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Abstract

Spatio-temporal processes can often be written as hierarchical state-space pro-

cesses. In situations with complicated dynamics such as wave propagation, it is

difficult to parameterize state transition functions for high-dimensional state pro-

cesses. Although in some cases prior understanding of the physical process can be

used to formulate models for the state transition, this is not always possible. Al-

ternatively, for processes where one considers discrete time and continuous space,

complicated dynamics can be modeled by stochastic integro-difference equations

in which the associated redistribution kernel is allowed to vary with space and/or

time. By considering a spectral implementation of such models, one can formu-

late a spatio-temporal model with relatively few parameters that can accommodate

complicated dynamics. This approach can be developed in a hierarchical frame-

work for non-Gaussian processes, as demonstrated on cloud intensity data.

Key Words:Bayesian, dilation, dynamic models, hierarchical, integro-difference

equations, translation



1 Introduction

There has been much interest in recent years in modeling spatio-temporal processes

in the environmental and physical sciences. Methods have considered geostatistical

approaches (see the review by Kyriakidis and Journel, 1999), multivariate time series

approaches (e.g., Bennett 1979), space-time dynamic model approaches (e.g., Goodall

and Mardia, 1994; Guttorp, Meiring, and Sampson, 1994; Mardia et al., 1998; Meiring,

Guttorp, and Sampson, 1998; Wikle and Cressie, 1999), and hierarchical approaches

(e.g., Wikle, Berliner and Cressie, 1998; Berliner, Wikle and Cressie, 2000; Wikle et al.

2001).

The interest here is in processes that have coherent dynamical interactions such as

exhibited by geophysical or ecological processes with wave behavior. One approach

to accounting for realistic dynamic structure in such complicated spatio-temporal set-

tings is to consider underlying explicit theoretical relationships. For example, in an

atmospheric/oceanic context one has well-specified deterministic relationships (partial

differential equations, PDEs) that describe, to an extent, the process of interest. Such

information can be used in traditional state-space settings as demonstrated in the “data

assimilation” literature in atmospheric/ocean science (e.g., Ghil et al. 1981). Alterna-

tively, one can consider the physics as “approximate” and actually use the PDEs as a

framework for developing prior distributions in a hierarchical model (Royle et al., 1999;

Wikle et al., 2001; Wikle 2002a). This approach works very well when one has an under-

standing of the underlying physical relationships from which to develop the PDEs and

thus, the priors. However, it is often the case that the scientific knowledge for a specific

problem is not well-developed and one does not have easily-described physically-based

priors. In that case, one may still need efficient methodologies that can model dynamical

behavior with relatively few parameters.

Wikle (2001) suggested that a kernel-based spectral approach based on stochastic

integro-difference equations can be used to model complicated dynamical processes. In
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particular, if a hierarchical formulation is considered, this approach can easily allow the

redistribution kernel to vary with space and/or time. This methodology makes use of

recent developments in nonstationary spatial modeling using convolution kernels (e.g.,

Higdon, 1998), as well as theoretical results concerning deterministic integro-difference

equations and their utility in modeling dynamical processes (e.g., Kot et al. 1996). In

particular, the kernels are used to define the propagator (or transition) matrix, which

allows the state variables to evolve differently in different parts of the spatial domain.

Non-Gaussian observations are incorporated by conditioning on a continuous latent vari-

able, which is assumed to follow this non-stationary spatio-temporal process. Parameter

and state estimation is carried out using MCMC methods. The model has wide appli-

cability for several reasons. First, it allows for arbitrary observation types. Second, it

easily handles missing data. Third, it scales to high dimensional problems, since it uses

spectral decompositions of the spatial kernels and the state process. Finally, it provides

a flexible and interpretable kernel representation for the underlying state process. Our

purpose in this paper is to show how one can use this approach in a hierarchical Bayesian

setting to model non-Gaussian spatio-temporal dynamic processes. The methodology is

demonstrated on a cloud intensity process.

