
Design and Implementation of a Practical I/O-efficient Shortest Paths

Algorithm

Ulrich Meyer ∗ Vitaly Osipov †

Abstract

We report on initial experimental results for a practical
I/O-efficient Single-Source Shortest-Paths (SSSP) algo-
rithm on general undirected sparse graphs where the
ratio between the largest and the smallest edge weight
is reasonably bounded (for example integer weights in
{1, . . . , 232}) and the realistic assumption holds that
main memory is big enough to keep one bit per vertex.
While our implementation only guarantees average-case
efficiency, i.e., assuming randomly chosen edge-weights,
it turns out that its performance on real-world instances
with non-random edge weights is actually even better
than on the respective inputs with random weights.

Furthermore, compared to the currently best im-
plementation for external-memory BFS [6], which in a
sense constitutes a lower bound for SSSP, the running
time of our approach always stayed within a factor of
five, for the most difficult graph classes the difference
was even less than a factor of two.

We are not aware of any previous I/O-efficient im-
plementation for the classic general SSSP in a (semi)
external setting: in two recent projects [10, 23],
Kumar/Schwabe-like SSSP approaches on graphs of at
most 6 million vertices have been tested, forcing the au-
thors to artificially restrict the main memory size, M , to
rather unrealistic 4 to 16 MBytes in order not to leave
the semi-external setting or produce huge running times
for larger graphs: for random graphs of 220 vertices, the
best previous approach needed over six hours. In con-
trast, for a similar ratio of input size vs. M , but on a
128 times larger and even sparser random graph, our ap-
proach was less than seven times slower, a relative gain
of nearly 20. On a real-world 24 million node street
graph, our implementation was over 40 times faster.
Even larger gains of over 500 can be estimated for ran-

∗Institute for Computer Science, Goethe University, 60325
Frankfurt/Main, Germany. Email: umeyer@cs.uni-frankfurt.de
Partially supported by the DFG grant ME 3250/1-1, and by
MADALGO - Center for Massive Data Algorithmics, a Center
of the Danish National Research Foundation.

†Universität Karlsruhe (TH), Fakultät für Informatik, 76128
Karlsruhe, Germany. Email: osipov@ira.uka.de Partially sup-
ported by the DFG grant SA 933/3-1.

dom line graphs based on previous experimental results
for Munagala/Ranade-BFS. Finally, we also report on
early results of experiments in which we replace the hard
disk by a solid state disk (flash memory).

1 Introduction

Let G = (V, E) be a graph with |V | = n vertices
and |E| = m edges, let s be a vertex of G, called the
source vertex, and let c be an assignment of non-negative
lengths to the edges of G. The single-source shortest-
path (SSSP) problem is to find, for every vertex v ∈ V ,
the distance, dist(s, v), from s to v, that is, the length
of a shortest path from s to v in G.

The classical SSSP-algorithm for general graphs is
Dijkstra’s algorithm [14]. Unfortunately, it performs
poorly on massive graphs that do not fit into the
main memory and are stored on disk. The reason
is that Dijkstra’s algorithm accesses the data in an
unstructured fashion.

Much recent work has focused on algorithms for
massive graphs, see [19, 27] for surveys. These algo-
rithms are analyzed in the I/O-model [3], which assumes
that the computer has a main memory that can hold
M vertices or edges and that the graph is stored on
disk. In order to process the graph, pieces of it have
to be loaded into memory, which happens in blocks
of B consecutive data items. Such a transfer is re-
ferred to as an I/O-operation (I/O). The complexity
of an algorithm is the number of I/Os it performs;
e.g., sort(N) = O((N/B) logM/B(N/B)) I/Os to sort
N numbers [3].

Previous results and related work. Little is
known about solving SSSP on directed graphs I/O-
efficiently. For undirected graphs, the algorithm of
Kumar and Schwabe (KS SSSP) [17] performs O(n +
(m/B) log(n/B)) I/Os. For dense graphs, the second
term dominates; but for sparse graphs, the I/O-bound
becomes O(n). The SSSP-algorithm of Meyer and Zeh
(MZ SSSP) [20] extends the ideas of [18] for breadth-
first search (BFS) to graphs with edge lengths between
1 and K, leading to an O(

√

nm log K/B + MST(n, m))
bound, where MST(n, m) is the cost of computing a

85 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

minimum spanning tree.1 Recently [21], the result
was further improved to O(

√

nm/B log n+MST(n, m))
I/Os, thus removing MZ SSSP’s dependence on the edge
lengths in the graph. However, the latter approach is ex-
tremely involved and would probably suffer from very
high constant factors in any realistic implementation
setting.

When it comes to recent internal-memory SSSP im-
plementations, the 9th DIMACS implementation chal-
lenge [1] provides a good overview. As for external-
memory SSSP algorithms, to the best of our knowl-
edge, none of the o(n)-I/O SSSP algorithms has ever
been tried out. However, there are two recent papers
[10, 23] reporting on external-memory experiments for
KS SSSP like approaches. Unfortunately, all results are
for graphs of at most 6 million vertices, forcing the au-
thors to artificially restrict the usably main memory size
to rather unrealistic 4 to 16 MB in order not to leave the
(semi-)external setting. Even then, computing SSSP for
a random graph with n ≃ 106 vertices in the best case
takes over 6 hours [23], which is more time than needed
to do n I/Os.

Furthermore, using the I/O-library STXXL [12],
Ajwani et al. [4, 6] studied implementations of external-
memory BFS, i.e., the unweighted version of SSSP.
They managed to compute BFS on different kinds of
undirected graphs featuring over 250 million nodes and
more than a billion of edges in less than 24 hours.

