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Abstract Environmental monitoring applications require
seamless registration of optical data into large area mo-
saics that are geographically referenced to the world frame.
Using frame-by-frame image registration alone, we can ob-
tain seamless mosaics, but it will not exhibit geographi-
cal accuracy due to frame-to-frame error accumulation. On
the other hand, the 3D geo-data from GPS, a laser pro-
filer, an INS system provides a globally correct track of
the motion without error propagation. However, the inher-
ent (absolute) errors in the instrumentation are large for
seamless mosaicing. The paper describes an effective two-
track method for combining two different sources of data
to achieve a seamless and geo-referenced mosaic, without
3D reconstruction or complex global registration. Experi-
ments with real airborne video images show that the pro-
posed algorithms are practical in important environmental
applications.

Keywords Image registration · Video mosaicing · Motion
analysis · Geo-reference image · Environmental modeling

1 Introduction

A critical issue among nations in the coming decades will
be how to manage the use of land and natural resources.
Unfortunately, the use of satellite data has not enabled
general and automatic ecosystem modeling because many
of the dynamic changes of interest in ecosystems take place
at a finer level of resolution than is available. Thus, using
high-resolution low-altitude video sequences is highly
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required for interpreting the lower-resolution data. Our
interdisciplinary NSF environmental monitoring project
aims at developing a methodology for estimating the
standing biomass of forests. The instrumentation package
mounted on an airplane consists of two bore-sighted video
cameras (one telephoto and one wide-angle), a Global
Position System (GPS), an Inertial Navigation System
(INS), and a profiling pulse laser. The previous manual
approach used by our forestry experts (e.g. [1]) utilized only
a fraction of the available data due to the labor involved
in hand interpreting the large amount of video data. A
more compact representation and more flexible interactive
visualization interface are clearly demanded.

Our long-term goal is to develop automated tools
that can correlate video mosaics from high-resolution
low-altitude video sequences (both wide-angle video and
telephoto video) with lower-resolution high-altitude aerial
image data or satellite image data that are of lower spatial
resolution, as a tool for interpreting the lower-resolution
data. However, directly matching video streams with
satellite images will be very difficult, since they have sig-
nificantly different spatial resolution, color and perspective
views. For this reason, generating video mosaics that tie to
the same geographical reference will be very useful, not only
for the long-term goal but also as an intermediate represen-
tation for environmental study, and this is the specific goal
of this paper. We have demonstrated the significant potential
of the geo-referenced stereo mosaics through a set of initial
collaborative projects with environmental science partners,
in regions of New England, Bolivia, Brazil, and Madagascar.

Creating panoramic images and high-quality mosaic im-
ages from video sequences (or a collection of images) has
attracted significant attention in the research community, in-
dustry, and government [2–20]. Applications span a variety
of fields, including panoramic photography, video compres-
sion, surveillance, and virtual environments. The existing
mosaic methods can be roughly divided into three classes:
cylindrical/spherical mosaics [2–9], manifold mosaics [10–
14], and geo-referenced mosaics [15–20]. We will discuss
each of them briefly.
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1.1 Cylindrical/spherical mosaics

In generating full-view (360◦) cylindrical mosaics, a camera
pans around a scene to obtain a complete description of the
surrounding environment. The basic motion model is cam-
era rotation so there is no (significant) motion parallax in-
volved. For example, Apple’s QuickTime VR [2] captures
a 360◦ panoramic image of a scene with a camera rotating
horizontally from a fixed position. The overlap in images
is registered first by the user and then “stitched” together
by the software at the best match. Kang and Weiss [3] an-
alyzed the error in constructing panoramic images and pro-
posed a technique that has the advantage of not having to
know the camera focal length a priori. In order to create
a panorama, they first had to ensure that the camera is ro-
tating about an axis passing through the nodal point. The
correct focal length is determined by iterating the process
of projecting original video images onto cylindrical surfaces
given an estimate of the focal length. In other work, in order
to generate panoramic mosaics from video on a hand-held
camcorder, Sawhney et al. [4] provided a method for auto-
matic detection of a loop closure to warp the conic mosaic
into a cylindrical mosaic. Zhu et al. [5] proposed a simi-
lar methodology independently to deal with more complex
camera motion—3 degree of freedom (DOF) rotation, zoom
and small translation. Due to scale change and accumulating
error, this required warping from a deformed conic mosaic
to a cylindrical panorama. Generally speaking, in this class
the loop closure constraint is used to connect first and last
matched frames of a 360◦ full-view video sequence.

Since most of the mosaic methods operate on video im-
ages in a sequential, pairwise manner, small errors in reg-
istration accumulate from one pair of images to the next.
These errors are unavoidable if no other constraints are pro-
vided. Full-view panoramic mosaic generation tries to solve
this problem by matching the last frame with the first frame
and forcing the original mosaic to warp to a cylinder [4, 5].
Some researchers use more general global constraints to en-
sure that the final mosaic (composed of all the images) is
globally registered [6–8]. Shum and Szeliski [6] proposed a
global registration strategy for a full-view panorama, which
establishes point correspondences in a set of images. Min-
imizing the projected difference of these points results in
global alignment; however, the search could be quite slow to
determine many point correspondences. Sawhney et al. [7]
developed a local-to-global algorithm that uses constraints
between non-consecutive but spatially neighboring frames.
A global consistency estimation of alignment parameters is
iteratively performed in order to match each frame to a con-
sistent mosaic coordinate system. The large number of pa-
rameters makes computation prohibitive for more than a few
frames. Practical application of this algorithm requires effi-
cient optimization strategies. Davis [8] provided an efficient
method for finding a globally consistent registration of all
images by solving a sparse linear system of equations. How-
ever, the sparse linear system is valid only if any image can
register only with a few other images. A full-sphere or hemi-

sphere mosaic can also be generated by rotating a camera,
for example as in [9].

