U0, T) = (1, 

1, 10, 0.75) to achieve good results. In the 

experiment, we set those four parameters to 

(1, 1, 4, 0.75). Xtract is an effective 

approach to phrase extraction. The 

estimated precision is about 80%, which is good enough for our IR use. It is also very efficient. 

For example, it takes only two hours to extract phrases from the AP89 collection (84,678 

documents) using our Java version implementation while Annie (a named entity recognition 

component of GATE [6]) takes about twelve hours to recognizes entities from the same 

collection. 

Example Sentence:  
How the many changes in the former Soviet Union (now the 
Commonwealth of Independent States) will affect the future of their 
space program remains to be seen. 
 
Word index: change, form, soviet, union, commonwealth, 
independent, state, affect, future, space, program, remain, see 
Multiword Phrase Index: Soviet Union, independent state, space 
program 
 
Fig. 2.  The demonstration of multiword phrase extraction and indexing. Stop 
words are removed and words are stemmed. 

In the experiment, we also tried another two types of multiword phrases in order to increase 

phrase coverage. One is named entities (person, location, and organization) identified by GATE 

[6]. The other is WordNet noun phrases [18]. However, the extra phrases did not bring further 

improvement of IR performance. A possible explanation is that both GATE entities and 

WordNet noun phrases are purely “syntactic” phrases and those extra phrases (not extracted by 

Xtract) are often infrequent in our testing collections. In our phrase language model, infrequent 
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phrases (topic signature) result in little effect on document expansions.  

B. Topic Signature Model Estimates 
 

Suppose we have indexed all documents 

with individual terms and topic signatures 

(see Figure 3). For each topic signature tk, 

we have a set of documents (Dk) 

containing that topic signature. 

Intuitively, we can use the document set 

Dk to approximate the translation model 

for tk, i.e., determining the probability of translating the signature to terms in the vocabulary. If 

all terms appearing in the document set center on the topic signature tk, we can simply use 

maximum likelihood estimates and the problem is as simple as frequency counting. However, 

some terms address the issue of other topic signatures while some are background terms of the 

whole collection. We use the generative model proposed in [27] to remove noise. Assume the set 

of documents containing tk is generated by a mixture model (i.e., interpolating the translation 

model with the background collection model ),  )|( Cwp

w1D1

D2

D3

D4

VdVt

t1

t2

t3

t4

t5 w4

w3

w2

Vw

2
1

32

4
1

7

2 5

3

1

4

8

 

Fig. 3. Illustration of document indexing. Vt, Vd and Vw are topic signature 
set, document set and word set, respectively. The number on each line 
denotes the frequency of corresponding topic signature or word in the 
document. 
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Here the coefficient α is accounting for the background noise and 
kt

θ refers to the parameter set 

of the topic model associated with the topic signature tk. In all the experiments in this paper, the 

background coefficient α is set to 0.5. Under this mixture language model, the log likelihood of 

generating the document set Dk is: 
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Here c(w, Dk) is the document frequency of term w in Dk, i.e., the cooccurrence count of w and tk 

in the whole collection. The topic model for tk can be estimated using the EM algorithm [8]. The 

EM update formulas are: 
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Our topic signature model is significantly different from previous ones described in [2] [4] [14] 

[15] in two aspects. First, previous models take an individual term as the topic signature, and are 

unable to incorporate contextual information into the translation procedure. Our model uses 

phrases as the topic signatures. Since multiword phrases are unambiguous in most cases, the 

resulting translation will be more specific. 

From three examples shown in Table I, we 

can see that the phrase-word translations are 

quite coherent and specific. Take the 

example of the phrase “space program”. If 

we estimate the translation models for its 

constituent terms “space” and “program” 

separately, both translation models (see 

Figure 4) contain mixed topics and are fairly 

general. Some terms such as NASA, 

astronaut, moon, satellite, rocket, and Mar, 

which is related to the subject of space 

TABLE I 
Examples of topic signature models. The three multiword phrases 
are automatically extracted from the collection of AP89 by Xtract. 
We only list the top 20 topical words for each phrase. It is worth 
noting that the word “third” is removed from the index as a stop 
word and thus it does not appear in the translation result of the third 
phrase. 