Another line of related research is algorithms
for point-to-point shortest-path queries in (semi-
)external memory using compression and extensive pre-
computation in internal memory. Typical representa-
tives are, e.g., [9, 16, 25]. The success of these ap-
proaches crucially depends on the special characteristics
of the input graphs (in particular road networks). In
contrast we are interested in I/O-efficient general pur-
pose SSSP computation without any structural assump-
tions on the input graph.

Our Contribution. We provide initial experimental
results for a practical I/O-efficient SSSP algorithm on
undirected graphs where the ratio between the largest
and the smallest edge weight is reasonably bounded (for
example integer weights in {1, . . . , 232}). Compared to
the improved external-memory BFS implementation by
Ajwani et al. [6] our new approach was never slower
than a factor of five, while for the most difficult graph
classes the difference was even less than a factor of two.
The result is obtained by simplifying MZ SSSP in two
ways: (1) using the realistic assumption that the main

1The current bounds for MST(n, m) are
O(sort(m) log log (nB/m)) [7] deterministically and O(sort(m))
randomized [11].

memory is big enough to keep one bit per vertex (i.e.,
the weakest form of the semi-external memory setting),
thus facilitating to apply a standard external-memory
priority queue without support for decrease key; (2)
omitting a complicated weight-based clustering and us-
ing an already existing routine from Ajwani et al.’s
BFS implementation [6] instead. While this simplifi-
cation maintains the O(

√

nm log K/B + MST(n, m))
I/O-bound of MZ SSSP for uniformly distributed ran-
dom edge-weights in {1, . . . , K} it could result in much
more I/O for non-random edge weights: O(

√

nmK/B+
MST(n, m)).

However, the performance of our STXXL [12] based
implementation revealed just the opposite behavior:
executed on real-world graphs with original non-random
weights it was actually faster than on the same graphs
with artificially assigned random weights.

While previous implementation studies [10, 23] for
(semi-)external Kumar/Schwabe [17] kind SSSP ap-
proaches dealt with graphs having at most six million
vertices, our study covers graphs of up to 250 million
vertices and a billion edges. For random graphs of
n = 220 vertices and m = 8 · n edges, the best pre-
vious approach needed over six hours. In contrast, for
a similar ratio of (n + m)/M , but on larger and sparser
random graphs of n = 228 vertices and m = 4 · n edges,
our approach was less than seven times slower, a rela-
tive gain of nearly 20. On a real-world 24 million node
street graph, our implementation was over 40 times
faster. Even larger gains of over 500 can be estimated
for random line graphs based on previous experimental
results [6] for Munagala/Ranade-BFS [22].

2 Design and Implementation

Overview. Our SSSP approach is an I/O-efficient
version of Dijkstra’s algorithm [14]. Dijkstra uses a
priority queue Q to store all vertices of G that have
not been settled yet (a vertex is said to be settled
when its final distance from s has been determined);
the priority of a vertex v in Q is the length of the
currently shortest known path from s to v. Vertices are
settled one-by-one by increasing distance from s. The
next vertex v to be settled is retrieved from Q using
a delete min operation. Then the algorithm relaxes
the edges between v and all its non-settled neighbors,
that is, performs a decrease key(w, dist(s, v) + c(v, w))
operation for each such neighbor w whose priority is
greater than dist(s, v) + c(v, w).

An I/O-efficient version of Dijkstra’s algorithm has
to (a) avoid accessing adjacency lists at random, (b)
deal with the lack of optimal decrease key operations
in current external-memory priority queues, and (c)
efficiently remember settled vertices. Since we allow

86 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

ourselves one bit per node in internal memory problems
(b) and (c) are easily solved. As for (c) the bit vector
is used to keep track which vertices have been visited.
Concerning (b) we allow up to degree(v) many entries
for a vertex v in the priority-queue at the same time and
when extracting them discard all but the first one with
the help of the bit vector. As for (a) our approach forms
clusters of vertices just like the EM-BFS algorithm of
Mehlhorn and Meyer[18] (i.e., without considering the
edge weights at all) and loads the adjacency lists of
all vertices in a cluster into a number of “hot pools”
of edges as soon as the first vertex in the cluster is
settled. For integer edge weights from {1, . . . , K} we
have k = ⌈log2 K⌉ pools, where the i-th pool is reserved
for category i edges, that is, edges of weight between
2i−1 and 2i − 1.

In order to relax the edges incident to settled
vertices, the hot pools are scanned and all relevant edges
are relaxed. However, we use that the relaxation of
edges of large weight can be delayed because if such an
edge is on a shortest path, it takes some time before its
other endpoint is settled. Hence, it is sufficient to touch
hot pools for higher categories much less frequently than
the pools containing short edges. Unfortunately, due
to the simplified clustering, in a worst-case setting the
majority of edges might have small weights and still
belong to clusters of large diameter, thus resulting in
huge scanning costs for the lower category pools of our
approach: O(

√

nmK/B) I/Os. Still, for random edges
weights uniformly distributed in {1, . . . , K} the total
number of expected I/Os remains O(

√

nm logK/B +
MST (n, m)), just like for the much more complicated
MZ SSSP algorithm.

In the following we will provide some more details
on the implementation.

Graph Data Structure. Boost libraries [2] are con-
sidered as the next level of standardization over Stan-
dard Template Library (STL for short). Unfortunately,
even though the Boost Graph Library (BGL for short)
includes several graph classes, such as adjacency list or
adjacency matrix, missing guaranties on the layout of
edges on the hard drive make them inapplicable for I/O
efficient algorithms. Therefore, we have implemented
our own I/O-efficient graph representation that con-
forms to the BGL interface, thus providing the same
level of generality.