1.2 Manifold mosaics

In this class, the motion of the camera is not constrained only
to pure rotation; however, usually a planar scene assumption
needs to be made under a more general motion model in or-
der to use a parameter-based transformation. Mann and Pi-
card [10] discussed different transformation models—affine,
bilinear, projective and pseudo-projective–to register and re-
duce the set of images into a single, larger composite frame.
The final image mosaic is not a full 360◦ view, nor is 3D
geometrical correctness guaranteed. Peleg and Herman [11]
use manifold projection to enable the fast creation of low-
distortion panoramic mosaics under a more general motion
than exact panning. The basic principle is the alignment
of the strips that contribute to the mosaic, rather than the
alignment of the entire overlap between frames. The aim of
the mosaic is for rendering in applications related to virtual
walk-throughs rather than applications requiring geometric
precision. Manifold mosaicing is based on an early work
on panoramic view image generation for robot navigation
[12]. Recently, this approach was extended to mosaics with
adaptive manifold [13] and crossed-slits projection [14] for
image-based rendering.

1.3 Geo-referenced mosaics

Recently, there have been a few reports on geographically
corrected (“geo-referenced”) mosaics [15–20]. Kumar et
al. [15] presented a geo-registration method that consists of
(1) video-to-video frame alignment and local mosaic every
second or so, (2) coarse indexing of the video mosaics in a
high-altitude reference image using the geo-data, and (3) the
fine geo-registration between the local video mosaics and the
reference image. The time taken in the first step ranged from
30 s to 2 min for a triple of frames, each of size 320 × 240,
on a Pentium 200 MHz machine [15, 16]. Steps 2 and 3 rely
on the matches between the video and the reference imagery
that have a large time gap, and hence have quite different ap-
pearances. The fine geo-registration requires knowledge of a
reference image (geo-referenced aerial image with broader
coverage) and accompanying co-registered digital elevation
map (DEM). Twelve parameters are estimated by a nonlin-
ear optimization performed in an iterative manner, requiring
significant computational overhead. Bethel’s research
group [17] reported geo-registration results on modeling
of airborne pushbroom imagery—photography with a 1D
scan system [18]. The orthorectified imagery is produced
by exploiting control points and linear features (semi-
automatically), and exploiting GPS/INS data wherever pos-
sible. In making geo-referenced aerial mosaics, VTT’s En-
soMOSAIC aerial digital imaging system [19, 20] reported
1–5 m accuracy with control points and terrain model, and
5–10 m accuracy with aerial GPS/INS observations only.
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Our work falls in the category of geo-referenced mo-
saics, and we state our problem as follows: Given the geo-
data from our instrumentation package defining the 3D
global track of the camera and range to the terrain at the
center of each frame, what is a computationally efficient and
fully automatic methodology for generating a seamless geo-
referenced mosaic from a video sequence, in the absence
of a high-altitude aerial image and an accompanying co-
registered DEM?

The solution to this quite challenging problem is enabled
by a sensor package and a geo-mosaic algorithm. First, a
sophisticated aerial instrumentation package the augments
the video data with 3D motion, location and range data. The
geographical data (“geo-data”) from our aerial instrumenta-
tion package—GPS, Laser, and INS—provides information
that constrains (without accumulating error) the track of the
global sensor motion, and also determines the distance to
the often irregular terrain surface (e.g. tree canopy). How-
ever, there are still complex problems because each of the
3D aerial sensors has its own inherent noise and error char-
acteristics, and each sensor collects data at varying temporal
rates, which leads to temporal errors, as the data must be
synchronized through interpolation.

Second, we propose an efficient algorithm for using
the geo-data to obtain seamless and geo-referenced strip
mosaics—a two-track geo-mosaic composition method that
achieves the required mosaic fidelity even if the geo-data is
not accurate. The methodology also allows re-correction of
the geo-mosaic when given further geo-referenced informa-
tion from other sources, such as a match with geo-referenced
aerial images. Moreover, no complex global optimization is
used, and the algorithm is robust and fast.

A system diagram in Fig. 1 shows the overall proce-
dures of the proposed geo-referenced mosaicing approach,
which consists of the following three main steps: (1) initial
image registration, (2) global transformation generation and
(3) geo-referenced mosaicing. After the discussion of geo-
data acquisition and the mosaic model in Sect. 2, the three
steps of our geo-mosaicing approach will be described in
Sects. 3–5. Experimental results with time analysis and sys-
tem performance using real video data are given in Sect. 6.
Discussions and conclusions are given in the final section.

2 Geo-data and mosaic models

2.1 Geographical data and geometry

The set of 3D geographical aerial data coming with the im-
age sequences are captured with a “labtime”, a common
computer clock time in milliseconds that is used to synchro-
nize the data. The set of sensor data and their recording rates
are as follows: (1) Video Image Sequences are captured at a
30 Hz frame rate for both wide-angle video and telephoto
video. (2) A laser range profiler gives the distance D in
meters of a point laser beam from aircraft to ground (down
the approximate centers of the video frames) at 238 Hz. (3)

Fig. 1 Geo-mosaic system diagram. The input of each processing
module is placed above the processing box and the output below the
box. The data flows in the image side are represented by gray arrows
and in the geo-data side by black arrows

An Inertial Navigation System (INS)—the Watson box gy-
roscope provides rotation angles in degrees at 11 Hz with:
tip—the angle between gravity and the z-axis of the air-
craft in the direction of flight; tilt—the angle between grav-
ity and the z-axis of the aircraft perpendicular to flight;
and heading—the clockwise direction-of-flight angle from
north. The INS provides us orientation information to an ac-
curacy of 0.1◦ about the two horizontal axes, and 0.2◦ about
the vertical axes. We use (A, B, �) to represent the heading,
tip and tilt, and they form the rotation matrix Rw. (4) GPS—
a differential GPS measuring the position of the camera at
1 Hz with altitude—the altitude of the aircraft from sea level
in meters, A/C northing and A/C easting—Universal Trans-
verse Mercator (UTM) coordinates. As configured, the GPS
has an absolute accuracy of approximately 1 m horizontally
and 2 m vertically. We use Tw = (Te, Tn, Ta)t to denote the
3D coordinates (east, north, altitude) of the camera center in
a ground coordinate system.