2 Background

Although an active area of research, it is extremely difficult to specify realistic covari-

ance models for complicated spatio-temporal processes, at least from a joint-distribution

perspective (Cressie and Huang, 1999; Gneiting, 2002). However, if one considers such

processes from a hierarchical perspective, a series of relatively simple conditional mod-

els can lead to complicated joint models. As described in Wikle et al. (1998), the general

hierarchical framework for spatio-temporal models consists of three general stages:
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(Stage 1) Data model:[data|process, parameters],

(Stage 2) Process model:[process|parameters],

(Stage 3) Parameter Model:[parameters],

where we use the bracket notation to represent a distribution. Given such a framework,

one can get the posterior distribution[process, parameters|data] through Bayes’ rule.

Each stage can be further factored into series of conditional models. For example, dy-

namical models are often considered from a state-space perspective, and the state pro-

cess is factored in a Markovian fashion in the second stage. Parameters associated with

the dynamics are then given distributions in the last stage.

As shown by Diggle, Tawn, and Moyeed (1998) one can use this hierarchical frame-

work to consider non-Gaussian spatial models as well. In that case, the non-Gaussian

data process is conditional on some latent spatial process, which might be modeled as

a Gaussian random field at the second stage. The parameters of this spatial model are

then given distributions at the third stage. Wikle (2002b) has shown that by consider-

ing the spatial process from a spectral point of view, this approach can be implemented

very efficiently for high-dimensional non-Gaussian data. Furthermore, Wikle (2002a)

has shown that this approach can be considered for non-Gaussian spatio-temporal pro-

cesses as well. In that study, ecological abundance (count) data were assumed to be

Poisson, conditional on a spatio-temporal intensity process. This intensity process was

assumed to be log-normal, with a spatio-temporal dynamical component. In that appli-

cation, the underlying process was diffusive (i.e., the process modeled was that of an

invasive species, showing heterogeneous diffusion and exponential growth over time)

and a PDE model provided the basis for the dynamical evolution. However, if one could

not assume that the process was diffusivea priori then an arbitrary dynamical evolution

model would have to be considered. In that case, the dynamical propagator matrix (e.g.,

transition matrix) would be extremely high-dimensional, and difficult to estimate, even
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from a hierarchical perspective. Alternatively, one could consider a stochastic integro-

difference equation-based methodology in this framework. Such an approach for non-

Gaussian spatio-temporal processes is described below. The procedure is illustrated on

cloud intensity data from a regional climate model.

2.1 Scientific Problem and Data

The propagation of clouds is a complicated nonlinear function of various atmospheric

state processes. In fact, cloud dynamics are still the subject of intense research in the at-

mospheric science community as cloud parameterizations are a fundamental component

of atmospheric General Circulation Models (GCM’s) used to study climate and weather.

Our interest here is whether the dynamics of such cloud processes can be modeled ad-

equately by a non-Gaussian hierarchical spatio-temporal model. To examine this, we

obtained cloud intensity information from a regional climate model as discussed in Pan

et al. (2001).

We consider the dataZt(si) at spatial locationssi, i = 1, . . . , n and timet =

1, . . . , T . Specifically, we selectedn = 60 andT = 80. The spatial locations are

evenly spaced at a resolution of 52 km and represent a 1-D spatial (longitudinal) domain

over the central U.S. The temporal sampling is every 6 hours and is representative of

the large-scale meteorological forcing in late March 1979. The data values are cloud

water content in grams water per kilogram of air (g/kg). The data have non-negative

integer support at each spatial location and time. The ultimate goal for considering

these “data” is to develop efficient parameterizations of cloud behavior in regional cli-

mate models. However, for the purposes of this study, we simply wish to establish that

the kernel-based integro-difference equation spatio-temporal methodology can capture

the essential dynamics in regional climate model processes. In addition, we wish to

demonstrate that the methodology can work well in situations where much of the data

are unobservable (for example, as one might experience with polar orbiting satellite ob-
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servations of clouds, e.g., Wikle et al. 2001). Thus, for this study, we remove 40% of

the data by randomly selecting from the 60 spatial locations at each time, assuming the

data are missing from all times at the selected pixels. The goal is to model the cloud

intensity (cloud water content) and thus predict the cloud water content over the whole

domain, including the locations for which data are missing. This will provide validation

for the model’s performance.