On low level our graph class can be parameterized
by a vector container compatible with the STL vector
interface, that stores graph edges along with the addi-
tional information defined by the user. In our partic-
ular case such a container is a STXXL vector, since it
guaranties that the scanning of edges is performed in
O(m/B) I/Os.

Priority Queue. We store nodes with their tenta-
tive distances in the I/O efficient priority queue being
part of the STXXL library. Each of its operations takes
O(1/B logM/B I/B) I/O amortized, where I denotes the
total number of insertions [24]. Note that we may keep
several entries with different priorities for some vertices
at the same time.

Pipelining. Our implementation intensively uses
pipelining. Conceptually, pipelining is a partitioning
of the algorithm into practically independent parts that
conform to a common interface, so that the data can
be streamed from one part to the other without any in-
termediate external-memory storage. This way the I/O
complexity may be reduced by up to a constant factor.
Moreover, it also leads to a better structured implemen-
tation, while different parts of the pipeline only share a
narrow common interface. On the other hand, the price
one sometimes has to pay is higher computational costs
and potentially somewhat larger debugging efforts. For
more details on pipelining in the framework of I/O effi-
cient algorithms, see [12].

Deterministic graph clustering. In the determin-
istic preprocessing we compute a spanning tree for the
connected component containing the source node, ob-
tain an Euler tour around that spanning tree, and even-
tually form the clusters based on subsequences of the
Euler tour (generated by list-ranking and sorting). We
apply the external-memory deterministic preprocessing
implementation by Ajwani et al. [6], which in turn
uses a spanning forest and connected components im-
plementation by Dementiev et al. [13] with expected
sort(m)⌈log n/M⌉ I/O runtime [13]. Furthermore, they
use an adaptation of Sibeyn’s list ranking algorithm [26].
Both implementations are based on STXXL data struc-
tures and its sorting primitive. For more details on the
deterministic preprocessing, refer to [6].

SSSP phase. Figure 1 shows the flow-chart of the
pipelined loop of the SSSP phase. In the beginning of
each iteration (point 1) we settle a vertex v that has the
smallest tentative distance dist in the priority queue,
and mark it visited in the internal memory bit array
done. Along with the node index v each priority queue
element stores a bit array, such that its i-th bit is set
to truth if v has an incident category i edge. The bit
array is constructed for each node in the preprocessing
phase and requires 2 · k bits additional space per edge
in the graph data structure. Having extracted v’s bit
array, if the i-th bit is 1 then we put a pair (v, dist(v))
in the corresponding queue relax i of nodes waiting for
relaxation of their incident category-i edges.

Then we check (point 2) if there are any previously
settled nodes in some relax i, whose incident edges

87 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

sort

sort

sort

for all if has a category edge
insert in relax_

i v i

v i

load cluster containing node
and relax edges incident to

c v

v

distribute edges over HotPools

Priority Queue

Graph

sort nodes in relax_
relax their adjacent edges from

HotPool_

i

i

internal hash

external stxxl
vector

HotPool_i

HotPool_1

HotPool_2

HotPool_k

adjacency_list()v

category iff
delayed relaxation condition:

tentative_distance(relax_i.top()) +
< tentative_distance(PQ.top())

i

2
i - 1

(node , cluster)
iff is not in the HotPool

v c

v

insert()

insert()

edges

edges

node v

node v

pop()

relax_1

relax_k

relax_i

relax_2

1

2
3

4

5

6
7

set()vdone

Figure 1: Flow-chart of the pipelined SSSP phase implementation. The empty elements of the pipeline conform
to the common pipelining interface, while the solid lines denote the data stream through the pipeline. Shaded
elements represent non-pipelined data structures with the dashed lines denoting the data exchange through their
auxiliary methods. The numbered circles reflect the order in which the elements flow through the pipeline.

have to be relaxed before settling the next node at
the top of the priority queue. Thus, we check the
delayed relaxation condition in Figure 1 for the oldest
node within each relax i queue. Observe, that this
is sufficient, since the distances associated with the
elements of any of relax i starting from its oldest
element do not decrease.

If the condition is satisfied for some category i,
then the nodes of the corresponding relax i queue
are sorted by their node index (point 3) and their
adjacent category i edges are either loaded from the
corresponding HotPool i (point 4) and relaxed or have
to be loaded from the external graph and therefore are
passed further through the pipeline (point 5).

In order not to access the clusters of the external
graph more than once, all nodes v are accompanied
with and sorted by their cluster indices c. After that
we identify and load the required external clusters

containing currently missing adjacency lists (point 6)
and ”‘relax”’ them by inserting a potentially non-
improving value into the priority queue (recall that we
emulate a decrease key operation via a bit vector plus
discarding). All other edges of the just loaded clusters
are sorted and distributed over HotPools corresponding
to their categories (point 7). The loop terminates when
the priority queue becomes empty.

A heuristic for maintaining the pool. The asymp-
totic improvement and performance gain in MZ SSSP
as compared to KS SSSP is due to the partitioning of
the input graph into the clusters and maintaining an ef-
ficiently accessible graph cache (hot pools) of adjacency
lists, which are guaranteed to be requested soon after.
Thus, efficient access patterns to the hot pools are cru-
cial for the performance of MZ SSSP.