It should be noted that the different devices, because
they operating at varying rates, require us to employ lin-
ear interpolation to synchronize timing information from
GPS running at 1 Hz to put all the temporal data in a
common coordinate system. The relationship between cam-
era coordinates X = (Xt , Yt , Zt )

t at time t and ground
coordinates Xw = (Xw, Yw, Zw)t can be expressed as
(Fig. 2)

Xw = RwXt + Tw (1)

where Rw and Tw have been defined in the earlier sensor
description. The ground point coordinates (Xg, Yg, Zg) is
the UTM location of a point on the ground that the laser
beam has hit, and its altitude is relative to sea level. They are
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Fig. 2 Flight geometry

the assumed coordinates of the center of the video image, so
we have (Xt , Yt , Zt ) = (0, 0, Dt ) for this point. Therefore,




X (t)
g

Y (t)
g

Z (t)
g


 =




−Dt cos A sin � + Dt sin A sin B cos � + Te

Dt sin A sin � + Dt cos A sin B cos � + Tn

−Dt cos B cos � + Ta




(2)

where super index (t) on the left-hand side of the equa-
tion and sub index t on the right-hand side mean time t (or
frame t).

2.2 Inter-frame motion model

A 3D point Xt = (Xt , Yt , Zt )
t with image coordi-

nates (ut , vt ) at current time t will have moved from 3D
point Xt−1 = (Xt−1, Yt−1, Zt−1)

t with the image point
(ut−1, vt−1) at reference time t − 1. The relation between
the 3D coordinates is

Xt−1 = RXt + T

where

R = R−1
w,t Rw,t−1, T = R−1

w,t (Tw,t−1 − Tw,t )
�=(tx , ty, tz)

t .

The inter-frame rotation matrix R has the same form as
Rw except that (A, B, �) is replaced by the inter-frame ro-
tation angles (α, β, γ ). If the rotation angles are small be-
tween the successive frames, e.g., less than 5◦, we can use a
much simpler inter-frame motion model. Suppose the cam-
era focal length f does not change during the motion. Using
homogenous coordinates u = (u, v, 1)t for an image point,
under a pinhole camera model, we have

ut−1 ≈ Mt ut (3)

where

Mt = 1

s




cos α − sin α tu
sin α cos α tv

0 0 1


 (4)

and

s = (−utγ − vtβ + f + f tz/Zt )/ f

tu = f (Ztγ + tx )/Zt

tv = f (Ztβ + ty)/Zt (5)

For the vertical tracking movement of the airborne cam-
era (Fig. 2), involving tip (β), tilt (γ ), heading (α) and range
changes, we have very small β and γ . If the change in
range (for the part of an image under consideration) is small
relative to the range, then Eq. (3) can be treated as a 2D
rigid inter-frame motion model, where s ≈ Zt−1/Zt could
be approximated as a scale factor associated with range
changes, (tu , tv) is the translation vector representing (tilt/X -
translation, tip/Y -translation), and α is the heading change.
When the inter-frame heading angle difference α is also very
small, Eq. (3) can be further simplified as [21, 22]

{
s · ut−1 = ut − vtα + tu
s · vt−1 = vt + utα + tv

(6)

In Sect. 3, given more than two pairs of corresponding points
between two frames, we can obtain the least squares solu-
tion for the motion parameters, s, tu , tv and α, in Eq. (6).
The errors in approximation are especially small for the nar-
row horizontal strip (the center scan lines) in the center of
each image that will be used in our image mosaic algorithm
(Fig. 3). In cases where the consecutive rotation angles are
large, a projective transformation model could be applied.
However, the estimation of the eight parameters of the pro-
jective transform is not as robust as that of the affine trans-
formation, hence, larger perspective distortion will be intro-
duced with noisy data. Alternatively, we use the INS rotation
measurements to pre-rectify the original video images [29].
Note that the INS measurements contain small errors (0.1–
0.2◦) so the heading angle is still included in our inter-frame
motion model even after pre-rectification.

Fig. 3 Pseudo parallel-projection mosaic representation
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2.3 Parallel-projection mosaic representation

A full-parallel-projection mosaic is very different from a
perspective projection in the sense that distant objects do not
appear smaller than nearby objects, which is ideal for our
geo-based mosaic. However, we need the full 3D range map
of the scene in order to construct a full-parallel-projection
mosaic, and most of all, we need to match every image with
the 3D model. So our question is: can we obtain the 2D geo-
referenced mosaic in a much more efficient manner? With-
out loss of generality, we use the first frame coordinates
(X,Y,Z) as the mosaic coordinate system (time t = 0) and
assume that (Te, Tn, Ta)|t=0 = (0, 0, H), (A, B, �)|t=0 =
(0, 0, 0), and the range from the camera nodal point at time
t = 0 to the ground is D0. With a full-parallel-projection
model, a mosaic can be represented as



wu p

wvp

w


 =




f 0 0

0 f 0

0 0 1







X

Y

D0


 (7)

If we assume that at all times t, we have 1D translational
motion, i.e., (Te, Tn, Ta) = (0, Tn, H) and (A, B, �) =
(0, 0, 0), and the scene has constant depth in the X-direction
in the camera’s field of view, which is approximately true
for the wide-angle video, then a pseudo parallel-projection
mosaic point (u p, vp) can be constructed from perspective
image point (ut , vt ) at time t as

(u p, vp) = D(vt )

D0
(ut , vt ) + (0, vpt ) (8)

where (0, vpt ) is the projection of center of the perspective
image at time t in the mosaic image, and D(vt ) is the range
in the track connecting the image centers of frame t−1, t and
t+1. Recall that range information is available along the mo-
tion track of the camera center by our instrumentation. The
pseudo parallel-projection mosaic is an approximation of a
full-parallel-projection mosaic. However, it is much easier
to construct. In cases where the depths vary significantly in
the X-direction (e.g. with the telephoto video), a ray interpo-
lation approach we have proposed for stereo mosaicing [29]
can be applied here to create parallel-perspective mosaics.
The parallel-perspective mosaic representation is similar to
the linear pushbroom imaging representation in [18].

