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ABSTRACT—Developing categorization schemes involves
discovering structures in theworld that support a learner’s
goals. Existing models of category learning, such as ex-
emplar and prototype models, neglect the role of goals in
shaping conceptual organization. Here, a clustering ap-
proach is discussed that reflects the joint influences of the
environment and goals in directing category acquisition.
Clusters are a flexible representational medium that ex-
hibits properties of exemplar, prototype, and rule-based
models. Clusters reflect the natural bundles of correlated
features present in our environment. The clustering model
Supervised and Unsupervised Stratified Incremental
Adaptive Network (SUSTAIN) operates by assuming the
world has a simple structure and adding complexity (i.e.,
clusters) when existing clusters fail to satisfy the learner’s
goals and thus elicit surprise. Although simple, this oper-
ation is sufficient to address findings from numerous lab-
oratory and cross-cultural categorization studies.
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Judging a person as a friend or foe, a mushroom as edible or
poisonous, or a sound as an l or r are examples of categorization
problems. Because people never encounter the same exact
stimulus twice, they must develop categorization schemes that
capture the useful regularities in their environment.

One challenge for psychological research is to determine how
humans acquire and represent categories. Different models

simulating theories of category learning have been proposed, but
they have not been sufficient to resolve the theoretical debates.

For example, the relative merits of exemplar models (in which
information about a category is stored as independent episodes
or experiences) and prototype models (in which information

about a category is stored in a summary format) are still debated,

with exemplar models appearing best suited to certain data sets
and prototype models for others (see Nosofsky and Zaki, 2002;

Smith, 2002). The difficulty in resolving the debate may indicate
that both approaches are neglecting a critical variable that

modulates human performance.
In this article, I will suggest that the critical variable ne-

glected by both prototype and exemplar approaches is the flex-
ibility with which humans seek and identify structure in their
environment and the extent to which this search for regularities

is guided by the learner’s goals. Neither exemplar nor prototype
approaches make room for this flexibility. Irrespective of the

nature of the learning problem or the learner’s goals, a prototype
model represents each category by a single prototype, whereas

an exemplar model represents each category as the set of its
members.
One alternative to prototype and exemplar representations of

category information are clusters—bundles of experiences that
group together. Clusters offer a more flexible way of representing

information. A category represented by one cluster is a prototype
model, whereas a category represented by a cluster for each
example is an exemplarmodel. Clustermodels have the ability to

represent categories that fall between these two extremes as
well. The challenge for a clustering account is to correctly locate

human learners along the exemplar–prototype continuum ac-
cording to the learning environment and the learner’s goals. In

this article, one such model, Supervised and Unsupervised
Stratified Incremental Adaptive Network (SUSTAIN), will be
discussed.

FLEXIBLE SEARCH FOR STRUCTURE

There is plenty of evidence to suggest that the key to the psy-
chology of categorization is the flexible search for structure.

Since Rosch’s (e.g., Rosch & Mervis, 1975) seminal studies of
natural object categories, the scholarly consensus has been that,
relative to humans’ perceptual and conceptual systems, the

world comes in natural chunks. That is to say, rather than
comprising unrelated groupings of features, the structure of

things in the world consists of patterns of correlated features that
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create discontinuities or clusters. These clusters may provide

the basis for cross-cultural agreement in categorization schemes
(e.g., Malt, 1995).

