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It is believed that both Hebbian and homeostatic mechanisms are essential in neural learning. While
Hebbian plasticity selectively modifies synaptic connectivity according to activity experienced,
homeostatic plasticity constrains this change so that neural activity is always within reasonable
physiological limits. Recent experiments reveal spike timing-dependent plasticity (STDP) as a new
type of Hebbian learning with high time precision and heterosynaptic plasticity (HSP) as a new
homeostatic mechanism acting directly on synapses. Here, we study the effect of STDP and HSP on
randomly connected neural networks. Despite the reported successes of STDP to account for neural
activities at the single-cell level, we find that, surprisingly, at the network level, networks trained
using STDP alone cannot seem to generate realistic neural activities. For instance, STDP would
stipulate that past sensory experience be maintained forever if it is no longer activated. To over-
come this difficulty, motivated by the fact that HSP can induce strong competition between sensory
experiences, we propose a biophysically plausible learning rule by combining STDP and HSP.
Based on the Fokker-Planck theory and extensive numerical computations, we demonstrate that
HSP and STDP operated on different time scales can complement each other, resulting in more
realistic network activities. Our finding may provide fresh insight into the learning mechanism of
the brain. © 2006 American Institute of Physics. [DOI: 10.1063/1.2189969]

physics can be applied to addressing interesting problems
in biological sciences.

Learning and adaptation are key to natural selection and
evolution, as the successful survival of an individual spe-
cies depends strongly on its abilities to learn new experi-
ences and to adapt the acquired skills to the changing
environment. The ability to alter behavior is a result of
changes in the nervous system. How learning and adap-
tation are carried out in the brain has been among the
most fundamental issues in neuroscience. Studies on
learning range from molecules and cells through neural
networks, to animal behavior and psychology, in which
both experimental and theoretical disciplines play impor-
tant roles. Motivated by the recent experimental observa-
tions on spike timing-dependent and heterosynaptic plas-
ticities, we address how neural networks change during

I. INTRODUCTION

Synaptic plasticity, changes in the synaptic conductance
in response to learning and adaptation, is fundamental to
memory and the development of neural circuits. The classi-
cal Hebbian rule,1 which has been the foundation for re-
search on the role of synaptic plasticity, is based on the in-
tuition that if, in the process of learning or adaptation, input
from one neuron results in the firing of another neuron, then
the synaptic connection between those two neurons is poten-
tiated. This postulate has received support from many experi-

learning and adaptation. By utilizing a physical theory
based on the Fokker-Planck equation and extensive nu-
merical computations, we establish a biophysically plau-
sible learning rule incorporating both types of neural
plasticity and show that it can result in realistic neural
activities at the network level. This work thus represents
an example of how tools from statistical and nonlinear
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ments showing that synapses can go through not only long-
term potentiation (LTP), but also long-term depression
(LTD), depending on the pattern of the neural activity. Mo-
tivated by these observations, several forms of Hebbian
learning have been proposed to induce LTP/LTD in terms of
pre- and/or postsynaptic firing rates, the most representative
being the BCM rule, named after Bienenstock, Copper, and
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Munro. According to the BCM rule, for instance, LTP
(LTD) arises if synaptic inputs result in a postsynaptic firing
rate above (below) a threshold that depends on the postsyn-
aptic activity. While the BCM rule can indeed account for
important neural phenomena,3 it is basically a rate-based
rule, i.e., it ignores entirely the timing information of the
synaptic activity. Recent experiments have indicated that this
timing information can play a critical role in determining the
synaptic changes in both sign and magnitude.4 In particular,
LTP can be observed if the presynaptic action potential is
followed by a postsynaptic one, whereas LTD occurs if the
temporal order of the action potentials is reversed. This type
of plasticity, named spike timing-dependent plasticity
(STDP), is believed to be important in shaping the various
synaptic plasticities required for learning and adaptation.4