We also need to generalize the earlier mosaic represen-
tation to the real motion model of the airborne-mounted
camera when the motion has 6 degrees of freedom (Fig. 2,
Eq. (1)). During forward motion, we assume that the cam-
era’s tip and tilt do not change very much during a long
flight, i.e. the plane does not “accumulate” large tip and tilt,
B and �. However, the heading angle A can change signif-
icantly over a long flight. A 2D rigid motion model can be
derived from Eqs. (1) and (2) in a manner similar to Eq. (3).
Let u = (u, v, 1)t be the coordinates in the mosaic coordi-
nate system (i.e. frame 0), and ut = (ut , vt , 1)t in the current
frame t , we have

u = Pt ut (9)

where

Pt =



S cos A −S sin A Tu

S sin A S cos A Tv

0 0 1


 (10)

and

S ≈ Dt/D0, Tu ≈ f Tx/D0, Tv ≈ f Ty/D0 (11)

In Eq. (11), (Tx , Ty) is the X and Y coordinates in the
reference camera coordinate system of the ground point
(Xg, Yg) in Eq. (2), and we have (Tx , Ty) = (−Xg, Yg)
in our coordinate system definition. Equations 9–11 im-
ply that the mosaiced image obeys parallel projection in
Eq. (7) and the original camera images can be approximately
modeled by a weak-perspective projection, i.e., (ut , vt ) =
( f X/Dt , f Y/Dt ), where Dt is the average depth of the por-
tion of an image in time t that will be used in the mosaic. In
other words, the original image is approximated by a weak-
perspective projection of a “virtual camera” X ′

gY ′
g Z ′

g with

nodal point at (X (t)
g , Y (t)

g , Z (t)
g + Dt ) (see Fig. 2).

Note that neither the 3D meta-data nor the registration
process alone is sufficient to generate a seamless and geo-
graphically corrected mosaic. Using frame-by-frame image
registration alone, we can achieve a seamless mosaic, but
it will not exhibit geographical accuracy due to frame-to-
frame error accumulation, even if the errors between two
successive frames are very small. These errors stem from
model approximation, scene complexity, and image regis-
tration errors. On the other hand, the 3D geographical data
(from GPS, laser ranges and INS) provides a globally cor-
rect track of the motion without error propagation. How-
ever, the inherent (absolute) errors in the instrumentation are
large, and how to match the 3D data with the 2D image is
still a problem. The following sections describe an effective
method to combine two different sources of data to achieve
the seamless and geo-referenced mosaic, without 3D recon-
struction or complex nonlinear global registration.

3 Initial registration

The inter-frame image displacements are estimated by using
a pyramid-based matching algorithm [21, 22]. The hierar-
chical algorithm consists of four steps:

Step 1 Generate the pyramids for the current and the refer-
ence (preceding) images. For computational efficiency,
the final image displacements are only given for non-
overlapping image blocks of a given size, say 16×16,
in the finest layer (i.e. original image) of the refer-
ence frame. The matching process is carried out from
coarse to fine resolution layers. The list of the blocks
is represented by their center coordinates (ui , vi ), i =
0, . . . , B − 1 in the reference frame.
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Step 2 Determine the image displacements. For each block
in a layer of the reference frame, the absolute difference
operation (a simple version of correlation) is carried out.
After the first layer, the search window is reduced to only
nine searches (i.e., ±1 pixel shifts in both the x- and the
y-directions) in the finer layers, thanks to the use of pyra-
mids. The motion vectors for these blocks are presented
by (�ui , �vi ), i = 0, . . . , B − 1.

Step 3 Evaluate each match by combining a texture mea-
sure with the correlation measurement. This step is
important because the confidence values will serve as
weights in the parameter estimation. The evaluation of
the matching (as the “correlation” measurement) is cal-
culated from the normalized absolute difference of each
block as

di = 1.0 − 1

255Nw

∑
(u,v)∈W (ui ,vi )

× |I (u, v) − I ′(u + �ui , v + �vi )|
where W (ui , vi ) is the block centered at (ui , vi ), Nw is
the pixel number in the block, I (·) and I ′(·) are the inten-
sity values (0–255) in the reference and current frames,
respectively. The texture is measured as the normalized
average magnitude of the gradient image of the reference
frame inside a given block i

gi = 1

gmax Nw

∑
(u,v)∈W (ui ,vi )

∣∣∣∣
(

∂ I (u, v)

∂u
,
∂ I (u, v)

∂v

)∣∣∣∣

where gmax is the maximum value of average magnitudes
of all the blocks. The initial weight for the i th match is
computed as

w
(0)
i = 1 − eκdi gi

1 − e−κ
(12)

where κ = 8.0 is chosen by experiments. Note that
w(0)

i
= 1 iff di = gi = 1, and w(0)

i
= 0 if di = 0 or

gi = 0.
Step 4 Estimate inter-frame motion parameters. We use a

weighted least mean square method to iteratively esti-
mate the inter-frame motion parameters θ = (tu, tv, α, s)
in Eq. (6). The objective function is

J = min
∑

i

w(k)
i

(
r (k)

i

)2
,
(
r (k)

i

)2 = ∣∣ui − θ(k)(u′
i )

∣∣2

(13)

where ui = (ui , vi )
t , u′

i = (ui + �ui , vi + �vi )
t , i =

0, . . . , B − 1, and the weight updating function is

w
(k+1)
i = w

(0)
i

1 + (
r (k)

i /ρ
)2

where the scale factor ρ is estimated as ρ =
mediani (|r (k)

i |)×1.4826, assuming that the residuals can
be modeled as a noisy Gaussian distribution [23, 24]. It
has been pointed out in [24] that a median-based esti-
mate has excellent resistance to outliers.