3 A Non-Gaussian Hierarchical Spatio-Temporal Dynamic

Model

First, we describe the kernel-based spectral model for spatio-temporal dynamical pro-

cesses. We then describe how this can be used in a hierarchical framework to model the

cloud intensity process.

3.1 Stochastic Integro-Difference Equation Model

Consider the stochastic integro-difference equation (IDE) for an underlying spatio-temporal

processyt(s) which in general is assumed to be continuous in space and discrete in time:

yt+1(s) = γ

∫
ks(r;θs)yt(r)dr + η̃t+1(s), (3.1)

whereks(r;θs) is the redistribution kernel that describes how the process at timet is

redistributed in space at timet + 1, θs are parameters of the redistribution kernel (that

may be spatially dependent),η̃ is a spatially-colored noise process that is independent

across time, and the parameterγ is used in this context to control (and allow for) explo-

sive growth. Note that there is a substantial literature on deterministic integro-difference

equations, particularly related to dispersal of ecological processes (e.g., Kot et. al 1996).

Stochastic versions similar to that presented here were considered by Wikle and Cressie
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(1999), Brown et al. (2000), and Brown et al. (2001). However, motivated by the

non-stationary spatial modeling approach of Higdon (1998), Wikle (2001) showed that

by considering spatially varying (heterogeneous) redistribution kernels in this frame-

work, one can model very complicated dynamics, both diffusive and so-called “extra-

diffusive”. Such an approach is the focus here.

3.2 Extra-Diffusive Dynamics

It is well-recognized in the ecology literature that the deterministic IDE framework can

accommodate diffusive dynamics, and that the behavior of the dynamics is determined

from the kernel specification (e.g., Kot et al. 1996). We propose that the method is

significantly more powerful in that it can model more complicated dynamical behavior,

which we call extra-diffusive propagation. Specifically, we are interested in propagation

of spatial features through time. For illustration, consider the one-dimensional Gaussian

spatial kernel,

ks(r, θ1, θ2) =
1

θ2

√
2π

exp{−.5(r − θ1 − s)2θ2} (3.2)

where the kernel is centered atθ1 + s and thus is shifted byθ1 spatial units relative to

locations, andθ2 is the scale parameter. We refer toθ1 as the translation parameter

andθ2 as the dilation parameter, analogous to the usual translation and dilation in the

description of wavelet basis functions. In the IDE kernel context, these parameters

influence the dynamical evolution of they process.

Figure 1 shows a successive integration of (3.1) with a 2-D Gaussian kernel anal-

ogous to (3.2), with the kernel translated to the left and down relative tos, identically

for all s. In this case the disturbance shows diffusive propagation (i.e., spreading with

time) but the center of the disturbance also propagates to the right and up, with speed

proportional to the translation distance. As the spread (dilation) of the kernel increases,

the process becomes more diffusive; as the translation of the kernel increases, the center

of the process propagates more rapidly.
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More importantly, consider a spatially-varying kernel, in which the translation pa-

rameters are allowed to vary with space. Such models have recently been considered by

Higdon (1998) for spatial problems in which a convolution of white noise is used to gen-

erate nonstationary spatial covariance models. In the IDE setting, such spatially-varying

(heterogeneous) kernels can capture more complicated dynamics than homogeneous

kernels. For example, Figure 2 shows arrows that indicate the propagation direction

at each location implied by slowly spatially-varying translation parameters. That is, the

kernel is translated in the opposite direction (relative tos) shown by the arrows. Figure

3 shows the resulting propagation of a disturbance; note how the disturbance propagates

in a quasi-circular fashion.