In general, Hebbian learning contains a positive-
feedback mechanism. That is, once a synapse is potentiated,
it becomes easier for the presynaptic neuron to make the
postsynaptic neuron fire, promoting further potentiation of
the synapse. The stability of the Hebbian learning rule is thus
important. While modifications such as incorporating a
postsynaptic-dependent threshold in BCM or introducing de-
pendence on the initial synaptic size in STDP can make Heb-
bian learning stable, a wealth of evidence suggests that ho-
meostatic mechanisms are also employed by neural networks
to maintain stability. In particular, a neuron or a network of
neurons has some preset activity level that is dynamically
maintained. For example, chronically reducing inhibition in
cortical networks initially raises firing rates, but over a pe-
riod of days firing rates can return to the control level.” Simi-
larly, as shown in Ref. 6, interactions among neurons in the
primary motor cortex can be strengthened at the beginning of
adaptation, but usually return to the original level after a few
days. Another example is the heterosynaptic plasticity (HSP)
recently reported in Ref. 7, in which LTP or LTD introduced
in one synapse lead to opposite changes in other synapses on
the same postsynaptic neuron, and during the process the
total synaptic conductance changes little. In this sense, HSP
can prevent the phenomenon of runaway synapses intro-
duced by Hebbian learning, and thus represents a homeo-
static mechanism stabilizing neural activities. At present,
however, the fundamental feature(s) of a neuron or a network
of neurons being dynamically maintained is still not clear.
Furthermore, how this mechanism interacts with other regu-
latory mechanisms is not well understood either.

This study is motivated by the two recent experimental
discoveries on Hebbian and homeostatic mechanisms: STDP
and HSP. A question of interest is, if both STDP and HSP
take place in a neural circuit, how do they interact with and
possibly complement each other so as to modify the neural
circuit for learning and adaptation? To be as general as pos-
sible, we shall investigate the effects of STDP and HSP on
randomly connected neural networks. At the present, how-
ever, the molecular mechanism underlying LTP/LTD is still
not well understood, hindering a universal formulation of the
STDP rule. To overcome this difficulty, we shall employ a
theoretical analysis based on stochastically dynamic pro-
cesses and the Fokker-Planck paradigm to propose an imple-
mentation of STDP that is compatible with rate-based BCM
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and is also able to generate realistic synaptic distributions.
Our study shows that (1) STDP alone produces broadened
unimodal or bimodal weight distributions, weak competition
between recurrent connections in networks, and activity-
induced learning; (2) Networks trained using STDP alone
cannot produce realistic activities, e.g., past sensory experi-
ence is maintained forever if it is no longer activated; (3)
HSP can induce strong competition between sensory experi-
ences; (4) HSP and STDP operating on different time scales
can complement each other to generate more realistic net-
work activities.

In Sec. II, we detail our physical theory based on the
Fokker-Planck paradigm to model STDP and HSP. Section
IIT presents results of extensive numerical computations us-
ing random neural networks. A discussion is given in Sec. IV.

Il. PHYSICAL THEORY OF SYNAPTIC PLASTICITY

The learning rule studied in this paper consists of two
components—STDP and HSP. STDP is local and homosyn-
aptic in the sense that only the synapses experiencing the
spiking activities are modified, which can be modeled as

Ag=G(Atlg), (1)

where Ag is the percentage change in synaptic conductance g
due to a pair of pre- and postsynaptic spikes separated by
time Ar (positive At implies that presynaptic spike precedes
postsynaptic spike and negative one for the reverse order).
On the other hand, HSP is nonlocal and heterosynaptic in the
sense that modification of one synapse may be accompanied
by changes in other synapses on the same neuron. Based on
the observation in Ref. 7, our idealized HSP rule reads

dg = _
Thsp =~ &+ Sgouls ()

where Tygp 1S the time constant of HSP, g is the sum of
presynaptic conductances of one neuron, and gy, i8 the de-
sired value of the total conductance. In reality, STDP and
HSP operate on different time scales: minutes and hours,
respectively.