4 Registration correction and refinement

4.1 Global tracks from image registration and geo-data

Before we can create geo-mosaics, we need to generate
“global tracks” from both image registration and geo-data.
Here we define a track as a sequence of 2D rigid motion pa-
rameters 
 = (
(0), 
(1), . . . , 
(F)), where parameters in

(t) = (T (t)

u , T (t)
v , A(t), S(t)) are defined in Eqs. (9)–(11),

and F is the frame number. As in Sect. 2, select the first
frame as the reference frame where the mosaic coordinate
system will be generated. We can find the geometric trans-
formation between the current frame and the first frame re-
cursively from Eqs. (3) and (9), hence, the image track—the
estimated global transformation track from the registration
of image sequence is



(t)
I : Pt =

t∏
j=0

M j = Pt−1Mt , t = 1, . . . , F; P0 = I

(14)

where F is the frame number. The image track length (mea-
sured in pixels) can be calculated as

L I =
F∑

t=1

∣∣(T (t)
u , T (t)

v

) − (
T (t−1)

u , T (t−1)
v

)∣∣

We can also find the “raw” geo-track—the geo-referenced
global transformation track on the ground (measured in me-
ters) from the geo-data, as



(t)
G R = ( − X (t)

g , Y (t)
g , A(t), D(t)/D(0)

)
, t = 1, . . . , F

(15)

where (X (t)
g , Y (t)

g ) is the corresponding point of the im-
age center at frame t (Eq. (2)), A(t) is the heading an-
gle, and D(t) is the average range of the ground points
between (X (t)

g , Y (t)
g ) and (X (t−1)

g , Y (t−1)
g ) (see Fig. 2). The

track length (in meters) on the ground can be calculated as

LG =
F∑

t=1

∣∣(X (t)
g , Y (t)

g

) − (
X (t−1)

g , Y (t−1)
g

)∣∣ (16)

From Eq. (11), the effective focal length can be estimated
as f = D0

L I
LG

. Then the raw geo-track measured in pixels in
the mosaicing coordinate system is



(t)
D =

(
− f

X (t)
g

D(0)
, f

Y (t)
g

D(0)
, A(t),

D(t)

D(0)

)
, t = 1, . . . , F

(17)

where D(t) = Dt . (Both of these two notations are used
in the paper for convenience.) Notice the distinctly dif-
ferent ways that the tracks are derived. The estimated
track from the image (image-track) is the composition of
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inter-frame transformations with accumulating error, while
the geo-track is captured directly from absolute 3D geo-data,
with associated inherent absolute error, but is free from error
propagation.

4.2 Match correction and refinement

If the initial estimation of inter-frame motion parameters
are significantly different from the results of the geo-data,
and/or the weighted frame difference (which will be defined
later) is very large, the geo-data are used to estimate the ini-
tial values of the “expected” motion parameters, and then
the corresponding frames are re-matched. Note that the ge-
ographical data is used only for correcting the possible mis-
registration between successive frames; it is also possible
to use motion smoothness constraints if the geo-data are not
available. Given that our goal for image registration is to cre-
ate an image mosaic, the weight function employed for the
image difference is a 1D Gaussian

h(u, v) = 1√
2πα

e
v2

2πσ2 (18)

which favors those points near the center scan lines of the
frames used in the mosaic images (refer to Fig. 4). With
the initial motion vectors of each block from the given ini-
tial inter-frame motion parameters, the match process starts
from a suitable intermediate layer (in the pyramid) in which
the initial displacements are detectable.

Even if no mismatch occurs, the refinement process is
needed when the rotation angle α is large, since α instead of
sine of α is used in motion estimation. The refinement can
be performed by iteratively warping the current image and
re-matching the warped image with the reference image. We
emphasize that Mt in Eq. (3) is used to warp the image, even
if we still use linear Eq. (6) to estimate the motion parame-
ters θ(m) = (tu, tv, α, s)|m , where (m) denotes the iteration
count, so that errors will be reduced with decreasing residual
rotating angles.

5 Two-track geo-mosaic composition

We propose a two-track method to build a geo-mosaic—a
mosaic that is both seamless and geo-referenced. We already

Fig. 4 Two-track line-by-line geo-mosaic geometry

have two “tracks” of motion transformation parameters: the
refined image-track 
I and the raw geo-track from geo-data,

D . They are used to calculate two final tracks that will be
used to generate geo-reference mosaics: a “filtered” global-
track (“global-corrected track”) 
G that matches the global
geographical track, and an “updated” local track (“local-
stitching track”) 
L that guarantees precise local stitching
of the mosaic.

The filtered global-track 
G is generated from the raw
geo-track 
D by using a simplified version of the extended
Kalman filtering approach [25, 26]. The basic idea is to use
each inter-frame image matching result as a prediction to
the inter-frame pose estimation in order to reduce the rel-
atively large absolute errors in the geo-track. However, we
will show in our experiments that even with data filtering,
directly using the filtered geo-track for video mosaicing usu-
ally brings geometric seams (mis-alignments) in the mosaic-
ing results, since the filtered global track does not account
for the local perspective distortions between two successive
frames for 3D scenes. Therefore, we also calculate a second
track for video mosaicing—the updated “local track”. The
local-track 
L is calculated as follows:



(t)
L : P(t)

L = P(t−1)
G M(t)

I , t = 1, . . . (19)

where 

(t)
L and P(t)

L are the parameters and the matrix of the
stitching transformation at frame t; M(t)

I is the inter-frame
transformation matrix from image registration of frame t and
t −1; and P(t−1)

G (from 

(t−1)
G ) is the geo-transformation matrix

of frame t −1. Notice that we combine the inter-frame image
transformation M(t)

I with the previous geo-referenced global
transformation P(t−1)

G in time t − 1 (instead of the previous
local-stitching transformation P(t−1)

L in time t −1). This leads
to the two-track line-by-line geo-mosaic algorithm (Fig. 4):

Step 1. From frame t , suppose we warp N + 1 scan lines
into the mosaic, where N is determined by the geo-data.
These scan lines are expressed in the mosaic image, i.e.,
we use the inverse transform that maps from the mosaic
to the original image frames.

Step 2. The transformation for the i th scan line is estimated
as the linear interpolation of each parameters between



(t)
L and 


(t)
G



(t)
i = (i − N )


(t)
L + i
(t)

G

N
, i = 0, 1, . . . , N , (20)

Step 3. The mosaic process is to transform a line in frame
t and paste it to the i th scan line in the mosaic (i =
0, 1, . . . , N ). The first scan line from frame t will be pre-
cisely stitched to the last scan line from frame t−1, since
the transformation between them is just the inter-frame
image transformation M(t)

I ; while the last scan line from
frame t satisfies the geometrical transformation from the
global track constraint, P(t)

G .