Space Program Star War Third World Debt 

Term Prob. Term Prob. Term Prob. 

space 0.101 star 0.088 debt 0.072 
program 0.071 war 0.066 Brady 0.039 
NASA 0.048 missile 0.06 loan 0.038 
shuttle 0.043 strategy 0.051 world 0.038 
astronaut 0.041 defense 0.051 treasury 0.037 
launch 0.040 nuclear 0.043 bank 0.035 
mission 0.038 space 0.034 Nicholas 0.034 
flight 0.037 initialize 0.033 debtor 0.030 
earth 0.037 Pentagon 0.032 trillion 0.027 
moon 0.035 weapon 0.031 reduction 0.027 
orbit 0.032 bomber 0.031 forgive 0.025 
satellite 0.031 budget 0.028 monetary 0.025 
Mar 0.030 stealthy 0.025 Mexico 0.025 
explorer 0.028 program 0.025 economy 0.023 
station 0.028 spend 0.024 billion 0.023 
rocket 0.027 armed 0.023 reduce 0.022 
technology 0.026 fiscal 0.022 burden 0.022 
project 0.025 Reagan 0.021 lend 0.021 
science 0.023 cut 0.021 creditor 0.021 
budget 0.023 Bush 0.019 secretary 0.020 
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program very much, do appear in the phrase 

translation model, but in neither of the two 

subterm translation models. 

Second, the method for model estimation is 

different. Berger and Lafferty [2] use 

document-query pairs to train translation 

probabilities. However, it is unlikely to 

obtain a large amount of real data. For this reason, they use synthetic data for model estimation. 

The title language model, proposed in [14], uses title-document pairs to train translation 

probabilities. The major drawback of the title model is that only a small portion of terms in the 

vocabulary would appear in the title. The Markov chain model [15] deals with translations in a 

different fashion. However, the resulting query model is fairly general and the computation of 

the inverse matrix is prohibitive to large collections. Cao [4] takes into account word semantics 

when computing term associations, but he ignores the sense of words. 

Space: 
space 0.245; shuttle 0.057; launch 0.053; flight 0.042; air 0.035; 
program 0.031; center 0.030; administration 0.026; develop 0.025; 
like 0.023; look 0.022; world 0.020; director 0.020; plan 0.018;  
release 0.017; problem 0.017; work 0.016; place 0.016; mile 0.015 
base 0.014; 
 
Program: 
program 0.193; washington 0.026; congress 0.026;  
administration 0.024; need 0.024; billion 0.023; develop 0.023; 
bush 0.020; plan 0.020;money 0.020; problem 0.020;  
provide 0.020; writer 0.018; d 0.018; help 0.018; work 0.017; 
president 0.017; house .017; million 0.016; increase 0.016; 
 
 

Fig. 4. The demonstration of word-word translation which is estimated 
by the same approach described in section 3.1. The translation results 
contain mixed topics and are fairly general in comparison with the result 
of the phrase-word translation. 

We also truncate terms with extremely small translation probabilities for two purposes. First, 

with smaller number of translation space, the document smoothing will be much more efficient. 

Second, we assume terms with extremely small probability are noise (i.e. not semantically 

related to the given topic signature). In detail, we disregard all terms with translation probability 

less than 0.001 and renormalize the translation probabilities of the remaining terms. 

C. Document Model Smoothing 
 

Suppose we have indexed all documents in a given collection C with terms (individual words) 

and topic signatures as illustrated in Figure 3. The translation probabilities from a topic signature 

tk to any individual term w, denoted as p(w|tk), are also given. Then we can easily obtain a 
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document model below: 
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The likelihood of a given document generating the topic signature tk can be estimated with  
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where is the frequency of the topic signature t),( dtc i i in a given document d.  

We refer to the above model as translation model after Berger and Lafferty’s work [2]. As we 

discussed in the previous sub-section, the translation from context-sensitive topic signatures to 

individual terms would be very specific. Thus, the smoothed (expanded) document models will 

be more accurate. However, not all topics in a document can be expressed by topic signatures 

(i.e., multiword phrases). Take the example of AP88-90. A document in this collection contains 

179 unique words, but only contains 32 multiword phrases on the average (see Table II). If only 

translation model is used, there will be serious information loss. A natural extension is to 

interpolate the translation model with a unigram language model. We use two-stage method [28] 

to smooth the unigram language model:   
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where p(q|C) is the collection background model. γ and μ are two coefficients for tuning. We 

also refer to this smoothed unigram model as simple language model or baseline language model 

in this paper. 

The final document model for retrieval use is described in equation (13). It is a mixture model 

with two components: a simple language model and a translation model. 