Clustering objects in the world by their ‘‘external’’ similarities
flexibly captures the natural chunks of our environment. Addi-

tionally, forces more ‘‘internal’’ to a learner, such as language,
category use, and cultural habits of mind, can influence the
discovery of structure. For example, Itzaj Mayan’s inclusion of

bats in the bird category may serve to highlight commonalities
among bats and other birds for speakers of that language,

whereas English may serve to highlight commonalties among
bats and other mammals. Furthermore, concepts and categories

serve multiple functions, and the structure dictated by one goal
or function may not be the most useful for some other goal or
function (Solomon, Medin, & Lynch, 1999). For example, both

veterinarians and chefs have goal-directed interactions with
animals; but their very different goals emphasize different as-

pects of animals, and this should lead to corresponding differ-
ences in how these two groups organize their knowledge. Thus,
the categorization system must be able to both assimilate

structure in the world and discover or even create that structure.
SUSTAIN strikes a balance between these two requirements

by assuming categories have a simple structure and incremen-
tally adding complexity as necessary to satisfy the learner’s par-

ticular goals or needs. Thus, the category structures that
SUSTAIN acquires are governed by both the structure of the
world and the current task or goal.

SUSTAIN’S OPERATION

SUSTAIN simulates how humans incrementally acquire cate-
gory knowledge and can be used to generate trial-by-trial pre-
dictions of behavior. SUSTAIN represents categories by one or

more clusters. Clusters are internal representations that mediate
between SUSTAIN’s inputs and outputs (see Fig. 1). A stimulus

is assigned to the cluster to which it is most similar. This cluster
updates itself so that it becomes the central tendency or proto-
type of the items that strongly activate it. Clustering by similarity

allows SUSTAIN to be sensitive to the natural chunks of infor-
mation present in the environment.

SUSTAIN’s cluster-discovery process is also sensitive to the
goals of the learner. New clusters are created when existing

clusters fail to satisfy the learner’s objectives and elicit surprise.
A newly created cluster is located so that it is maximally similar
to the item eliciting surprise. In supervised learning (i.e., when

the learner is alerted to errors) a new cluster is created in re-
sponse to a prediction error, whereas in unsupervised learning a

new cluster is created in response to an unfamiliar stimulus that
is not similar to any existing cluster. SUSTAIN’s response is
based on the cluster that is most activated (i.e., most similar to

the current stimulus). Learning rules update this cluster’s con-
nection weights and center it amongst its members. Attention is

also adjusted so that stimulus dimensions (e.g., color, size) that

are most reliable (i.e., items assigned to the same cluster tend to

match on those dimensions) become the most influential in de-
termining cluster activations. SUSTAIN’s notion of similarity

evolves over time according to the clusters it develops and how it
allocates attention.
These simple operations are sufficient to capture the joint

influence of structure and goals on conceptual organization.
Different goals will lead to different goal-related activity, which

in turn will influence cluster development. To illustrate this
point, consider how SUSTAIN would learn to discriminate be-

tween mammals and birds. Here, the goal is simply to appro-
priately label these animals. After receiving numerous examples
of typical mammals (e.g., horse, dog, cow) and birds (e.g.,

sparrow, robin, finch) SUSTAIN would develop two clusters—
one to encode the mammals and one to encode the birds. These

clusters capture the natural partitions of the world (i.e., the birds
have more in common with each other than they do with mam-
mals and vice versa). However, SUSTAIN’s conceptual organi-

zation also reflects the goals of the learner.
Conflicts between natural partitions and the structures re-

quired to satisfy goals can be seen when an atypical object is
encountered, like a bat. SUSTAIN would predict that a bat is a

bird based on its properties (bats are small, have wings, and fly).

Fig. 1. The basic components of the SUSTAIN model. Information flows
from the stimulus encoding at the bottom of the figure (where attention can
emphasize select features of an object—e.g., color, shape) to clusters
(represented by the three circles) to the output layer at the top. In this case
SUSTAIN is being asked to guess the category label,A orB, for the stimulus
object. The cluster that is most similar (i.e., closest) to the stimulus de-
termines the model’s response by sending a signal to the output units via
differentially weighted connections.
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After making a prediction error, experiencing surprise, and

learning that a bat is actually a mammal, SUSTAIN would create
a third cluster to encode the bat. The next time SUSTAIN

is asked to classify a bat or another animal similar to a bat,
SUSTAIN will predict that the animal is a mammal because the

third cluster will be connected to the mammal label from
previous training. This example serves to illustrate how
SUSTAIN’s strategy of starting simple and adding complexity