Figure 4 shows the geometry of line-by-line mosaic.
More suitable interpolation methods can be used by using
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the ranges data from the range profiler across image rows in
the center column (along the line v = 0). For the real ge-
ographical image mosaic, the difference between the inter-
frame transformations from image registration and the fil-
tered geo-data is small, so the line-by-line transformations
compensate for the original distortion due to 3D geometry
and 2D perspective projection of 3D scenes, and bias due
to error propagation, rather than bringing additional distor-
tion to the geo-mosaic. The two-track algorithm is compu-
tationally fast, since only linear transformations and image
warping operations are needed in the mosaicing process.

6 Experimental analysis

We will discuss two aspects of our experimental system for
geo-reference mosaics. First, we will provide some imple-
mentation details and do a time analysis of the system. Sec-
ond, we will show the accuracy of the geo-mosaics through
some real examples.

6.1 Time analysis

There are three main components in the system (Fig. 1):
video registration for generating the local track, geo-data
processing for generating the geo-track, and two-track video
mosaicing. Since the geo-data processing only deals with a
few motion parameters, the processing time needed is triv-
ial. Most of the processing time is spent on video registration
step, and some on video mosaicing step.

First, we will do a time complexity analysis of the video
registration and the video mosaicing algorithms, respec-
tively. The time complexity of the video registration algo-
rithm will be measured between two frames, and the time
performance of the video registration will be measured as
frame rate (frames per second—fps). The time complexity
of the video mosaicing algorithm will be measured against
the size of the final mosaic, or the coverage of the mosaic.

The basic video registration algorithm (Sect. 3) uses a
pyramid-based correlation method. Since we only need to
obtain inter-frame motion model, we only perform matches
for non-overlapping image blocks. In addition, we use an ad-
dressing look-up table (LUT) for indexing the square win-
dow of the correlation, and the correlation is calculated as
sum of absolute differences, so there are no multiplications
in the main body of the correlation. Let us assume the im-
age size is M × N , and the matching block size is b × b.
Therefore, the number of blocks is B = M N/b2 . One
correlation calculation needs to do b2 operations, which are
mainly additions and subtraction. We only need to perform
nine searches for each matching block due to the nature of
the pyramid searches. As such, the total numbers of oper-
ations is 9Bb2 = 9 (M N/b2) b2 = 9M N . For the en-
tire match process using pyramid-based approach, the to-
tal operation is 9M N log2(9M N ), which in Big-O form is
O(M N log M N ) for the registration algorithm.

The two-track geo-mosaicing algorithm is based on a
line-to-line linear transformation. Essentially, for each scan
line in the mosaic (perpendicular to the mosaicing direction
v, see Fig. 4), we perform an affine transformation defined
in Eq. (3). The following treatments have made this algo-
rithm linear in the size of the mosaic. (1) We use an in-
verse transformation technique to make the iterative dense
warping possible. That is, given mosaicing coordinates, we
calculate the image coordinates in an original video frame
using Eq. (3), with parameters calculated in Eq. (20). Since
only one coordinate (i.e., u) of the mosaic changes along the
scan line, we have a 1D iterative procedure when u increases
in each step by 1. (2) We use LUT techniques to simplify
Eq. (3) into a few operations of additions and subtractions.
(3) We use a scaling technique to make integer operations
possible in both coordinate transformations and bilinear in-
terpolation. Before coordinate transformation, we scale up
the mosaic coordinates by 1024 (via a left-shift operation),
which means that an integer can represent a coordinate to
one of 1024 accuracy. Then we scale the frame coordinates
down by 1024 (via a right-shift operation), after the coordi-
nate transformation. By using inverse transformation, inte-
ger scaling and LUT techniques, the coordinate transforma-
tions (with LUTs) and the bilinear interpolations are all in
integers, with mainly indexing, addition and subtraction op-
erations, which greatly simplify the computation. Assume
that the mosaiced image size is P × Q, then time complex-
ity of the two-track mosaicing algorithm is O(P × Q), with
mainly additions and subtraction.

For time estimation in real conditions, we processed a
long 955-frame forest image sequence with 3-band color im-
ages, each with 360 × 240 pixels. The average inter-frame
translation is about 2.5 pixels in the motion direction. Note
that the magnitudes of the inter-frame motion does not affect
the time spent on inter-frame matching, since our pyramid-
based video registration algorithm starts searching matches
with displacements up to half of the image size. We have
tested our experimental system in two PCs. The first ma-
chine is an IBM T30 notebook, with a Pentium IV 2.0 GHz
CPU and 512 MB RAM. The second machine is a Dell Pre-
cision workstation, with 2.4 GHz Dual Xeon CPUs, 512 K
Cache and 1 GB RAM at 266 MHz rate. Table 1 lists the
time estimates in the registration step (in seconds, for all
955 frames) and the frame rate for registration (frames per
second – fps), the time estimates in the mosaicing step (in
seconds, for a 2448 × 336 mosaic), and the mosaicing rate
(scan line per second – lps), in IBM and Dell machines re-
spectively. The time estimation includes video display and

Table 1 Time analysis for registration and mosaicing (results for cre-
ating a 2448 × 336 mosaic from a 955-frame video of 360 × 240 color
images)

Measures/ Registration Frame rate Mosaicing Line
machines (s) (fps) (s) rate (lps)

IBM notebook 83.75 11.4 5 490
Dell workstation 42.5 22.5 3 816
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Fig. 5 Sampled frames from the forestry video sequence

image loading. The registration frame rate achieves 11.4 fps
in the IBM notebook and 22.5 fps in the dual-CPUs Dell
workstation, close to real-time performance.