The simulation shown in Figure 3 suggests that the stochastic IDE methodology with

heterogeneous kernels has the potential to accommodate quite complicated dynamical

processes. For example, as will be shown below, this method can model the propagation

of cloud intensity in strongly dynamic environments. More generally, the procedure

could forecast the propagation of coherent radar reflectivities and thus could be used

in short-term forecasting of precipitation for severe weather or hydrological purposes.

In addition, the procedure could be applied to the problem of predicting the spread of

invasive species across heterogeneous landscapes. In general, any dynamical system for

which there is substantial lack of certainty as to the underlying deterministic dynamics

can be modeled by this approach.

3.3 Dimension Reduction Through Spectral Representation

Most spatio-temporal processes of interest in the geophysical and ecological sciences

have very high-dimensional state (spatial) processes. As is the case with traditional

state-space models, the stochastic IDE approach is difficult to implement in these set-

tings. Wikle et al. (2001) showed that implementation is greatly facilitated in PDE-

based hierarchical spatio-temporal models if the state-process is formulated spectrally.
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A similar approach can be used for IDE-based models. This is consistent with other

recent work demonstrating the flexibility of spectral approaches in nonstationary spatial

modeling (e.g., Nychka et al. 1999; Nychka et al. 2002; Fuentes 2002).

First, expand the kernel and the process in terms of spectral basis functionsφi(s):

ks(r;θs) =
∑
i

bi(s;θs)φi(r), (3.3)

yt(s) =
∑
j

αj(t)φj(s), (3.4)

where the basis functions are complete and orthonormal. If the process of interest has

non-trivial dynamics, then the redistribution kernel has significant spread and thus can be

represented as the linear combination of a relatively small set of spectral basis functions.

In that case, the sum in (3.3) is truncated atI and upon substitution of (3.3) and (3.4)

into (3.1), we get

yt+1(s) = γb′(s;θs)α
(1)
t + η̃t+1(s) (3.5)

whereb(s;θs) ≡ [b1(s;θs) . . . bI(s;θs)]
′ andα(1)

t ≡ [α1(t) . . . αI(t)]
′. So, for spatial

locations{s1, . . . , sn},
yt+1 = γB′θα

(1)
t + η̃t+1

whereyt+1 ≡ [yt+1(s1) . . . yt+1(sn)]′ andBθ = [b(s1;θs1) . . .b(sn;θsn)]. Thus, since

from (3.4),yt+1 = Φαt+1, it follows that:

α
(1)
t+1 = Φ′(1)B

′
θα

(1)
t + η

(1)
t+1 (3.6)

α
(2)
t+1 = Φ′(2)B

′
θα

(1)
t + η

(2)
t+1, (3.7)

whereαt = [α
(1)′
t α

(2)′
t ]′, α(2)

t ≡ [αI+1(t) . . . αn(t)]′, Φ = [Φ(1) Φ(2)], with Φ(1) ≡
[φ1 . . . φI ], andΦ(2) ≡ [φI+1 . . . φn]. If we assume that̃ηt ∼ N(0,Cη̃), then

η
(1)
t ∼ N(0,C

(1)
η ), η(2)

t ∼ N(0,C
(2)
η ), whereC

(j)
η ≡ Φ′(j)Cη̃Φ(j) for j = 1, 2.
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Several comments are in order. First, the spatial locations{s1, . . . , sn} need not

correspond to data locations if there is a data model that conditions on the processyt.

Furthermore, we note that the evolution ofα(2) in (3.7) depends on the past value of the

α(1) process rather than the past values of theα(2) process. Depending on the dimension

reduction (i.e., the spread of the kernel) and the underlying process, one might assume

thatα(2) is a non-dynamic spatio-temporal component without much loss of predictive

power (e.g., Wikle and Cressie 1999).

3.3.1 Kernel Representation

The spectral-based IDE methodology outlined above does not depend explicitly on the

functional form of the kernel, with the exception of the assumption that the kernel can

be modeled reasonably well as a finite sum of orthogonal basis functions. Indeed, since

the final model formulation is in spectral space, an estimation procedure need only find

estimates for the elements ofB (where we drop theθ subscript in this case). One may

consider this problem using moment-based estimators in a Kalman filter framework

as in Wikle and Cressie (1999). Likelihood estimates obtained from E-M algorithm

approaches can be used as well, provided the number of parameters is reasonably small

(e.g., Shumway and Stoffer, 1982).