(i.e., new clusters) serves to reflect both the structure of the
environment and the learner’s goals. In some cultures, such as

the Itzaj Maya, bats are considered birds and thus would cluster
with birds based on feature similarity, obviating the need for an

additional cluster.
The previous example largely focused on classification, which

involves predicting a category label from a set of perceptual

features. But SUSTAIN is also well suited for inference learning.
Inmaking an inference, the categorymembership of the stimulus

is known, but one of its properties is unknown. For instance, a
child could know that an animal is a mammal, but be unsure
whether it is warm blooded. As in classification, inference pre-

dictions are based on the most activated cluster and the con-
nections that transmit cluster activations to the output layer (see

Fig. 1).

GOAL INFLUENCE ON STRUCTURE DISCOVERY

One unique aspect of structure discovery in SUSTAIN is that it is
intimately coupled with the goals of the learner. Even in the

laboratory, small differences in how subjects interact with
stimuli can have large effects on how category information is

acquired and represented. For example, inference and classifi-
cation learning focus the learner on different aspects of category
structures (see Markman and Ross, 2003, for a review). As

previously discussed, inference learning involves predicting the
value of a missing feature from the other features and a known

category label.Which of the features is predicted on a given trial
can vary, but on every trial the category label is unknown.
After feedback on a prediction is received, both inference

and classification learning are equivalent in that the learner
receives complete information about all features and category

membership. Thus, any approach to category learning that
seeks to discover structure solely based on the information

content of categories without reference to the learner’s goals or
interactions with the stimuli would predict no differences be-
tween these two induction tasks. In reality, inference learning

tends to promote a focus on the internal structure of each cate-
gory (akin to learning about a category independently of con-

trasting categories), whereas classification learning promotes a
focus on information that discriminates between categories.
Consequently, for human learners, inference learning is best

paired with intercorrelated category structures, such as natural
category structures (e.g., animals that fly tend to have feathers

and wings), whereas classification learning is better paired with

irregular category structures that have less pronounced regu-

larities. Comparisons of inference and classification-learning
performance offer clear examples of how goal-directed activity

can influence conceptualization even when the content of the
categories is identical.

SUSTAIN successfully predicts these performance differ-
ences between inference and classification learning because the
clusters it discovers are driven not only by the information

structure of the stimuli, but also by the learner’s goal-directed
interactions with the stimulus set. In SUSTAIN, predictions and

errors made by the learner are critical to directing cluster cre-
ation and development.

SUSTAIN’s simulations of these results have yielded suc-
cessful predictions. Recent work in collaboration with Yasuaki
Sakamoto has demonstrated that inference learning leads to

more complete knowledge of feature correlations than does
classification learning, even for features not directly queried

during learning. The importance of these findings for education
is underscored by the fact that the participants in this study were
students at a local primary school and that the stimuli were

classroom materials related to a biology lesson. The results
suggest that classroom exercises should stress reasoning from

the category label to multiple properties.
The same characteristics that allow SUSTAIN to address

differences between inference and classification learning ena-
bled SUSTAIN to predict differences in conceptualization of folk
biological categories of freshwater fish by Wisconsin expert

fishermen from the majority culture and from the Menominee
tribe (Love&Gureckis, 2005). Though both groups had access to

the same information about local fish, the Menominees’ inter-
actions and culture stressed ecological factors, whereas majority
fishermen focused on fishing-related goals (Medin et al, in

press). These different goal orientations allowed SUSTAIN to
predict differences in knowledge organization despite the fact

that both groups had roughly the same knowledge of local fish
species.

SUSTAIN captured the data by training on stimulus repre-
sentations of the fish derived by scaling taxonomic distances
(e.g., two species sharing the same genus had a distance of 1).

