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Abstract

Genetic algorithms(GAs) are increasingly being applied to large scale problems. The tra-
ditional MPI-based parallel GAs do not scale very well. MapReduce is a powerful abstraction
developed by Google for making scalable and fault tolerant applications. In this paper, we
mould genetic algorithms into the the MapReduce model. We describe the algorithm design
and implementation of GAs on Hadoop, the open source implementation of MapReduce. Our
experiments demonstrate the convergence and scalability upto 10° variable problems. Adding
more resources would enable us to solve even larger problems without any changes in the algo-
rithms and implementation.

1 Introduction

The growth of the internet has pushed researchers from all disciplines to deal with volumes of
information where the only viable path is to utilize data-intensive frameworks (Uysal et al., 1998;
Beynon et al., 2000; Foster, 2003; Mattmann et al., 2006). Genetic Algorithms are increasingly
being used for large scale problems like non-linear optimization (Gallagher and Sambridge, 1994),
clustering (Frnti et al., 1997) and job scheduling (Sannomiya et al., 1999). The inherent parallel
nature of evolutionary algorithms makes them optimal candidates for parallelization (Cantu-Paz,
2000). Although large bodies of research on parallelizing evolutionary computation algorithms are
available (Canti-Paz, 2000), there has been little work done in exploring the usage of data-intensive
computing.
The main contributions of the paper are as follows:

e We demonstrate a transformation of Genetic Algorithms into the Map and Reduce primitives
e We implement the MapReduce program and demonstrate its scalability to large problem sizes.

The organization of the paper is as follows: We introduce the MapReduce model and its execution
overview in Section 2. Then, we discuss how genetic algorithms can be moulded into the MapReduce



model in Section 3 and report our experiments in Section 4. In Section 5, we discuss the related
work and finally conclude with Section 6.

2 MapReduce

Inspired by the map and reduce primitives present in functional languages, Google developed the
MapReduce (Dean and Ghemawat, 2008) abstraction that enables the users to easily develop large-
scale distributed applications. The associated implementation parallelizes large computations easily
as each map function invocation is independent and uses re-execution as the primary mechanism
of fault tolerance.

In this model, the computation takes a set of input key/value pairs, and produces a set of
output key/value pairs. The user of the MapReduce library expresses the computation as two
functions: Map and Reduce. Map, written by the user, takes an input pair and produces a set of
intermediate key/value pairs. The MapReduce framework then groups together all intermediate
values associated with the same intermediate key I and passes them to the Reduce function. The
Reduce function, also written by the user, accepts an intermediate key I and a set of values for
that key. It merges together these values to form a possibly smaller set of values. The intermediate
values are supplied to the user’s reduce function via an iterator. This allows the model to handle
lists of values that are too large to fit in main memory.

Conceptually, the map and reduce functions supplied by the user have the following types:

map(ki,v1) — list(ka,v2)

reduce(ke, list(vy)) —  list(vs)

i.e., the input keys and values are drawn from a different domain than the output keys and values.
Furthermore, the intermediate keys and values are from the same domain as the output keys and
values.

The Map invocations are distributed across multiple machines by automatically partitioning the
input data into a set of M splits. The input splits can be processed in parallel by different machines.
Reduce invocations are distributed by partitioning the intermediate key space into R pieces using a
partitioning function, which is hash(key)%R according to the default Hadoop configuration (which
we later override for our needs). The number of partitions (R) and the partitioning function are
specified by the user. Figure 1 shows the high level data flow of a MapReduce operation. Interested
readers may refer to Dean and Ghemawat (2008) for the details.

3 MapReducing GAs

In this section, we start with a simple model of Genetic algorithms and then transform and imple-
ment it using MapReduce along with a discussion of some of the elements that need to be taken
into account. We encapsulate each iteration of the GA as a seperate MapReduce job. The client
accepts the commandline parameters, creates the population and submits the MapReduce job.