A. Theoretical formulation

Consider one typical synapse connecting two neurons in
a network and its weight changes according to STDP/HSP
and the pre-/postsynaptic spike timings. Since inputs from
thousands of presynaptic neurons cause the firings of the
postsynaptic neuron, weight changes of the synapse under
consideration can be modeled as a random walk with other
synaptic inputs as background noise. In the limit of small
|Ag|, which is the case of STDP/HSP, the probability of ob-
serving a synaptic weight g at time ¢, or P(g,7), can be de-
scribed by the following Fokker-Planck equation:g_]0

dP(g,1) _

9 1 &
pan %[A(g)P(g,t)] + Eg[B(g)P(g,t)], (3)

where the drift A(g) and the diffusion B(g) are
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A(g)= | AgPy(Aglg)dAg,
4)
B(g)=| Ag’P,(Aglg)dAg,

—00

and P,(Ag|g) is the probability for the event g— g+Ag.
Note that P(g,t=c°) is confined to the region [0, gy0,] due to
the approximate reflecting boundary conditions imposed. Be-
cause the amplitude of Ag is small, the diffusion term B(g) is
small. As a result, the final P(g,7=o) will concentrate near
where the drift term A(g) vanishes.

To find A(g), one can write Ag=Ag,+Ag,, where Ag, is
caused by STDP and Ag, is caused by HSP. The interaction
between these two drift forces is weak due to the fact that
they operate on different time scales. Thus, it is natural to
assume these two drift forces are independent (this is true for
the asymptotic solutions). We have

Ag) = f f (Agy +Agy) P (Ag,Agy|g)dAg dAg,

= f Ag P, (Ag|g)dAg, + f Ag,P,(Agslg)dAg,

=A(g) +Ax(g), (5)

where A;(g) and A,(g) are the drift terms due to STDP and
HSP, respectively.

B. A,(g) for different implementations of STDP

Substituting Eq. (1) into the expression of A;(g) in Eq.
(5), we obtain

A(g)= f G(At|g)P,(At]g)dAt, (6)

where P,(At|g)=P,(Ag|g)G'(At|g) is the probability that
the effective pair of pre- and postsynaptic spikes is separated
by time Ar at a synapse with conductance g. Two basic ques-
tions that determine G(At|g) and P,(At|g) are (1) whether
relative change in synaptic weight due to a pair of spikes
depends on the weight itself*”'" and (2) how pre- and
postsynaptic spikes in long spike trains pair together to in-
duce the change.u’13 It is possible, however, to address these
two questions by investigating the functional consequences
of all possible answers and examining how well these con-
sequences are consistent with existing knowledge, e.g., broad
conductance distributions [Fig. 1(e) in Ref. 14 and Fig. 1(b)
in Ref. 15] and dependence on firing rates (the BCM rule?).
For the first question, two types of STDP learning rules
have been proposed in the literature. The first type is weight-
independent (or additive) STDP, which can be modeled as

c, e Ar>0,

Ag =G(Arg) =1 *
81 ( |g) {—CdeAt/T‘[, At<0,

(7
where ¢, ¢4 7, and 7, are constants. If g is outside the
region of [0, gn.] due to the learning process, g is forced to
be boundary values. The second type is weight-dependent (or
multiplicative) STDP, mathematically represented by
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FIG. 1. Pairing rules. (a) All-to-all. (b) Nearest neighbor. (c) Latest
neighbor. The solid line represents LTP pairs and the dotted lines are for
LTD pairs.

cpe_Al/TP(l -g2), Atr>0,
- cdgeA’/Td, Ar <0,

Agy=G(Arlg) = { (8)
where g is the normalized value with respect to a constant
8max> Cp» Ca» Tp» and 7, are constants. The following param-
eter set is used in numerical simulations: cp=0.001, cy
=0.003, and 7,=7,=20 ms.