Ajwani et al. [6] observed, that in the case of BFS
for many large diameter graphs, the pool fits into the

88 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

B

B B
External adjacency lists :
STXXL vector

Pool cache :
STXXL vector-cache

External Pool : stxxl vector
Internal Pool :
multimap

Figure 2: Scheme of the heuristic to partially keep hot pools in internal memory.

internal memory most of the time. They proposed
maintaining it partially in an internal memory hash
table, thus using efficient dictionary look up instead
of computationally quite expensive scanning of all hot
pool edges. Besides that, they observed that when
the clusters are small enough (O(

√
B) for line graphs),

it is worth caching all neighboring clusters that are
anyway loaded into the main memory while reading B
elements from the disk. The last fact is due to the
special layout of clusters the deterministic preprocessing
produces. As for implementation, they store adjacency
lists in the STXXL vector, thus, loading the neighboring
clusters in its internal memory cache using an LRU
replacement strategy, see Figure 2 (in the appendix).
This heuristic approach appeared to be particularly
efficient for medium and large diameter grid and line
graphs, see [6].

Since the concept of the SSSP graph cache in many
aspects resembles the BFS hot pool, we extended the
heuristic approach by Ajwani et al. and included it in
our SSSP phase implementation.

While Ajwani et al. had only one hot pool, we have
k hot pools for k different categories of edges. As well
as in the BFS case, we use a multi-map hash table to
maintain O(M) edges internally. Observe, that due to
the relaxation condition, Figure 1, hot pools with the
low category edges are likely to be requested more often
than those of higher categories. Thus, it is worthwhile
reserving more internal memory for the smaller category
hot pools. For the comparative study of different
memory allocation strategies refer to Section 3. As for
the caching of neighboring clusters, we use the same
technique as in [6] to benefit from the special cluster disk
layout produced by the deterministic preprocessing, see
to Figure 2 (in the appendix).

3 Experiments

Configuration. We implemented our algorithm using
the C++ programming language and the GNU compiler
4.2.1 (optimization level -O3) on an Open Suse Linux
10.3 distribution and the external-memory STXXL li-

brary version 1.1.0.
Our experimental platform has two 2.0 GHz

Opteron processors, 4 GB of RAM, 1 MB cache and
250 GB Seagate Baracuda hard disks. The hard drive
buffer cache is 8 MB big. The average seek time for read
and write is 8.0 and 9.0 msec respectively. The data
transfer rate for outer zone (maximum) is 65 MByte/s.
Therefore, for a graph with 228 nodes n random read
and write I/Os would take around 600 and 675 hours,
respectively.

In order to use equivalent hardware to the one for
the BFS implementation by [6], we restrict the available
memory to at most 1 GB and only use one processor and
one disk.

Real world road network graphs. We did the
experiments for the largest road network graphs that we
could access, that is, the European2 and the US graphs.
The former one features around 33 million nodes and 40
million edges, while the later has 24 million nodes and
29 million edges.

While being one of the most popular applications,
SSSP on road networks is not necessarily the best illus-
tration for our algorithm due to the following reasons:
(1) even the European road network is rather small
for realistic external-memory settings; (2) the special
structure of road networks allows recent specialized ap-
proaches to outperform the general purpose Dijkstra al-
gorithm by several orders of magnitude, e.g., see [9, 16].
Although no theoretical I/O bounds are given, the al-
gorithm in [16] has been designed with the explicit goal
of being efficient on devices with small internal mem-
ory and slow storage memories (e.g., flash memories)
such as pocket PCs. Similarly, in recent work Sanders
et al. [25] propose a highly efficient algorithm for point-
to-point shortest path queries on mobile devices.

In order to bring the problem closer to our settings
we (1) reduced the memory size available for our algo-
rithm to 128 MB and (2) randomly permuted the node
indices.

2provided for scientific use by Ortec company.

89 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Web graph. As an instance of real world graphs we
also consider a crawl of the world wide web [28]. The
nodes of the web graph represent internet pages, while
the edges correspond to the links between them. Our
instance of the web graph has around 135 million nodes
and 1.2 billion edges. Structurally the web graph is close
to a random graph, with a small fraction of larger di-
ameter branches. Therefore, the I/O runtime is similar
to the one for random graphs.

Synthetic graph classes. In order to isolate the per-
formance penalty for computing SSSP as opposed to
BFS, we consider the same graph classes as in [6]:
Random graphs : A random graph with n nodes and
about m edges is obtained by selecting m times a ran-
dom source and a random target with source 6= target
and subsequently remove the duplicate edges.
Grid graph (x×y): They consist of a xy grid, with edges
joining the neighboring nodes in the grid.
Line graphs: They have n nodes and n − 1 edges, such
that there exist two nodes with the path between them
containing all other nodes. A simple line graph is laid
out on the disk, such that each disk block B contains
consecutively lined nodes whereas for a random line
graph the arrangement of nodes is given by a random
permutation.

Comparing BFS and SSSP. We compared our SSSP
implementation against Ajwani et al.’s BFS implemen-
tation of [6]. The result in Table 1 indicates, that while
Ajwani et al. perform BFS traversal for any of the graph
classes within one day, we compute SSSP for the same
graph classes with 16 and 32 bit random weights within
just two days. Our SSSP approach was never slower
than a factor of five, while for the most difficult graph
class (grids) the difference was even less than a factor
of two.

Comparing KS SSSP and MZ SSSP. If we try to
relate different SSSP algorithms with their BFS counter-
parts, then KS SSSP and the external-memory BFS al-
gorithm by Munagala and Ranade (MR BFS for short)
[22] share similar ideas (and access patterns), whereas
MZ SSSP corresponds to Mehlhorn and Meyer’s BFS
algorithm (MM BFS for short).