)31(       )|( )|()-(1 )|( dwpdwpdwp tbbt λλ +=  
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The translation coefficient (λ) is to control the influence of two components in the mixture 

model. With training data, the translation coefficient can be trained by optimizing the retrieval 

performance measure such as average precision. In the experiments in this paper, we train the 

optimal translation coefficient on one collection and then apply the learned translation 

coefficient to other collections. 

D. Scalability and Complexity 
 

In comparison to simple language models [18] and traditional probabilistic language models 

such as Okapi [22], the topic signature language model needs the following extra computational 

cost: (1) the extraction of topic signatures from documents in offline mode, (2) the estimation of 

topic models for each topic signature in offline mode, and (3) document model expansions based 

on topic signature translations in online mode. Fortunately, the additional computation is 

scalable very well and its complexity is acceptable in practice. Furthermore, the issue of 

scalability and complexity is significantly improved over the statistical translation model [2] and 

the LDA-based document model [25].  

The extraction of topic signatures is time-consuming compared with individual term extraction. 

However, it does not cause serious problem because it can be executed in the offline and 

incremental mode. In the experiment, the dragon toolkit [34] is used for document indexing. The 

dragon toolkit implements a Java version of Xtract [23] for multiword phrase extraction. Take 

the example of indexing AP collection in Disk 1, 2 and 3 (about 240K news articles) on a Linux 

server. It takes about 15 minutes to index individual terms and 3 hours to index topic signatures 

(multiword phrases). From this example, we can see that the indexing time for topic signatures is 

acceptable as an offline task. 
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The estimation of topic models is highly computation-intensive.  In general, the parameter 

space is in proportion to the number of documents in the corpus, the size of vocabulary, and the 

number of topics; the computational complexity 

is in proportion to the number of documents, the 

number of topics, and the number of iterations 

for convergence. Therefore, the estimation 

algorithms proposed in [2] and [25] are not 

scalable as well as time-consuming for large 

collections. For example, the estimation of the LDA model for AP collection using Gibbs 

sampling (please refer to [25] for detailed settings) costs about 72 hours whereas our approach 

uses only 45 minutes to estimate topic models for all topic signatures. Our approach estimate 

topic models for each topic signature separately, which dramatically reduce the parameter space 

and make the model converged with fewer iterations. Thus, our estimation approach increases 

the scalability and reduces the complexity.  

TABLE II 

Average numbers of unique words and topic signatures per 
document in four collections 

Collection avg. # of unique 
words 

avg. # of unique  
topic  signatures 

Genomics 2004 71.3 39.2 
Genomics 2005 75.2 37.6 

AP89 180.1 31.8 
AP88-89 178.6 31.7 

WSJ90-92 196.6 35.6 
SJMN91 164.2 25.3 

 

The online document model expansion based on topic models is computationally intensive 

because it involves the summation of translation probabilities as shown in equation (9). The 

complexity is in proportion to the number of topics for a document. The number of topics is 

equal to number of unique terms in the statistical translation model [2], the number of latent 

topics in LDA-based models [25], and the number of unique topic signatures in the topic 

signature language model. As shown in Table II, the number of topic signatures is significantly 

less than the document length as well as the number of latent topics in LDA model (e.g. the 

optimal number of topics is 800 in [25]) in typical testing collections and thus our approach has 

the lowest complexity during document model expansions. 
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IV. EXPERIMENTS WITH ONTOLOGY-BASED CONCEPTS 

A. Evaluation Metrics and Baseline Models 
 

Following the convention of TREC, we use the mean average precision (MAP) as the major 

performance measure and the overall recall at 1000 documents as a supplemental measure. The 

non-interpolated average precision is defined as:  
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where r(D) is the rank of document d and Rel is the set of relevant documents for a query Q. By 

averaging the non-interpolated average precision across all queries of a collection, we obtain the 

MAP for the collection. 

In the experiment, we use the two-stage language model (TSLM) [28] as the first baseline. The 

exact formula for the two-stage model is described in equation 12. To show how strong the 

baseline is, we also compare the baseline to the famous Okapi model [22]. The exact formula for 

the Okapi model is shown below: 
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Where: 

tf(q, D) is the term frequency of q in document D. 

df(q) is the document frequency for q. 

avg_dl is the average document length in the collection. 

 The major difference between the statistical translation model [2] and the proposed topic 

signature language model is that the latter incorporate the contextual information into the 
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document model expansions (smoothing). Thus, it is very natural to further compare the context-

sensitive semantic smoothing (CSSS) to the context-insensitive semantic smoothing (CISS). 