3.1 Genetic Algorithms

Selectorecombinative genetic algorithms (Goldberg, 1989, 2002), one of the simplest forms of GAs,
mainly rely on the use of selection and recombination. We chose to start with them because they
present a minimal set of operators that help us illustrate the creation of a data-intensive flow
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Figure 1: MapReduce Data flow overview

counterpart. The basic algorithm that we target to implement as a data-intensive flow can be
summarized as follows:

1. Initialize the population with random individuals.
2. Evaluate the fitness value of the individuals.

3. Select good solutions by using s-wise tournament selection without replacement (Goldberg
et al., 1989b).

4. Create new individuals by recombining the selected population using uniform crossover® (Syw-
erda, 1989).

5. Evaluate the fitness value of all offspring.

6. Repeat steps 3—5 until some convergence criteria are met.

3.2 Map

Evaluation of the fitness function for the population (Steps 1 and 5) matches the MAP function,
which has to be computed independent of other instances. As shown in the algorithm in Listing 1,
the MAP evaluates the fitness of the given individual. Also, it keeps track of the the best individual
and finally, writes it to a global file in the Distributed File System (HDFS). The client, which has
initiated the job, reads these values from all the mappers at the end of the MapReduce and checks
if the convergence criteria has been satisfied.

!We assume a crossover probability p,=1.0.



Listing 1: Map phase of each iteration of the Genetic Algorithm

procedure Initialization:
begin

max = —1
end

procedure Map(key, value):
begin
individual :=
Individual_representation (key)
fitness := CalculateFitness(individual)
Emit (individual, fitness)
{Keep track of the current best}
if fitness>max then
max := fitness
maxInd := individual
{Finished all local maps}
if processed_all_individuals then
Write best individual to global file in DFS
end

3.3 Partitioner

If the selection operation in a GA (Step 3) is performed locally on each node, it reduces the
selection pressure (Sarma et al., 1998) and can lead to increase in the time taken to converge.
Hence, decentralized and distributed selection algorithms (Jong and Sarma, 1995) are preferred.
The only point at which there is a global communication is in the shuffle between the Map and
Reduce. At the end of the Map phase, the MapReduce framework shuffles the key/value pairs to
the reducers using the partitioner. The partitioner splits the intermediate key/value pairs among
the reducers. The function GETPARTITION() returns the reducer to which the given (key,value)
should be sent to. In the default implementation, it uses HAsH(key) % numReducers so that all
the values corresponding to a given key end up at the same reducer which can then apply the
REDUCE function. However, this does not suit the needs of Genetic algorithms because of two
reasons: Firstly, the HASH function partitions the namespace of the individuals N into r distinct
classes : {Ng, N1,...,N,_1} where N; = {n: HAsH(n) = i}. The individuals within each partition
are isolated from all other partitions. Thus, the HASHPARTITIONER introduces an artificial spatial
constraint based on the lower order bits. Because of this, the convergence of the genetic algorithm
may take more iterations or it may never converge at all.

Secondly, as the genetic algorithm progresses, the same (close to optimal) individual begins to
dominate the population. All copies of this individual will be sent to one single reducers which
will get overloaded. Thus, the distribution progressively becomes more skewed, deviating from the
uniform distribution (that would have maximized the usage of parallel processing). Finally, when
the GA converges, all the individuals will be processed by that single reducer. Thus, the parallelism
decreases as the GA converges and hence, it will take more iterations.

For these reasons, we override the default partitioner by providing our own partitioner, which
shuffles individuals randomly across the different reducers as shown in Listing 2.



Listing 2: Random partitioner for the Genetic Algorithm

int getPartition (key, value, numReducers):
return RandomlInt (0, numReducers — 1)

3.4 Reduce

We implement Tournament selection without replacement (Goldberg et al., 1989a). A tournament
is conducted among tSize randomly chosen individuals and the winner is selected. This process
is repeated population number of times. Since randomly selecting individuals is equivalent to
randomly shuffling all individuals and then processing them sequentially, our reduce function goes
through the individuals sequentially. Initially the individuals are buffered for the last rounds, and
when the tournament window is full, SELECTIONANDCROSSOVER is carried out as shown in the
Listing 3. When the crossover window is full, we use the Uniform Crossover operator. For our
implementation, we set the tSize to 5 and the cSize to 2.