Ajwani et al. [6] showed that MR BFS outperforms
MM BFS for low diameter graphs, such as random or
web graphs, while medium and large diameter graph in-
stances become practically infeasible for it (hours as op-
posed to months for line graphs). As for KS SSSP and
MZ SSSP, we expect the later one to significantly out-
perform the former for the whole range of graphs that
we consider. The reason for it is due to the incremental
nature of Dijkstra’s algorithm. Indeed, while MR BFS
extracts adjacency lists in a batched fashion level by

level, KS SSSP loads edges incident to the settled ver-
tices consecutively vertex by vertex. Therefore, for the
expected O(log n) levels of a random graph MR BFS
spends on average O(n/B log n) I/Os, while KS SSSP
requires one I/O per vertex, thus exhibiting worst case
Ω(n) I/O performance in practice.

This observation is in line with the recent imple-
mentation of a Kumar/Schwabe-like approach by Sach
and Clifford [23], who used a cache oblivious priority
queue and an internal-memory bit array like us in our
approach. They observed in practice that for random
graphs the I/O complexity for extracting adjacency lists
was a dominating factor over maintaining the priority
queue.

Moreover, as it is shown in Table 2 the perfor-
mance of their algorithm on the real world road net-
works also significantly depends on the layout of edges.
As we already mentioned above, available real world
road network instances initially incorporate spatial lo-
cality, thus facilitating more efficient adjacency lists ex-
traction. Therefore, for original vertex numbering the
runtime of their implementation only slightly depends
on the internal memory available for the system. How-
ever, a random permutation of vertices has a significant
impact on the performance, thus showing overwhelming
dependence of the runtime on the layout of adjacency
lists on a disk. On contrary, the runtime of our SSSP
algorithm in Table 2 barely depends on the original ver-
tex indices, which is a desirable feature for a general
purpose SSSP solver.

As for large diameter graphs, Ajwani et al. [6]
showed that MM BFS drastically outperforms MR BFS
for random line graphs. Since the I/O performance for
MR BFS constitutes a lower bound for KS SSSP, we
directly compare the MR BFS results from [6] with our
SSSP approach in order to estimate an advantage of
more than a factor of 500, see Table 4.

To summarize, the MZ SSSP preprocessing step al-
lows the subsequent SSSP phase to significantly outper-
form any Kumar/Schwabe like approach that ignores
I/O complexity for extracting adjacency lists.

In the next section we show that the delayed re-
laxation condition further improves MZ SSSP’s perfor-
mance by allowing a batched relaxation of edges of
higher categories.

Delayed relaxation of edges. As we already dis-
cussed in Section 2, the delayed relaxation condition in
Figure 1 allows postponing relaxation of longer edges.
For each edge category we measured the number of
batched relaxations of nodes having incident edges in
this category, and compared it to the number of re-
laxations that would have been performed without the
relaxation condition in use. In the series of diagrams

90 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Graph class n m BFS SSSP

Random (16 bit) 228 230 8.6 36.0
Random (32 bit) 228 230 8.6 39.2

Grid (214 × 214, 16 bit) 228 229 21.0 33.6
Grid (214 × 214, 32 bit) 228 229 21.0 37.6
Random line (16 bit) 228 228 3.7 7.6
Webgraph (32 bit) ≈ 135 × 106 ≈ 1.18 × 109 5.7 28.7

Table 1: Timing in hours for the currently best BFS implementation vs. our SSSP approach (both including
preprocessing).

Node indices n/106 m/106 RAM SSSP by [23] SSSP phase Preprocessing
I/O wait Total I/O wait Total I/O wait Total

original 24 29 1024 4550 4964 155 1414 420 547
original 24 29 512 4848 5222 191 1449 484 614
original 24 29 128 5059 5444 2815 4059 956 1123

permuted 24 29 2048 209350 209873 136 1417 428 589
permuted 24 29 1024 * * 175 1458 455 611
permuted 24 29 512 * * 187 1474 529 685
permuted 24 29 128 * * 2892 4158 951 1139

Table 2: Timing in seconds for US road network with original or permuted node indices and original edge weights
using RAM in megabytes. Fields marked with * are omited due to high computation cost.

Road Network n/106 m/106 SSSP phase
I/O wait Total

original × original 34 39 4269 6011
permuted × original 34 39 4635 6392
permuted × 32-bit 34 39 7802 10819

Table 3: Timing in seconds for European road network with original or permuted node indices and original or
32-bit random edge weights using 128 MB of RAM.

Graph class n m MR BFS [4] SSSP

Random line 228 230 4760 7.6

Table 4: Timing in hours for MR BFS and SSSP (including preprocessing, for 16-bit random edge weights).

91 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

 10
 100

104

106

108

 0 2 4 6 8 10 12 14 16 18

re
la

xa
tio

ns

category

 10
 100

104

106

108

 0 5 10 15 20 25

re
la

xa
tio

ns

category

 10
 100

104

106

108

 0 5 10 15 20 25

re
la

xa
tio

ns

category

Figure 3: The comparison between the number of batched relaxations (black) with the total number of relaxations
(gray) in logarithmic scale. From left to right: European road network graph with original edges, with random
32 bit weights and web graph with 32 bit random weights

 10
 100

104

106

108

 0 2 4 6 8 10

re
la

xa
tio

ns

category

 10
 100

104

106

108

 0 5 10 15 20 25

re
la

xa
tio

ns

category

 10
 100

104

106

108

 0 5 10 15 20 25

re
la

xa
tio

ns

category

Figure 4: The comparison between the number of batched relaxations (black) with the total number of relaxations
(gray) in logarithmic scale. From left to right: random graph with 16 bit random weights, random graph with 32
bit random weights and random grid graph with 32 bit random weights

3 and 4 we compare the number of batched relaxations
(in black) with the their overall number (in gray) in
logarithmic scale.