Because it is difficult to obtain a large number of real query-document pairs, we use word-word 

cooccurrence data to train context-insensitive version of translation probabilities in the 

experiment. The parameter estimation algorithm is the same as the one for the context-sensitive 

version (i.e. the translation from topic signature to individual words). The retrieval model is still 

the mixture of a two-stage language model and a translation model as described in equation 13. 

But the translation component is formulated slightly differently: 

)61(             )|()|()|( ∑=
k

kmlkt dwpwwpdwp  

It statistically maps each individual word instead of context-sensitive topic signature in a 

document onto query terms.  

B. Testing Collections 
 

Our current implementation of concept-based topic signature extraction needs domain 

ontology. For this reason, we validate our context-sensitive semantic smoothing method on 

genomic collections because UMLS could be used as the domain ontology for this area. The 

testing collections are TREC Genomic Track 2004 [11] and 2005 [12]. The original collection is 

a ten-year subset of Medline abstracts and contains about 4.6 million abstracts. We only used the 

sub-collection (i.e., the human relevance-judged document pool, 42,251 documents for 2004 and 

35,474 documents for 2005) for our 

experiment. The ad hoc retrieval tasks of 

the two tracks include 50 topics (queries), 

respectively. The statistics of the testing collections are shown in Table III. 

TABLE III 

The descriptive statistics of testing collections 
Collections Word Concept Rel./Doc Q.Len/Q.# 

 Genomics 2004 92,362 65,257 8,268/42,251 6.4/50 
 Genomics 2005 80,168 57,879 4,584/35,474 6.0/49 
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C. Document Indexing and Query Processing 
 

We index all documents with UMLS-based concepts and individual word as demonstrated in 

Figure 2. For each document, we record the frequency count of each topic signature (i.e. UMLS 

concept) and individual words and the basic statistics. For each topic signature and individual 

words, we record their frequency count in each document and the basic statistics. For word 

indexing, stop words are removed and each word is stemmed. For topic signatures appearing in 

ten or more documents, we estimate their topic models (i.e. translation probabilities) using the 

EM algorithms. 

The query formulation is fully automated. The extraction of query terms (individual words) 

from topic descriptions is the same as the process of document indexing. In TREC 2004 

Genomics Track, a topic was described in three sections: title, information need, and context. 

The information provided by section of context is a little noisy. Our pilot study showed that the 

baseline (both Okapi and two-stage language model) using context section achieved the 

performance much worse than the one without context. For this reason, we only use the title 

section and information need section in the experiment. In TREC 2005 Genomics Track, query 

#135 was removed because it contains no relevant document. 

As stated in [17], the query terms in the “title” section are clearly more important than those in 

the remaining sections. For this reason, we weight query terms according to the sections from 

which they are extracted. Following the method proposed in [17],   we optimize the weight of 

different sections by maximizing the MAP of the baseline retrieval model. The optimal weights 

for the “title” section and the “information need” section are 1.0 and 0.2, respectively. In Table 

IV, V and VI, the sign (†) indicates the initial query is weighted. 
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D. Effect of Document Smoothing 
 

We set parameters γ and μ in the two-stage language model to 0.05 and 200, respectively 

because the language model achieves the best performance with this configuration. To give 

readers the sense of how good the baseline language model is, we also report the performance of 

the Okapi retrieval model in Table IV. The Okapi model is slightly better than the two-stage 

model, but roughly these two models are comparable to each other. 

 The translation coefficient (λ) in the topic signature language model is optimized by 

maximizing the MAP on TREC Genomics 

Track 04 using unweighted query. The 

learned optimal value is 0.3 and then we 

apply this learned value to other two 

collections. The result is shown in Table V. 

In order to validate the significance of the improvement, we also run paired-sample t-test. As 

expected, the topic signature language model outperforms the two-stage language model in terms 

of average precision and overall recall at the 

significance level of 0.01 on both TREC04 and 

TREC05. 

To see the robustness of the topic signature 

language model, we change the settings of the 

translation coefficient. The variance of the 

mean average precision (MAP) with the 

translation coefficient λ is shown in Figure 5. When the translation coefficient ranges from 0 to 

0.9, the topic signature language model performs always better than the baseline on three 

TABLE V 

The comparison of the two-stage language model (TSLM) to the 
topic signature language model (i.e. context-sensitive semantic 
smoothing, CSSS). The sign ** and * indicate the improvement is 
statistically significant according to the paired-sample t-test at the 
level of p<0.01 and p<0.05, respectively. The sign† indicates the 
initial query is weighted. 