A parsimonious representation ofBθ can be obtained if one considers a specific

parametric kernel function. This approach has the additional advantage that one can

control the dynamics by altering the translation (shift) and dilation (spread) of the kernel

in terms of a relatively few number of parameters. Although easily implemented in a

two-dimensional spatial setting, for ease of illustration we focus on the one-dimensional

spatial case here.

Consider the Gaussian kernel given by (3.2). Letφi(s) be Fourier basis functions.

Of course, the Fourier transform of the Gaussian kernel is just its characteristic function
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and

bj(s; θ1(s), θ2(s)) = exp{iωj(θ1(s) + s)− .5ω2
j θ2(s)}

= cos{ωj(θ1(s) + s)} exp{−.5ω2
j θ2(s)} (3.8)

+i sin{ωj(θ1(s) + s)} exp{−.5ω2
j θ2(s)},

whereωj is the spatial frequency. Thus, the real and imaginary coefficients of the

characteristic function correspond to cosine and sine Fourier basis functions, respec-

tively. These coefficients are completely determined if we know the kernel parameters

θ1(s) andθ2(s) at each spatial locations. That is, we need to specify the spatial fields

θ1 = [θ1(s1) . . . θ1(sn)]′ andθ2 = [θ2(s1) . . . θ2(sn)]′. For example, we might assume

θ1 ∼ N(µ1,Cθ1) andθ2 ∼ LN(µ2,Cθ2), whereLN refers to a log-normal distri-

bution. Since we expect the dynamics to be relatively slowly varying over space, the

spatial structure in these fields should be relatively simple.

Thus, the model described by (3.6) and (3.7), along with the choice of a Gaussian

kernel and Fourier basis functions, provide a hierarchical formulation for the spatio-

temporal dynamic process from the IDE perspective. This corresponds to the second

level of the hierarchical framework above. Furthermore, if we specify distributions for

the kernel dilation and translation parameters, they correspond to the third stage in the

general hierarchy. These can be combined with an appropriate data model to complete

the hierarchy.

The methodology outlined here is not limited to Fourier basis functions. Any orthog-

onal set of basis functions could be considered (e.g., wavelets, empirical orthogonal

functions). The relative advantages and disadvantages of these alternative basis func-

tions will be investigated elsewhere. It is clear, however, that the use of Fourier basis

functions has the direct benefit that the Fourier transform of distribution-based kernels

is known analytically (i.e., it is the characteristic function of the distribution).
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The methodology is not limited to Gaussian kernels. In fact, the only limitation

is that the one must be able to easily obtain the analytical Fourier transform of the

kernel. Previous research suggests the advantage of certain “heavy-tail” kernels in the

deterministic IDE framework for cases where diffusion is the only dynamical process of

interest (e.g., Kot et al., 1996). However, in cases where the IDE is stochastic and extra-

diffusive dynamics are of primary interest, there doesn’t seem to be much advantage

to having kernels with heavy tails. However, note that by shifting the kernels in the

extra-diffusive case, one effectively is considering skewed kernels.

3.4 Complete Hierarchical Model

The regional climate model cloud data described previously has non-negative integer

support. Thus, similar to the non-Gaussian spatial modeling approach of Diggle et al.