These stimulus representations were intended to parallel ex-
perts’ knowledge of the fish and were identical for both groups.

Unsupervised learning on these representations yielded
clusterings loosely organized along both ecological lines and

along fishing-related lines. To reflect the central role ecology
plays in Menominee culture, Menominee simulations were
trained to predict fish habitat (i.e., river, lake, or either). The

majority-culture simulations were trained to predict the prestige
of a catch, leading to very weak organization along ecological

lines and very strong fishing-goal-related organization. Our
simulation results (Love and Gureckis, 2005) conform to Medin
et al.’s (in press) findings. SUSTAIN’s performance is driven by

both the statistics of the environment (common across groups)
and cultural forces (varying across groups).
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COMPARISON TO OTHER APPROACHES

In addition to having parallels with both exemplar and prototype
models, SUSTAIN shares a close relationship with rule or hy-

pothesis-testing models (cf. Nosofsky, Palmeri, & McKinley,
1994). These models attempt to classify items by constructing

rules and storing exceptions (e.g., ‘‘birds fly, except penguins’’).
SUSTAIN’s ability to shift attention to rule-relevant dimensions

and to store exceptions in separate clusters allows it to account
for data that appear to support hypothesis-testing models. One
interesting question is whether clusters with selective attention

(i.e., focusing on a limited number of features) are mimicking
rules or if a cluster with selective attention is what a ‘‘rule’’ is.

Recent studies from Sakamoto and Love (2004) favor the latter
interpretation. One key difference between clusters and rules is
that clusters preserve some information about the stimulus set

outside the scope of relevant rules. Experiments showed that
human learners are sensitive to the same information SUSTAIN

picks up in its clusters.
Rational approaches to understanding category learning do

not attempt to explain how people categorize items; rather they
focus on why certain types of problems are harder to master
based on formal analysis of the information structure of cate-

gories. Although rational analyses are certainly of use, goal in-
fluences on learning suggest that these analyses need to be

expanded to incorporate other factors. For example, Anderson’s
(1991) rational model is a clustering model like SUSTAIN, but it
cannot explain how a learner’s interactions with a set of stimuli

(e.g., whether the learner is engaged in classification or infer-
ence learning) shape conceptual organization.

Within a given task or goal set, SUSTAIN is in accord with
rational explanations that stress the importance of complexity in

determining the difficulty of acquiring a concept (cf. Feldman,
2003). Complexity in SUSTAIN is related to the number of
clusters required to master a concept, with more difficult prob-

lems requiring the creation of more clusters (all else being
equal). Indeed, for simple problems SUSTAIN can behave like a

prototype model, whereas for difficult problems SUSTAIN can
behave like an exemplar model.

In response to the difficulties exemplar, prototype, and rule-
based models have had in accounting for select results, re-
searchers have proposed multiple-system models that combine

the outputs of disparate constituent models. One open question
is whether a flexible-cluster approach will prove sufficient, ob-

viating the need for multiple-systems explanations. A further
challenge for the cluster approach is addressing emerging
findings from the cognitive neuroscience of category learning

and developing theories that bridge brain and behavior.

CONCLUSIONS

People’s search for regularities in the world is governed by both

the structure of their environment and their goals. To capture this

joint influence of environment and goals on conceptual organi-

zation, SUSTAIN starts simple and adds complexity as needed.
In particular, SUSTAIN creates new clusters to individuate

events that are surprising, such as a prediction errors in super-
vised learning or unfamiliar stimuli in unsupervised learning.

This straightforward approach is sufficient to address numerous
aspects of human categorization, including those explained by
exemplar, prototype, and rule-based approaches. Importantly,

SUSTAIN’s sensitivity to both environment and goals allows it to
capture cultural influences on conceptual organization and

differences in performance across different induction tasks.
These same operations also address phenomena from the ster-

eotype and schema literatures concerning how people encode
experience in terms of existing conceptual structures (Sakamoto
& Love, 2004).
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