Collections TSLM CSSS Change 
MAP 0.352 0.422 +19.9%** TREC04 
Recall 6544 7279 +11.2%** 
MAP 0.384 0.446 +16.2%** TREC04† Recall 6680 7395 +10.7%** 
MAP 0.265 0.322 +21.5%** TREC05 Recall 4093 4291 +4.8%** 

TABLE IV 
Comparison of the two-stage language model (TSLM) to the Okapi 
model. The sign† indicates the initial query is weighted.  

Recall MAP Collection TSLM Okapi Change TSLM Okapi Change 
TREC04 6544 6847 +4.6% 0.352 0.369 +4.8% 
TREC04† 6680 6869 +2.8% 0.384 0.370 -3.7% 
TREC05 4093 4193 +2.4% 0.265 0.270 1.9% 
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collections. This shows the robustness of the new model. More interestingly, the best 

performance is achieved at the setting point of λ=0.3 for all four curves; after that point, the 

performance is downward. A possible 

explanation is that the extracted topic 

signatures do not capture all points of the 

document, but the baseline language model 

captures those missing points. For this 

reason, when the influence of the 

translation model is too high in the mixture model, the performance is downward and even worse 

than that of the baseline. Therefore, if we can find a better topic signature representation for 

documents and queries, or we can refine the extraction of topic signatures, the IR performance 

might be further improved. 
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Fig. 5. The variance of MAP with the translation coefficient (λ), which 
controls the influence of the translation model. 

E. Context-Sensitive vs. Context-Insensitive 
 

Basically, the context-insensitive semantic smoothing (CISS) is based on the word-word 

translation as did in [2], [4], [14] and [15]. The comparison of CISS to CSSS is presented in 

Table VI. For each collection, we tune the translation coefficient (λ) to maximize the MAP. The 

optimal λ is about 0.3 for all three collections. Firstly, we can see that CISS significantly 

outperforms the two-stage language model on all three collections. The gain of the context-

sensitive model over the baseline language model is consistent with the conclusions of previous 

work, such as [2], [4], [14] and [15]. However, CISS is slightly less effective than CSSS, as 

expected.  
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Secondly, the improvement of CSSS over CISS seems not much on genomics track. On 

genomics track 2005, there is almost no improvement. A possible explanation is that most 

document terms are biological terms such 

as protein, gene and cell names. The 

meaning of these terms (e.g. p53, brca1 

and orc1) is usually unambiguous even if 

without additional contextual constraints. 

Thus, the word-word translations could 

be very specific and accurate.   

V. EXPERIMENTS WITH MULTIWORD PHRASES 

A. Testing Collections  
 

In this section, we evaluate the effectiveness of automated multiword phrases as topics 

signatures. Compared to ontology-based concepts, the extraction of multiword phrases does not 

need any external human knowledge and could be applied to any public domain. The model is 

validated on six TREC ad hoc collections from disc1, disc2 and disc3. We select these 

collections for three reasons. First, these 

collections are well studied and may 

published results are available to compare. 

Second, the content of these collections is 

all about general news stories on which the Xtract is supposed to work very well on the 

automated phrase extraction. Third, compared to the vocabulary in genomic collections, the 

vocabulary of news stories is more ambiguous and thus the context-sensitive semantic smoothing 

TABLE VII 

The descriptive statistics of ten testing collections 
Collections Word Phrase Rel./Doc Q.Len/Q.# 

 AP89/1-50 145,349 114,096 3,301/84,678 3.4/47 
 AP88&89/51-100 204,970 127,736 6,101/164,597 3.4/49 
 AP88&89/101-150 204,970 127,736 4,822/164,597 4.0/50 
 WSJ90-92/101-150 135,864 75,687 2,049/74,520 3.8/48 
 WSJ90-92/151-200 135,864 75,687 2,041/74,520 4.6/49 
 SJMN91/51-100 173,727 95,986 2,322/90,257 3.4/48 

TABLE VI 

Comparison of the context-sensitive semantic smoothing (CSSS) to the 
context-insensitive semantic smoothing (CISS) on MAP. The rightmost 
column is the change of CSSS over CISS. The sign ** and * indicate the 
improvement is statistically significant according to the paired-sample t-
test at the level of p<0.01 and p<0.05, respectively. 