(1998) and the spatio-temporal approach of Wikle (2002a), we assume that conditional

on a Poisson intensity process at all spatial and temporal locations of interest, the data

are distributed as independent Poisson random variables,

Zt(si)|λt ∼ Poi(k′i,tλt) (3.9)

where for alli andt in the domain of interest,Zt(si) is the cloud intensity at locationsi

and timet, λt ≡ [λt(s1), . . . , λt(sn)]′ is the Poisson intensity process at all spatial loca-

tions for timet, andki,t is an incidence vector indicating whether a prediction location

has an associated observation. To simplify notation, letut ≡ log(λt) and assume

ut|µ, ν,yt, σ2
ε ∼ N(µ1 + νΦαt, σ

2
ε I), (3.10)
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whereµ is the overall mean effect,ν is a scaling parameter, andσ2
ε represents extra-

Poisson variability. We then make use of the model (3.6) and (3.7),

α
(1)
t |α(1)

t−1,Bθ,C
(1)
η ∼ N(Φ′(1)B

′
θα

(1)
t−1,C

(1)
η )

α
(2)
t |α(1)

t−1,Bθ,C
(2)
η ∼ N(Φ′(2)B

′
θα

(1)
t−1,C

(2)
η ).

Note that we have assumedγ = 1 in this example. One of our primary interests with

these data is to determine the overall tendency of the spatially-varying translation pa-

rameter. Thus, we assumeθ1 is relatively smooth and letθ1 = Ψf , with f ∼ N(0,Σ),

whereΨ are the firstp (p = 5) eigenvectors of an exponential correlation matrix with

relatively strong spatial dependence (cθ(h) = exp(−h/30) for distancesh = 0, . . . , 60)

andΣ is the associated diagonal matrix. We also assume thatlog(θ2) = Ψg, with

g ∼ N(0,Σ). Furthermore, we letC(j)
η = Φ′(j)CηΦ(j) whereCη is a Gaussian co-

variance matrix with fixed parameters (cη(h) = exp(−h2/200) for h = 0, . . . , 60).

We also specify uniform priors forµ ∼ Unif [−10, 10] andν ∼ Unif [.5, 5] and let

σ2
ε ∼ IG(qε, rε), whereqε = 3 andrε = 5. Finally, we specify a prior distribution for

the initial state for theα(1) process; we letα(1)
0 ∼ N(0, .05I).

Implementation was via a Gibbs sampler, utilizing straightforward conjugate updat-

ing with the exception ofut, f , andg, which were updated via Metropolis-Hastings

steps. In particular,ut was updated individually for each spatial location and time by

a random-walk Metropolis-Hastings algorithm with random walk variance equal to 0.2.

Similarly, f andg were updated by random walk Metropolis-Hastings steps with random

walk variances of 0.3. The spectral dynamic processα
(1)
t for t = 0, . . . , T was updated

by its conjugate multivariate normal full-conditionals; similarly forα(2)
t , t = 1, . . . , T .

The “regression” parametersµ, ν were updated jointly by their truncated Gaussian full-

conditional distributions. Finally,σ2
ε was updated by its conjugate inverse gamma full-

conditional distribution. Samples ofyt were obtained by simply multiplying the samples

of αt by the spectral basis matrixΦ (i.e., taking the inverse Fourier transform ofαt).
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The Gibbs sampler was run for 10000 iterations after a 5000 iteration burn-in. Standard

errors were computed by batching, to account for the correlation in the Markov chain.

The results described below were not overly sensitive to the choices of the the fixed

parameters in the aforementioned prior distributions.

3.5 Results

Figure 4 shows the posterior mean of the intensitiesλt as well as the “data”Zt and the

climate model truth. These plots only consider 1-D space and are interpreted by consid-

ering the x-axis as the spatial axis (e.g., “longitude”) and the y-axis as the time axis, such

that time increases from top to bottom. Thus, if one sees a diagonal stripe slanted to the

right, it suggests propagation to the right (or east since the x-axis represents longitude);

similarly, a left-slanted stripe suggests propagation to the left (west).

The model is able to fill in the missing information in a dynamically reasonable fash-

ion. In addition, the posterior mean image is smoother in the sense that the information

has been “blurred” a bit. Although this can be controlled via the dilation parameter, it

is a common (and often desirable) feature of the stochastic IDE model (e.g., Brown et

al. 2000). The posterior mean of the underlying Gaussian spatio-temporal processyt

(whereyt = Φαt) is shown in Figure 5 along with the associated standard deviation and

the intensity truth. This latent process captures the eastward propagation of the clouds.