3.5 Optimizations

After initial experimentation, we noticed that for larger problem sizes, the serial initialization of
the population takes a long time. According to Amdahl’s law, the speedup is bounded because of
this serial component. Hence, we create the initial population in a separate MapReduce phase, in
which the MAP generates random individuals and the REDUCE is the Identity Reducer. 2 We seed
the pseudo-random number generator for each mapper with mapperlId - currentTime. The bits of
the variables in the individual are compactly represented in an array of long long ints and we
use efficient bit operations for crossover and fitness calculations. Due to the inability of expressing
loops in the MapReduce model, each iteration consisting of a Map and Reduce, has to executed till
the convergence criteria is satisfied.

4 Results

We implemented the simple ONEMAX problem on Hadoop (0.19)% and ran it on our 416 core
(52 nodes) Hadoop cluster. Each node runs a two dual Intel Quad cores, 16GB RAM and 2TB
hard disks. The nodes are integrated into a Distributed File System (HDFS) yielding a potential
single image storage space of 2 -52/3 = 34.67B (since the replication factor of HDFS is set to
3). A detailed description can be found elsewhere*. Each node can run 5 mappers and 3 reducers
in parallel. Some of the nodes, despite being fully functional, may be slowed down due to disk
contention, network traffic, or extreme computation loads. Speculative execution is used to run the
jobs assigned to these slow nodes, on idle nodes in parallel. Whichever node finished first, writes
the output and the other speculated jobs are killed. For each experiment, the population for the
GA is set to nlogn where n is the number of variables.
We perform the following experiments:

1. Convergence Analysis: In this experiment, we monitor the progress in terms of the
number of bits set to 1 by the GA for a 10* variable ONEMAX problem. As shown in
Figure 2, the GA converges in 220 iterations taking an average of 149 seconds per iteration.

2Setting the number of reducers to 0 in Hadoop removes the extra overhead of shuffling and identity reduction.
3http://hadoop.apache.org
“http://cloud.cs.illinois.edu



Listing 3: Reduce phase of each iteration of the Genetic Algorithm

procedure Initialization:

begin
processed := 0
Allocate tournamentArray [1 ... 2xtSize]
Allocate crossoverArray [cSize]

end

procedure Reduce(key, values):
begin
while values.hasNext ()
begin
individual := Individual_representation (key)
fitness := values.getValue()
if processed<tSize
then
{Wait for individuals to join in the tournament and put them for the
last rounds}
tournamentArray [tSize + processed%tSize] := individual
else
{Conduct a tournament over the past window}
SelectionAndCrossover ()
processed := processed + 1

{Finished all reduces}

if processed_all_individuals

then
{Cleanup for the last tournament windows}
for k=1 to tSize

begin
SelectionAndCrossover ()
processed := processed + 1
end
end
end

procedure SelectionAndCrossover:

begin
crossoverArray |[processed%cSize| := Tournament(tournamentArray)
if (processed—tSize)%cSize = cSize — 1
then

{Perform crossover whenever the crossover window is full}
newlndividuals := Crossover(crossoverArray)
for individual in newlIndividuals
Emit (individual , dummyFitness)
end
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Figure 2: Convergence of Genetic algorithm for the 10* variable ONEMAX problem

2. Scalability with constant load per node: In this experiment, we keep the load set to
1,000 variables per mapper. As shown in Figure 3, the time per iteration increases initially
and then stabilizes around 75 seconds. Thus, increasing the problem size as more resources
are added does not change the iteration time. Since, each node can run a maximum of 5
mappers, the overall map capacity is 5 - 52(nodes) = 260. Hence, around 250 mappers, the
time per iteration increases due to the lack of resources to accommodate so many mappers.

3. Scalability with constant overall load: In this experiment, we keep the problem size
fixed to 50,000 variables and increase the number of mappers. As shown in Figure 4, the time
per iteration decreases as more and more mappers are added. Thus, adding more resources
keeping the problem size fixed decreases the time per iteration. Again, saturation of the map
capacity causes a slight increase in the time per iteration after 250 mappers. However, the
overall speedup gets bounded by Amdahl’s law introduced by Hadoop’s overhead (around 10s
of seconds to initiate and terminate a MapReduce job). However, as seen in the previous
experiment, the MapReduce model is extremely useful to process large problems size, where
extremely large populations are required.