Collections TSLM CISS vs. TSLM CSSS vs. CISS 
MAP 0.352 0.408 +15.9%** 0.422  +3.4%* Genomics 

2004 Recall 6544 7176 +9.7%** 7279  +1.4%* 
MAP 0.384 0.432 +12.5%** 0.446  +3.2%* Genomics 

2004† Recall 6680 7359 +10.2%** 7395  +0.5% 
MAP 0.265 0.322 +21.5%** 0.322  +0.0% Genomics 

2005 Recall 4093 4283 +4.6%** 4291  +0.2% 
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is supposed to take the advantage over the context-insensitive semantic smoothing. The 

descriptive statistics of these testing collections are shown in Table VII. 

B. Document Indexing and Query Processing 
 

We obtain two separate indices, word index and phrase index, for each collection. For word 

indexing, each document is processed in a standard way. The document is tokenized and 

stemmed (using porter-stemmer) and stop words are removed. We use a 319-word stop list 

compiled by van Rijsbergen. Xtract [23] is employed to extract phrases from documents. For 

phrases appearing in more than ten documents, we estimate their translation probabilities to 

single-word terms. 

The query formulation is fully automated. For each collection, we remove all queries (topics) 

which contain no relevant documents. Early TREC topics are often described in multiple 

sections including title, description, narrative, and concept. As many other studies did, we use 

only the section of title. The extraction of query terms from topic descriptions is the same as the 

process of word indexing. That is, each topic is tokenized and stemmed and stop words are 

removed. The average length of queries and total number of queries for each collection is listed 

in Table VII. 

C. Effect of Document Smoothing 
 

We set the parameters γ and μ in the two-

stage language model to 0.5 and 750, 

respectively in the experiment because almost 

all collections achieve the optimal MAP at this 

setting point. Interestingly, the Okapi model and the two-stage language model have very similar 

TABLE VIII 
The comparison of the two-stage language model (TSLM) to the 
Okapi model.  

Recall MAP Collection/Topics TSLM Okapi Change TSLM Okapi Change
1621 1618 -0.2% 0.187 0.187 0.0%  AP89/1-50 
3428 3346 -2.4% 0.252 0.239 -5.2%  AP88-89/51-100 
3055 3087 +1.0% 0.219 0.220 +0.5%  AP88&89/101-150 
1510 1488 -1.5% 0.239 0.249 +4.2%  WSJ90-92/101-150 
1612 1624 +0.7% 0.314 0.304 -3.2%  WSJ90-92/151-200 
1350 1348 -0.1% 0.190 0.184 -3.2%  SJMN91/51-100 
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retrieval performance in the experiment as 

shown in Table VIII. This is also a kind of 

indication that both baseline models are 

well tuned. 

 The translation coefficient (λ) in the topic 

signature language model is optimized by 

maximizing the MAP on the collection of 

AP89 Topic 1-50. The optimal value is 0.3 

and we then apply this learned coefficient to other five collections. Interestingly, all collections 

achieve the best performance at the setting point of λ=0.3. We then compare the result of the 

topic signature language model to the two-stage language model. The comparison is shown in 

Table IX. In order to validate the significance of the improvement, we also run paired-sample t-

test. The incorporation of phrase-word translation improves both MAP and overall recall over 

the baseline model on all six collections. Except the recall on the collection of WSJ 90-92 Topic 

151-200, the improvements over the two-stage language model are all statistically significant at 

the level of p<0.05 or even p<0.01. Considering the baseline model is already very strong, we 

think the topic signature language model is very promising to improve the IR performance. 

TABLE IX 

The effect of document expansions based on phrase-word translation. 
The sign ** and * indicate the improvement is statistically significant 
according to the paired-sample t-test at the level of p<0.01 and p<0.05, 
respectively. 

Collection/Topics TSLM CSSS Change 

To see the robustness of the topic signature language model, we also change the settings of the 

translation coefficient. The variance of MAP with the translation coefficient λ is shown in Figure 

6. In a wide range from 0 to 0.6, the topic signature language model always performs better than 

the baseline on all six collections. This shows the robustness of the model. For all six curves in 

Figure 6, the best performance is achieved at the setting point of λ=0.3; after that point, the 

performance is downward. A possible explanation is that the extracted topic signatures 

MAP 0.187 0.206  +10.2%** AP89 
1-50 Recall 1621 1748  +7.8%** 

MAP 0.252 0.288  +14.3%** AP88-89 
51-100 Recall 3428 3771  +100%* 

MAP 0.219 0.246  +12.3%** AP88-89 
101-150 Recall 3055 3445  +12.8%** 

MAP 0.239 0.256  +7.1%** WSJ90-92 
101-150 Recall 1510 1572  +4.1%* 

MAP 0.314 0.334  +6.5%** WSJ90-92 
151-200 Recall 1612 1620  +0.5% 

MAP 0.190 0.208  +9.5%** SJMN91 
51-100 Recall 1350 1472  +9.0%** 
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(multiword phrases) do not capture all points 

of the document, but the two-stage language 

model captures those missing points. For this 

reason, when the influence of the translation 

model is too high in the mixture model, the 

performance is downward and even worse 

than that of the baseline.  