6.2 Mosaicing result analysis

We give experimental results with real forestry video
images over The Nature Conservancy (TNC) test site in
Ohio, and the Amazon rain forest in Brazil. Figure 5 shows
four frames of a 53-frame sampled video sequence taken by
the wide-angle camera over TNC test site for which a full
set of geo-data are available. The original image sequence
is sub-sampled to 1 fps with image size 360 × 240 in our
experiment (see online video at our web site [27]). Recalling
the data rates for GPS/INS/Laser data, every digitized frame
is linearly interpolated to correspond to a GPS location and
INS rotation angles for the camera. Between the centers of
consecutive frames there are about 238 range samples. It
should be noted that there are obvious illumination changes
due to auto iris effects (see Fig. 5c and d). The inter-frame
translation along the Y -axis is about 60–70 pixels, which is
more than 1/4 of the image height.

By using the two-track method described in Sect. 5, a
seamless, geo-referenced mosaic is created (Fig. 6b; see

Fig. 6 Mosaicing comparison, a free mosaic, b geo-referenced mosaic, and c the range histogram from the range profiler

online image at [27]). The (translation components of)
the geo-track and the image-track are superimposed in the
geo-referenced mosaic in red and white respectively. The
translation components of the two tracks are found to be very
close to each other except for certain locations. Figure 7a
and b show the comparisons of the headings and scales
of the two tracks, respectively. The global trends of the
headings are similar, but the scales are quite different, which
is obvious by comparing the mosaics in Fig. 6a and b. The
expected scales are calculated from the absolute geo-data,
but the estimated scales are accumulated from inter-frame
motion parameters. Although the estimated inter-frame
scales are within 0.998–1.012 (Fig. 8), which is quite close
to the real situation, the accumulating errors are as large as
30% by the end of the 53-frame sequence. Note that we will
be doing sequences of many minutes to hours in the future.

The two-track method corrects this accumulating error
frame-by-frame while maintaining precise stitching of suc-
cessive frames. To show the role of the local-track for seam-
less stitching, we compare our geo-referenced mosaic to a
geo-only mosaic where only the global transformation (from
the geo-data only) is applied. Figure 9 is a comparison
of a sub-image of the same portion of the geo-referenced
mosaics and geo-only mosaic. It is obvious that the geo-
only mosaic is not seamless even though the global track is
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Fig. 9 Zoom-in comparison of geo-referenced and geo-only mosaic.
Please compare two places with arrows (a road and a tree)

faithful to the geographical data, which is not accurate
enough for a seamless mosaic. The geo-referenced mosaic
satisfies both of the requirements.

For comparison, we also generated a free mosaic using
the evaluation version of a commercial software VideoBrush
2.0. From their published papers [4, 15] related to this sys-
tem and the mosaic results, we find that no scaling is applied

Fig. 10 Zoom-in comparison of geo-referenced and VideoBrush mo-
saic overlaid on the high-altitude ortho-image

to the mosaic and the track is smoothed. While the mosaic
is seamless, and color/luminance blending is handled, it is
not geo-referenced; for example the scale is not changed
as a function of ranges of ground points. Figure 10 is a
comparison of a sub-image of the same portion of the geo-
referenced mosaics and VideoBrush mosaic superimposed
on the high-altitude image that was taken at 5000 ft (1524
m) above the ground at about the same time as the video
sequence. Image points along the center track in our geo-
mosaic register precisely with the high-altitude image, and
at the border of the mosaic there are only small errors (due
to the assumption of the constant range in the X-direction—
a discussion and extension is given in the next subsection).
As expected, the VideoBrush mosaic cannot register with the
high-altitude image (Fig. 10b). It should be noted here that
two feature points are selected in the head and tail of both of
the mosaics; one of them is under the white circle (O) in each
of the image in Fig. 10. Notice the obvious different location
errors of a white building (pointed by an arrow) below the
road in the right of each image. The reason for large offset
in VideoBrush’s mosaic is that it does not change the scales
with the change of the terrain ranges, which is obvious in
this part of the scene.

In the geo-referenced mosaic of Figs. 6b and 10a, match-
ing of the 2D image with the 3D geo-data is also shown.



An efficient method for geo-referenced video mosaicing 213

0 10 20 30 40 50 60
-250

-200

-150

-100

-50

0

50
Gl -corrected (*) and loca l-prec ise (+ ) Trac k:  Tu

frame

Tu

0 10 20 30 40 50 60
-3000

-2500

-2000

-1500

-1000

-500

0

frame

frame

Tv

 

0 10 20 30 40 50 60
-12

-10

-8

-6

-4

-2

0

2

4

frame

al
ph

a

0 10 20 30 40 50 60
0.95

1

1.05

1.1

1.15

1.2

1.25

sc
a

le

Global-corrected (red*) and 
 local- stitching (blue +) track: Tv Global-corrected (red*) and 

 local-stitching (blue +) track: Tu

Global-corrected (red*) and 

local- stitching (blue +) track: Α
Global-corrected (red*) and  
local- stitching (blue +) track: S 
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Each red circle and the attached number indicate the cen-
ter of each frame and the ground altitude in meters of that
point. The red circle of 5-m radius represents the error in
pixels corresponding to a 5 m location error on the ground.
The recovered altitudes of the flight and the altitudes of the
ground along the track are shown beside the geo-mosaic
as histograms in Fig. 6c. The geo-referenced mosaic image
matches quite well with the geo-data, for example, the roads
and the grassland in the mosaic image. By comparing the
size of the red circles of 5-m radius along the center of the
mosaic, and the alignment of a building on the right edge of
the mosaic (pointed by an arrow), we found that the regis-
tration error in this example is less than 5 m in the vertical
direction (the mosaicing direction) and 5–10 m in the hori-
zontal direction. Figure 11 shows the four components of the
two tracks: the global-corrected tracks and local-stitching
tracks. They lay close to each other, but differences exist.
That is why we use both of the tracks in order to generate
geo-referenced and seamless mosaics.

Another noteworthy recent success was the collection of
130 h of digital video consisting of 10 TB of uncompressed
imagery over the Amazon rain forest. This was carried out in
collaboration with the Smithsonian Institute, the University
of California at Santa Barbara (UCSB) and I.N.P.E. (an arm
of the Brazilian Space Agency). It was the largest ever aerial

video data collection over the Amazon Basin. In the data
collection, two cameras with about 1:10 ratio focal lengths
were mounted side by side in a small airplane to capture both
the high resolution and the wide FOV video sequences of the
forest scene in an economic way.