Note, that in case of the European road network
with real distances, delayed relaxation is even more
beneficial than for 32 bit random weights on the same
graph (compare first and second histograms in Fig-
ure 3). Even in the first, most notable category, the
number of batched relaxations is around 20% of the
overall number. Thus, on average the algorithm relaxes
a batch of first category edges incident to five different
nodes at once. In the next categories the ratio drops
to at most 1%, that is, on average at least 100 nodes
at once. The higher ratio for the last few categories is
only due to the low number of long distances in the road
network.

On the contrary, the same road network graph with
32 bit random weights (second histogram in Figure 3)
demonstrates a small ratio only for the upper half of the
categories, while in the first categories the relaxations
are performed in a one-by-one manner. This in turn
leads to a significant performance loss, refer to Table 3
for the exact timing.

Besides the European road network, we computed
ratios for the web graph and synthetic instances, that

have 16 and 32 bit random weights.
The first category of the random graph with 16

bit random weights has the largest number of batched
relaxations with the ratio of about 1.3%, that further
decreases to up to 4 · 10−6% in the last category (first
histogram in Figure 4).

For the web graph (last histogram in Figure 3) and
the random graph with 32 bit random weights (second
column in Figure 4) we see similar behavior: one-by-
one relaxations in the lower categories, and rapidly
decreasing ratio in the higher categories.

As a rule of thumb for graphs with random edge
weights, the bigger the diameter, the larger the number
of categories, where relaxations have to be performed
in a one-by-one fashion. For instance, for the random
graph with 32 bit edge weights the ratio drops signifi-
cantly already for the categories 14 − 15, while for the
grid this value can be found around the 18 − 19th cat-
egory (compare the second and the third histograms in
Figure 4). The most extreme case is the line graph,
where essentially all relaxations have to be performed
consecutively one after the other.

Quality of the spanning tree. Ajwani et al. [6]
observed that the shape of the spanning tree in the

92 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Graph class n m Preprocessing SSSP phase
I/O wait Total I/O wait Total

Simple Grid (214 × 214, 16 bit) 228 229 2.5 3 30 44.4
Simple Grid (214 × 214, 32 bit) 228 229 2.5 3 27.8 35.3

Random Grid (214 × 214, 16 bit) 228 229 2.4 3.2 23.7 30.4
Random Grid (214 × 214, 32 bit) 228 229 2.4 3.2 26.4 34.4

Table 5: Quality of the spanning tree.

Graph class n m no cache decreasing uniform
I/O wait Total I/O wait Total I/O wait Total

Random (16 bit) 228 230 22.34 34 19.9 30.83 - -
Random Grid (214 × 214, 32 bit) 228 229 26.6 34.56 26.4 34.4 26 31.3

Simple Line (16 bit) 228 228 - - 0.1 6.6 0.1 4.1

Table 6: Different memory allocation strategies for the heuristic.

preprocessing step plays an important role for the
quality of the clustering. In line with [6] for the grid
graph we observed a considerable improvement in the
SSSP phase I/O runtime when the spanning tree is
”randomized”. The reason for it is, that a spanning
tree with elements in a snake-like row major order
produces long and narrow clusters, while a ”random”
one is more likely to result in low diameter clusters.
The former clusters tend to stay in the hot pools longer,
hence, increasing their sizes, that eventually results in
a larger I/O volume for storing hot pools and for re-
scanning them while retrieving adjacency lists. On the
other hand, the latter ones are evicted from the hot
pools sooner, thus reducing I/O runtime. Most notably,
for a simple grid graph with random 16 bit weights,
clustering with the randomized input of the spanning
tree algorithm gives about 30% runtime improvement
over the unrandomized one, Table 5.

Different memory allocation strategies for the

heuristic. The delayed relaxation condition for random
edge weights, Figure 1, implies that edges in the lower
categories are relaxed more often than those in the
higher categories. This suggests, that in general the hot
pools storing the lower category edges should get more
internal memory than those storing the higher category
edges.

In most of our experiments, Table 1 in particular,
we used common 128 MB of RAM for all hot pool
caches and 64 MB for the adjacency list vector cache,
see Figure 2. By default the overall 128 MB of RAM are
split among the hot pools such that the category i hot
pool receives only half of the memory that is available
for the category i − 1 hot pool. We call this strategy

”decreasing”.
As it is indicated in Figures 3 and 4, the number

of categories, where relaxations have to be performed
consecutively in a one by one fashion, increase with
growing diameter. Therefore, for the middle range
diameter grid graph and large diameter line graph it is
worth distributing available memory equally throughout
all hot pools. This strategy is denoted as ”uniform”.

For the random graph with 16 bit weights ”decreas-
ing” shows better results, since the bulk of batched
relaxations is performed in the low level category hot
pools, see Figure 4. As for the larger diameter grid and
line graphs ”uniform” appears to be the best choice.
The reason for it is that due to the regular structure
and small degree of these graph classes there are not
that many (only one in case of line graph) paths be-
tween any two nodes, meaning that the algorithm needs
to load edges quite often even from high category hot
pools. This is in line with observation in Section 2 (Fig-
ure 4), that in case of grid (and especially line) graphs
only nodes having high category edges are relaxed in a
batched manner, while in the low categories nodes need
to be relaxed basically one by one.