D. Context-Sensitive vs. Context-
Insensitive 
 
In newswire collections, many terms are 

very ambiguous. Terms could have different meanings in different contexts. Thus, the word-

word translation may be fairly general and 

contains mixed topics. The phrase-word 

translation well solves this problem since 

most multiword-phrases have very specific 

meaning and are unambiguous.  
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Fig 6. The variance of MAP with λ, which controls the influence of the 
context-sensitive translation model in the mixture phrase language model 

The comparison of the context-sensitive 

semantic smoothing (CSSS) to the context-

insensitive semantic smoothing (CISS) is 

shown in Table X.  For each collection, we 

tune the translation coefficient (λ) to maximize the MAP of CISS. The optimal λ is about 0.1 for 

all six collections, which is much smaller than the optimal value for CSSS (λ=0.3). It is also a 

kind of indication that the word-word translation is much noisier than the phrase-word 

TABLE X 

Comparison of the context-sensitive semantic smoothing (CSSS) to 
the context-insensitive semantic smoothing (CISS) on MAP. The 
rightmost column is the change of CSSS over CISS. The sign ** and 
* indicate the improvement is statistically significant according to the 
paired-sample t-test at the level of p<0.01 and p<0.05, respectively. 

Collections TSLM CISS vs. TSLM CSSS vs. CISS 
MAP 0.187 0.195 +4.3%* 0.206 +5.6% AP89 

1-50 Recall 1621 1730 +6.7%* 1748 +1.0% 
MAP 0.252 0.272 +7.9% 0.288 +5.9%* AP88-89 

51-100 Recall 3428 3735 +9.0%* 3771 +1.0% 
MAP 0.219 0.235 +7.3%** 0.246 +4.7% AP88-89 

101-150 Recall 3055 3237 +6.0%* 3445 +6.4%* 
MAP 0.239 0.244 +2.1% 0.256 +4.9%* WSJ90-92

101-150 Recall 1510 1568 +3.8%** 1572 +0.3% 
MAP 0.314 0.324 +3.2% 0.334 +3.1% WSJ90-92

151-200 Recall 1612 1646 +2.1%* 1620 -1.6% 
MAP 0.190 0.199 +4.7%* 0.208  +4.5% SJMN91 

51-100 Recall 1350 1427 +5.7%** 1472  +3.2% 
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translation. From the experimental results, we can firstly see that CISS greatly outperform the 

two-stage language model and most of the improvements are statistically significant. Secondly, 

the CSSS has considerable gain over the CISS especially on the measure of MAP. 

In addition, the CSSS is computationally more efficient than the CISS. The CSSS is based on 

phrase-word translations while the CISS based on word-word translations. As shown in Table II, 

an average document in the testing collections about 180 unique works, but only about 30 unique 

multiword phrases. In other words, the CSSS is six times faster than the CISS for the 

construction of occurrence data as well as the document model expansions (smoothing). 

E. Vs. Other Types of Phrases 
 

The different types of phrases may have different impact on the retrieval performance. Fagan 

reported significant improvement on some collections using “statistical” phrases, but none with 

“syntactic” phrases in his thesis [9]. In this paper, we used kind of phrases with both “syntactic” 

and “statistical” constraints extracted by Xtract and got very positive results. An interesting 

question is then raised up: 

“Can other types of phrases (e.g. WordNet phrases and Named Entities) still get positive 

results with the topic signature language model?” 

To test this idea, we add WordNet noun phrases and named entities including person, 

organization, and location to the document index and see if the IR performance is further 

improved or even decreased. WordNet noun phrases are manually selected phrases. The named 

entities are automatically extracted by GATE purely according to syntactic rules. Thus, neither 

of them is constrained by statistical criteria. Take the example of AP89 collection. Before adding 

extra phrases, the collection has 114,096 phrases. After adding WordNet noun phrases and 

named entities, the number of phrases is increased by about 50K. However, the increase of 
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phrase coverage does not make any improvement of IR performance. The other five collections 

are in the similar case. Examining the extra noun phrases carefully, we find out that most of 

those phrases are infrequent in the testing collection. Actually, the majority of phrases frequently 

occurring in the collection are already extracted by Xtract. Those infrequent phrases will have 

little effect on the document model expansions, thus have no effect on the IR performance. 