In addition, it is able to capture the spatially-heterogeneous dynamics suggested in the

truth field. Specifically, visual inspection of the truth suggests that the speed of eastward

propagation is less in the western and eastern portion of the domain than in the central

portion. Figure 6 shows the posterior mean of theθ1 (translation parameters) andθ2

(dilation parameter) spatial processes. The posterior mean for the translation parameter

confirms that the dynamical propagation is to the right over the entire domain (recall that

a negative translation parameter suggests propagation to the right), but is slower over the

eastern and western portions of the domain, as suggested visually from the truth fields.
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Correspondingly, the dilation parameter is larger over the eastern and western portions

of the domain than in the center, implying that the diffusive aspect of the process is

greater in the eastern and western portions of the domain as well.

4 Discussion

We have presented a spatio-temporal hierarchical model for a non-Gaussian process

that is based on a stochastic integro-difference equation with heterogeneous redistribu-

tion kernels. By letting the kernels exhibit spatially-varying translation and dilation,

complicated non-separable and non-homogeneous dynamics can be modeled. This is

analogous to the use of such kernel-based methods in the modeling of non-stationary

spatial processes (e.g., Higdon 1998). The methodology was demonstrated on cloud

intensity data from a regional climate model.

Although the modeling approach works well for the cloud water content data, one

can imagine that over longer time-spans the kernels should change with time as well.

For example, the dynamics in the mid-latitudes are different in the spring than in the

summer due to the annual migration of the jet stream and associated semi-permanent

high and low pressure systems. Thus, the kernel translation and dilation should change

accordingly. As discussed in Wikle (2001), the hierarchical modeling approach outlined

here can accommodate time-varying kernels. That is, in addition to lettingθ1 andθ2 vary

spatially, we allow them to vary temporally as well (e.g.,θ1(t) andθ2(t)). In this case,

the model (3.6) becomesα(1)
t+1 = Φ′(1)B

′
θt
α

(1)
t +ηt+1. Theθ processes might be modeled

using one of the recently developed classes of space-time covariance functions (Cressie

and Huang 1999, Gneiting 2002), if the dimensionality is not an issue. Alternatively,

one might consider spatio-temporal dynamical models for these parameters. However,

one must be careful in this setting not to simply replace one complicated spatio-temporal

problem by another of equal (or greater) complexity! Typically, one would expect that
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the spatio-temporal dynamics of the parameters are substantially less complicated than

the dynamics of the original process. In that case, dimensionality might be reduced by

another spectral decomposition of these parameter processes.

We note that one might allow the kernels to be influenced by other variables and

processes. In the present application, this suggests a possible approach to dynamic pa-

rameterization of clouds in climate models, where other atmospheric variables dictate

the likely spatio-temporal distribution of the kernel parameters. This will be explored

elsewhere. In general, such ideas can be extended to other applications in which the

physical dimensionality is large and yet prior knowledge of explicit dynamical relation-

ships is weak. Potential applications include predicting the spread of invasive species in

Ecology, forecasting radar and satellite imagery, and the prediction of functional MRI

imagery.
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Figure 1: Simulation using a kernel in 2-d space with kernel translated to the left and
down, implying diffusion and propagation up and to the right.
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Figure 2: Vectors indicating spatial variation in translation parameter in a 2-d spatial
kernel. Note that the arrow points in the direction in which the propagation is suggested
by the translation (i.e., actual translation vector is in the opposite direction as shown).
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Figure 3: Propagation and diffusion suggested by the spatially-varying translation pa-
rameters shown in Figure 2.
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Figure 4: Left Panel: Posterior mean ofλt; Center Panel: Cloud intensity “Data” in
which 40% of the spatial locations have randomly been chosen to have missing obser-
vations (indicated by the vertical white lines); Right Panel: Cloud intensity “truth” (i.e.,
no missing data) from the regional climate model simulation.
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Figure 5: Left Panel: Posterior mean ofyt = Φαt; Center Panel: Posterior standard
deviation foryt process ; Right Panel: Cloud intensity “truth”.
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