4 Early results on flash memory.

In very recent work we also performed preliminary tests
of our SSSP implementation on modern flash memory
also known as solid state disks (SSDs). These are
non-volatile, reprogrammable memories, which have
emerged as a new trend in storage device technology.
Flash memory devices are lighter, more shock resistant
and consume less power. Moreover, since random read
accesses are faster on solid state disks compared to
traditional mechanical hard-disks, flash memory is fast

93 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Graph class n m SSSP phase on HDD SSSP phase on SSD
I/O wait Total I/O wait Total

Random (32 bit) 228 229 14.9 18 11.4 14.5
Random Grid (214 × 214, 32 bit) 228 229 18.6 22.1 11.4 15

Random Line (32 bit) 228 228 1.5 2.2 3.9 4.6

Table 7: Preliminary results on flash memory.

becoming the dominant form of end-user storage in
mobile computing. Market research company In-Stat
predicted in July 2006 that 50% of all mobile computers
would use flash (instead of hard disks) by 2013.

Flash memory devices typically consist of an array
of memory cells that are grouped into pages of consec-
utive cells, where a fixed amount of consecutive pages
form a block. Reading is performed pagewise whereas
writing typically requires erasing a whole block. Thus,
the latency for reading a byte is usually much smaller
than for writing it. Finally, each block can sustain only
a limited number of erasures. To prevent blocks from
wearing prematurely, flash devices usually have an in-
built micro-controller that dynamically maps the logical
block addresses to physical addresses so as to even out
the erase operations sustained by the blocks.

Previous and related work on flash. Most previous
algorithmic work on flash memories deals with wear
leveling, block-mapping and flash-targeted file systems
(see [15] for a comprehensive survey). There exists
very little work on algorithms designed to exploit the
characteristics of flash memories. Wu et al. [29, 30]
proposed flash-aware implementations of B-trees and R-
trees without file system support by explicitly handling
block-mapping within the application data structures.
Other works include the use of flash memories for
model checking [8] or for route planning (point-to-point
shortest paths) on mobile devices [16, 25].

An adaptation of our previously mentioned EM-
BFS implementation for flash memory was discussed
in [5]. In there, a 32 GB Hama SSD (2.5” IDE) was
used. Due to limited bandwidth of this device (less than
30 MB/s) only a combination of flash plus a traditional
hard disk (in that case a 500 GB SEAGATE Barracuda
7200.11) was more profitable than using the hard disk
alone: the small read-only graph clusters reside on flash
from where they can be retrieved using fast random
reads, whereas the hot pool with its frequent sequential
rewriting of large data sequences stays on the hard disk
in order to profit from higher throughput.

Preliminary results. We performed experiments on
a newer machine featuring an Intel Quad Core Q6600
CPU, 8GB of RAM, a fast hard drive and a solid state

disk. We used the gcc compiler 4.3.2 with optimization
level O3 on a Debian Linux distribution and STXXL
version 1.2.2. The available internal memory was
restricted to at most 1 GB and only one processor
was used. We observed that the performance of solid
state disks has significantly improved over the last year:
priced similarly as the 32 GB device purchased for [5]
a year ago, our current 64 GB Hama SSD (3.5” SATA)
not only offers double the capacity but also features
significantly increased throughput of measured 84 MB/s
(reading), and 75 MB/s (writing). Although our 500
GB SEAGATE Barracuda 7200.11 hard disk applied in
these experiments still offers higher throughput (about
100 MB/s for sequential access of large blocks), now
for medium diameter grid and large diameter random
graphs even using a SSD alone results in faster SSSP
execution, see Table 7. On the other hand, for random
line graphs, the SSSP phase using the hard drive
benefits from a larger throughput and sequential reading
speed. Indeed, as observed in [6], for line graphs, the
Euler-tour based preprocessing lays out the clusters on
external memory storage in a way, that the clusters that
are visited soon after each other during a BFS traversal
are located sequentially, thus facilitating sequential
reading. While the node visiting order for BFS and
SSSP traversals may differ significantly in general, it is
very similar for line graphs.

In order to be able to accommodate larger data sets
on flash, we actually used two 64 GB SSD devices. For
fair comparison with a single hard disk the two SSDs
were concatenated into one raid (thus to preventing
parallel I/Os). Of course, even better results can be
obtained by striping data blocks over the SSDs, thus
significantly increasing the throughput. Note that we
did not yet tune our SSSP code towards the special
metrics of flash memory: The cluster size in the SSSP
algorithm was chosen in a way so as to balance the
random reads and sequential I/Os on the hard disks,
but now in this new setting, we can reduce the cluster
size as the random I/Os are being done much faster by
the flash memory. Our experiments suggest that this
leads to even further improvements in the runtime of
the SSSP algorithm. More details will be provided in
the full version of this paper.

94 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

5 Conclusions

We have provided a practical implementation for undi-
rected SSSP in external-memory under the assumptions
that at least one bit can be kept for each vertex and
that the edge weights are reasonably bounded. It
remains a challenging open problem to come up with a
practically feasible solution for sparse directed graphs,
even without theoretical guarantees.

Acknowledgements. We would like to thank Deepak
Ajwani and Andreas Beckmann for helpful discussions
and assistance with the flash disks.

References

[1] Online resources of the 9th DIMACS Imple-
mentation Challenge: Shortest Paths, 2006.
http://www.dis.uniroma1.it/∼challenge9/.

[2] The boost graph library: user guide and reference
manual. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[3] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems. Com-
munications of the ACM, 31(9), pages 1116–1127,
1988.

[4] D. Ajwani, R. Dementiev, and U. Meyer. A compu-
tational study of external-memory BFS algorithms.
In SODA, pages 601–610. ACM Press, 2006.