Figure 12 shows full base map of the Smithsonian site
made from eight overlapping geo-referenced mosaic strips
from the wide-angle camera. The map covers an area of ap-
proximately 50×10 km (25,113×9040 pixels, with a ground
sampling distance (GSD) of 2 m. The eight separate mo-
saics from eight video sequences are aligned nicely side by
side, indicating that the pseudo-parallel-projection mosaic-
ing model does a reasonably good job. The close-up win-
dow of a small area shows the alignments between mosaic
strips. Three strips pass this window, which can be found by
the unbalanced colors between strips. The curved edges be-
tween two strips were generated interactively using an image
tool.

It is challenge for us to evaluate the accuracy of the
geo-mosaicing results because this area does not have avail-
able ground control points. However, we have tried to ob-
tain some quantitative estimation using our available sen-
sor package. By measuring the absolute coordinates of some
ground landmarks (a few trees and towers) using our GPS
on the ground, we compare the geo-locations of the same
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Fig. 12 The full base map of the Smithsonian site made from eight
overlapping geo-registered mosaic strips, covering an area of approx-
imately 50 × 10 km (25,113 × 9040 pixels, with a ground sampling
distance (GSD) of 2 m. A close-up window with three mosaic strips
running through is also shown

landmarks on the geo-referenced mosaics. We found that the
geometric accuracy of the mosaics is 5–10 m, which is com-
parable to the 2-m ground resolution of the wide-angle cam-
era. This accuracy can also be visually verified from the pre-
vious experiment (Fig. 10a). The errors are mainly from two
sources—sensor package and video registration/mosaicing
process. First data sources of our geo-mosaics have errors:
GPS 1–2 m, INS 0.1◦–0.2◦ and video images 2 m/pixel. Sec-
ond, the errors of processing come from the approximate
modeling for image registration, and the assumption of uni-
form depths along the X-direction. More quantitative analy-
sis needs to be done for the accuracy of the mosaiced results,
but we will leave this as future work, since currently we do
not have sufficient “ground truth” data.

7 Conclusions and discussions

A new method of creating a seamless and geo-referenced
video mosaic has been presented. By analyzing the motion
model of the flight, a pseudo-parallel-projection mosaic rep-
resentation is developed to represent the geo-referenced mo-
saic given the available geographical data. A complete geo-
mosaic prototype system, including local registration, track
generation, matching refinement and two-track-based mo-

saic composition are provided. The advantages of this ap-
proach are that sensor motion information is effectively em-
ployed in a simple model to produce effective results, and
a fast, robust and practical implementation is achieved. The
accuracy of our mosaiced results is 5–10 m with video im-
ages of 2-m ground resolution. The video alignment step,
which takes more than 90% of the total processing time
of our experimental geo-mosaic system, works at 11.4 fps
for 360 × 240 color images in a Pentium IV 2.0 GHz
IBM notebook, and 22.5 fps for in a Xeon 2.4 GHz dual-
CPU Dell workstation. We have demonstrated the signifi-
cant potential of the emerging digital video technology (with
geo-referenced stereo mosaics as an important component)
through a set of initial collaborative projects with environ-
mental science partners, in regions of New England, Bolivia,
Brazil, and Madagascar.

Comparing with other geo-registration methods [15, 17,
19, 20], our approach has three distinctive features. (1) Large
geo-referenced video mosaic from a long image sequence
can be generated before the match of video and reference
imagery. This makes it easy to further register overlapped
video frames (or a video mosaic) with the reference image.
(2) Only geo-data from GPS/INS/Laser are used to gener-
ate a geo-mosaic, without the need of a geo-referenced im-
age and the accompanying DEM. Notice that in addition to
the computational burden and difficulties in matching two
different kinds of images in their methods, the error in 3D
DEM may distort the video mosaic such that seamless-ness
may not be guaranteed. (3) Our method is fast and efficient.
This is due to the different models, methodologies and goals.
We did not try to recover the full 3D motion parameters of
the moving cameras, for example, by using the computa-
tionally expensive bundle adjustments [28]; neither did we
try to reconstruct the point-wise 3D structure of the scene
frame-by-frame. Our goal is to make 2D geo-referenced and
seamless mosaics, without 3D reconstruction, and in near
real-time.

However, we should point out that there are limitations
in our current implementation. One potential weakness of
our current work is the assumption of constant range along
the x-axis, even if this is reasonable when dealing with
the wide FOV videos (e.g., in Fig. 12, eight mosaic strips
were successfully aligned). The simplified model we use
is due to the availability of range along the optical axis
and hence along the center line of the flight path. As a re-
sult, image points along the center track in our geo-mosaic
register precisely with the high-altitude image, but at the
border of the mosaic there are errors especially for the
telephoto mosaics. This can be improved by the following
extensions.

• Generalization of the geo-referenced mosaic method. If
a DEM is available or motion parallax can be reliably ap-
plied, more complicated model, e.g. projective transfor-
mation model can be utilized between two video frames.
Note that the way a geo-mosaic is created—one strip
from each frame, and one transform per scan line, so a
projective transformation would model the depth change
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along the x-axis well without dramatically increasing the
computational burden if pointwise 3D data is a applied.
A geo-referenced DEM can be used to generate the cor-
responding “projective track”, and the same two-track
method can be applied except that the transformations
between scan lines are changed to projective transfor-
mation. In the absence of an available DEM, motion par-
allax can be explored – though with some difficulties.
Recently, we have proposed a ray interpolation approach
following this idea in making parallel-perspective stereo
mosaics [29].

• Registration of aerial images and video mosaics. With
a geo-reference aerial imagery available, the registra-
tion can be carried out to reduce the error from the
model simplification, without the need of a accompany-
ing DEM. After a few reliable matches along the bound-
ary of the video mosaic are established, the same tech-
nique of line-by-line transformations can be used before
or after the generation of the video mosaic. The geo-
registration between the aerial image and a few video
images provides a more accurate global track, while a
seamless and high-quality mosaic can be guaranteed by
our approach.
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