Therefore, in order to make the topic signature (phrase) language model effective, we should use 

phrases, frequently occurring in the collection or constrained by “statistical” criteria. 

 

VI. CONCLUSION 

In this paper, we proposed a topic signature language model for ad-hoc text retrieval. This new 

model decomposed a document into a set of weighted context-sensitive topic signatures and then 

translated those topic signatures into individual query terms. Because the topic signature itself 

contained contextual information, the document model expansion based on topic signatures 

would be more accurate, compared to the model expansion based on context-insensitive term 

translations proposed in  previous work [2] [4] [14], and thus improved the retrieval 

performance.  

We implemented two types of topic signatures in this paper. When domain-specific ontology is 

available, ontology-based concepts can be used as topic signatures. Otherwise, automated 

multiword phrases are an alternative. We evaluated the effectiveness of ontology-based concepts 

on TREC Genomics Track 2004 and 2005 and the effectiveness of multiword phrases on TREC 

Ad hoc Track Disc1&Disc2&Disc3. The topic signature language model significantly 

outperformed the two-stage language model on all collections. We also implemented a context-

insensitive version of semantic smoothing. It has the same framework as the topic signature 
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language model, but the document model expansion (smoothing) is based on context-insensitive 

word-word translations rather than context-sensitive signature-word translations. As expected, it 

is less effective than the context-sensitive semantic smoothing, though it does achieve significant 

improvement over the two-stage language model.  

The topic signature language is the linear interpolation of the two-stage language model and the 

topic signature based translation model. It is required to set the translation efficient which 

controls the influence of the translation component in the mixture model. It is somewhat ad-hoc 

nature. Fortunately, the experiments showed the robustness of the model. When the translation 

coefficient took different values in a wide range (0-0.9 for ontology-based concepts and 0-0.6 for 

multiword phrases), the topic signature language model always performed better than the 

baseline. More interestingly, all collections achieved the best MAP at the same setting (i.e. 

λ=0.3).  This means it is reasonable to train the optimal translation coefficient on one collection 

and then apply the learned coefficient to other collections in future. 

We also found out two factors would affect the effectiveness of the topic signature language 

model. One is the degree of the ambiguity of terms in the collection. If terms (e.g. in newswire 

collections) are very ambiguous, the topic signature model (i.e. context-sensitive semantic 

smoothing) can take much advantage over the context-insensitive semantic smoothing. The other 

is occurrence frequency of the topic signatures in the collection.  If the topic signatures 

infrequently occur in the collection, the model has little effect on improving the IR performance. 

 This paper made the following contributions. First, we presented a new document 

representation, i.e., representing a document as a set of weighted topic signatures and terms. The 

new representation could be applied to other retrieval, summarization, and text classification 

techniques. Second, we proposed an EM-based method to train the context-sensitive translation 
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model for each signature and then formalized the approach to document expansions based on 

topic signature translations. Third, we empirically proved the superiority of the context-sensitive 

semantic smoothing over context-insensitive semantic smoothing as well as simple background 

smoothing. 

Probabilistic topical models such as pLSI [13] and LDA [25] also take the context into account 

and thus can handle the word polysemy problem. In this paper, we analyzed their computing 

complexity in the setting of IR and concluded that these two models were computationally less 

efficient than the topic signature language model in both offline topic model estimation stage and 

online document model smoothing stage. However, the comparison of the effectiveness of three 

models on retrieval tasks is still unclear. It should be interesting to have a comprehensively 

comparative study on these three models with respect to their efficiency and effectiveness for ad-

hoc text retrieval. 

Besides, how to optimize the mixture weights of the topic signature language model remains an 

opening issue. In this paper, we empirically tuned a fixed translation coefficient on training data 

set and achieved good results. Ideally, the translation coefficient should be conditioned on each 

document because the relative information provided by the translation model based topic 

signatures varied with different documents. In addition, the topic signature language model can 

also be applied to applications other than information retrieval. Traditional text mining problems 

such as text clustering and text classification are also based on document models. Thus, it is 

natural to extend the application of the new model to those areas. Our previous work [33] has 

successfully applied this model to agglomerative document clustering. In future, we will further 

evaluate its effectiveness in related areas.  
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