[5] D. Ajwani, I. Malinger, U. Meyer, and S. Toledo.
Characterizing the performance of flash memory
storage devices and its impact on algorithm design.
In Proc. 7th Int. Workshop on Experimental Algo-
rithms (WEA), volume 5038 of Lecture Notes in
Computer Science, pages 208–219. Springer, 2008.

[6] D. Ajwani, U. Meyer, and V. Osipov. Improved
external memory BFS implementation. In Proc.
Workshop on Algorithm Engineering and Experi-
ments, ALENEX. SIAM, 2007.

[7] L. Arge, G. S. Brodal, and L. Toma. On external-
memory MST, SSSP and multi-way planar graph
separation. J. Algorithms, 53(2):186–206, 2004.

[8] J. Barnat, L. Brim, S. Edelkamp, D. Sulewski,
and P. Šimeček. Can flash memory help in model
checking? In Proc. 13th International Workshop
on Formal Methods for Industrial Critical Systems,
pages 159–174, 2008.

[9] H. Bast, S. Funke, D. Matijevic, P. Sanders, and
D. Schultes. In transit to constant time shortest-
path queries in road networks. In Proc. Work-
shop on Algorithm Engineering and Experiments,
ALENEX. SIAM, 2007.

[10] M. Chen, R. A. Chowdhury, V. Ramachandran,
D. L. Roche, and L. Tong. Priority queues and
Dijkstra’s algorithm. Technical Report TR-07-54,

The University of Texas at Austin, Department of
Computer Sciences, Oct. 2007.

[11] Y.-J. Chiang, M. T. Goodrich, E. F. Grove,
R. Tamassia, D. E. Vengroff, and J. S. Vitter.
External-memory graph algorithms. In SODA,
pages 139–149, 1995.

[12] R. Dementiev, L. Kettner, and P. Sanders. :
Standard template library for XXL data sets. In
G. S. Brodal and S. Leonardi, editors, ESA, volume
3669 of Lecture Notes in Computer Science, pages
640–651. Springer, 2005.

[13] R. Dementiev, P. Sanders, D. Schultes, and J. F.
Sibeyn. Engineering an external memory minimum
spanning tree algorithm. In J.-J. Lévy, E. W. Mayr,
and J. C. Mitchell, editors, IFIP TCS, pages 195–
208. Kluwer, 2004.

[14] E. W. Dijkstra. A note on two problems in
connexion with graphs. Num. Math., 1:269–271,
1959.

[15] E. Gal and S. Toledo. Algorithms and data struc-
tures for flash memories. ACM Computing Surveys,
37(2):138–163, 2005.

[16] A. Goldberg and R. Werneck. Computing point-
to-point shortest paths from external memory. In
Proc. 7th Workshop on Algorithm Engineering and
Experiments (ALENEX’05). SIAM, 2005.

[17] V. Kumar and E. J. Schwabe. Improved algorithms
and data structures for solving graph problems in
external memory. In SPDP, pages 169–176, Los
Alamitos, CA, USA, 1996. IEEE Computer Society.

[18] K. Mehlhorn and U. Meyer. External-memory
breadth-first search with sublinear I/O. In R. H.
Möhring and R. Raman, editors, ESA, volume 2461
of Lecture Notes in Computer Science, pages 723–
735. Springer, 2002.

[19] U. Meyer, P. Sanders, and J. Sibeyn (Eds.). Al-
gorithms for Memory Hierarchies, volume 2625 of
LNCS. Springer, 2003.

[20] U. Meyer and N. Zeh. I/O-efficient undirected
shortest paths. In G. D. Battista and U. Zwick,
editors, ESA, volume 2832 of Lecture Notes in
Computer Science, pages 434–445. Springer, 2003.

[21] U. Meyer and N. Zeh. I/O-efficient undirected
shortest paths with unbounded edge lengths. In
Y. Azar and T. Erlebach, editors, ESA, volume
4168 of Lecture Notes in Computer Science, pages
540–551. Springer, 2006.

[22] K. Munagala and A. G. Ranade. I/O-complexity of
graph algorithms. In SODA, pages 687–694, 1999.

[23] B. Sach and R. Clifford. An empirical study
of cache-oblivious priority queues and their ap-
plication to the shortest path problem. Avail-
able online under http://www.cs.bris.ac.uk/

95 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

∼sach/COSP/, Feb. 2008.
[24] P. Sanders. Fast priority queues for cached memory.

ACM Journal of Experimental Algorithms, 5:7,
2000.

[25] P. Sanders, D. Schultes, and C. Vetter. Mobile
route planning. In Proc. 16th Annual European
Symposium on Algorithms, volume 5193 of LNCS,
pages 732–743. Springer, 2008.

[26] J. F. Sibeyn. From parallel to external list rank-
ing. Technical report, Max Planck Institut für In-
formatik, Saarbrücken, Germany, 1997.

[27] J. S. Vitter. External memory algorithms and
data structures: Dealing with massive data.
ACM computing Surveys, 33, pages 209–271,
2001. Revised version (April 2008) available on-
line at http://www.cs.purdue.edu/homes/∼jsv/
Papers/Vit.IO/survey.pdf.

[28] The stanford webbase project. http://

www-diglib.stanford.edu/∼testbed/doc2/
WebBase/.

[29] C.-H. Wu, L.-P. Chang, and T.-W. Kuo. An ef-
ficient R-tree implementation over flash-memory
storage systems. In Proc. 11th ACM International
Symposium on Advances in Geographic Informa-
tion Systems, pages 17–24, 2003.

[30] C.-H. Wu, T.-W. Kuo, and L.-P. Chang. An effi-
cient B-tree layer implementation for flash-memory
storage systems. ACM Transactions on Embedded
Computing Systems, 6(3), 2007.

96 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