4. Scalability with increasing the problem size: Here, we utilize the maximum resources
and increase the number of variables. As shown in Figure 5, our implementation scales to
n = 10° variables, keeping the population set to nlogn. Adding more nodes would enable us
to scale to larger problem sizes. The time per iteration increases sharply as the number of
variables is increased to n = 10 as the population increases super-linearly (nlogn), which is
more than 16 million individuals.
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Figure 3: Scalability of Genetic algorithm with constant load per node for the ONEMAX problem
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Figure 4: Scalability of Genetic algorithm for the 50,000 variable ONEMAX problem with increas-
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Figure 5: Scalability of Genetic algorithm for ONEMAX problem with increasing number of vari-
ables

5 Related Work

Several different models like fine grained (Maruyama et al., 1993), coarse grained (Lin et al., 1994)
and distributed models (Lim et al., 2007) have been proposed for implementing parallel GAs.
Traditionally, MPI has been used for implementing parallel GAs. However, MPIs do not scale well
on commodity clusters where failure is the norm, not the exception. Generally, if a node in an MPI
cluster fails, the whole program is restarted. In a large cluster, a machine is likely to fail during
the execution of a long running program, and hence fault tolerance is necessary.

MapReduce (Dean and Ghemawat, 2008) is a programming model that enables the users to
easily develop large-scale distributed applications. Hadoop is an open source implementation of
the MapReduce model. Several different implementations of MapReduce have been developed for
other architectures like Phoenix (Raghuraman et al., 2007) for multicores and CGL-MapReduce
(Ekanayake et al., 2008) for streaming applications.

To the best of our knowledge, MRPGA (Jin et al., 2008) is the only attempt at combining
MapReduce and GAs. However, they claim that GAs cannot be directly expressed by MapReduce,
extend the model to MapReduceReduce and offer their own implementation. We point out several
shortcomings: Firstly, the Map function performs the fitness evaluation and the “ReduceReduce”
does the local and global selection. However, the bulk of the work - mutation, crossover, evaluation
of the convergence criteria and scheduling is carried out by a single co-ordinator. As shown by
their results, this approach does not scale above 32 nodes due to the inherent serial component.
Secondly, the “extension” that they propose can readily be implemented within the traditional
MapReduce model. The local reduce is equivalent to and can be implemented within a Combiner
(Dean and Ghemawat, 2008). Finally, in their mapper, reducer and final reducer functions,
they emit “default_key” and 1 as their values. Thus, they do not use any characteristic of the



MapReduce model - the grouping by keys or the shuffling. The Mappers and Reducers might as
well be independently executing processes only communicating with the co-ordinator.

We take a different approach, trying to hammer the GAs to fit into the MapReduce model,
rather than change the MapReduce model itself. We implement GAs in Hadoop, which is increas-
ingly becoming the de-facto standard MapReduce implementation and used in several production
environments in the industry. Meandre (Llora et al., 2008) extends beyond some limitations of the
MapReduce model while maintaining a data-intensive nature. It shows linear scalability of simple
GAs and EDAs on multicore architectures. For very large problems (> 10? variables), other mod-
els like Compact Genetic Algorithms(cGA) and Extended cGA(eCGA) have been explored (Sastry
et al., 2007).

6 Conclusions and Future Work

In this paper, we have mainly addressed the challenge of using the MapReduce model to scale
genetic algorithms. We described the algorithm design and implementation of GAs on Hadoop. The
convergence and scalability of the implementation has been investigated. Adding more resources
would enable us to solve even larger problems without any changes in the algorithm implementation.

General Purpose GPUs are an exciting addition to the heterogenity of clusters. The compute
intensive Map part and the random number generation can be scheduled on the GPUs, which can
be performed in parallel with the Reduce on the CPUs. MapReducing more scalable GA models
like Compact GAs and Extended Compact GAs will be investigated in future.
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