Many pairing rules have been proposed to address the
second question. Among them, all-to-all and nearest-
neighbor pairing rules have been widely used. The all-to-all
rule assumes every presynaptic spike interacts with every
postsynaptic spike, as shown in Fig. 1(a). An alternative to
the above simple scheme is a nearest-neighbor interaction, in
which only the first presynaptic event after a given postsyn-
aptic event can produce depression, and only the first
postsynaptic spike after a given presynaptic event can pro-
duce potentiation, as shown in Fig. 1(b). There could also be
other forms of pairing rules, such as postsynaptic-centric or
presynaptic-centric rules. In this study, we propose a latest-
neighbor pairing rule, which is motivated by a dynamical
model of long-term synaptic plasticity.16 In particular, build-
ing on the current understanding of the molecular mecha-
nism of synaptic plasticity, Abarbanel ef al. proposed in Ref.
16 that synaptic plasticity is the result of interactions be-
tween two processes: one due to presynaptic activities and
another due to postsynaptic activities. The prediction of this
model has been shown to be in good agreement with many
experiments. If we assume that the idea of having two pro-
cesses is correct, and also assume the presynaptic (postsyn-
aptic) process will be reset by any new presynaptic (postsyn-
aptic) event, then at any time instant only the latest-neighbor
pairs of pre- and postsynaptic spikes contribute to the plas-
ticity, because the current states of the pre- and postsynaptic

Downloaded 05 Jun 2006 to 129.219.51.205. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



023105-4 Zhu et al.
processes are determined totally by these two spikes, respec-
tively. This pairing rule is illustrated in Fig. 1(c).

Next, we will consider six possible implementations of
STDP based on two possible G(At|g) and three possible
P,(At|g) due to the three pairing rules discussed above. The
analysis of weight-dependent G(At|g) with latest-neighbor
pairing rule will be given in detail, while other implementa-
tions will be discussed briefly.

1. Weight-dependent STDP with latest-neighbor
pairing rule

Two factors contribute to P,(Af|g). One is the causal
contribution due to the direct and indirect interactions be-
tween the presynaptic and postsynaptic neurons, which de-
pend on the details of the network model. Another is non-
causal due to the random coincidence of the two spike trains.
For the latest-neighbor pairing rule, the noncausal factor can
be found as follows. Suppose the interspike intervals (ISIs)
of pre- and postsynaptic spike trains are independent of each
other and follow the distribution ®,(7) and ®,(T), respec-
tively. As shown in Fig. 1(c), all pairs of pre- and postsyn-
aptic spikes that lead to LTP can be found by looking at each
interspike interval (ISI) in the presynaptic spike train: the
pairs connecting the leading presynaptic spike with each of
the postsynaptic spikes within the ISI are the LTP pairs.
Similarly, all pairs of pre- and postsynaptic spikes that lead
to LTD can be located by examining each ISI in the postsyn-
aptic spike train, i.e., the pairs connecting the leading
postsynaptic spike with each of the presynaptic spikes within
the ISI are the LTD pairs. Thus, to find the probability of
observing a latest-neighbor pair with positive Az, we first
consider an ISI with duration T in the presynaptic spike train.
Because the pre- and postsynaptic spikes are not correlated
(since we are examining the noncausal factor), all pairs with
positive Ar<<T have equal probability that is proportional to
the product of the pre- and postsynaptic mean firing rates.
Pairs with Ar>T will have zero probability. Thus, we have

prob(A#|0 < At < T) =N\,

©)
and prob(Af|At=T) =0,

where \; and A, are the mean firing rates of pre- and postsyn-
aptic neurons, respectively. Averaging over all possible ISIs
in the presynaptic spike train yields

o)

At
0 Ar

= )\i)\ofw CDl(T)dT (10)
At

The probability for the case of negative Ar can be obtained
similarly,

prob(At|Ar < 0) = )\,-)\OJ ® (T)dT. (11)
|A]

Figure 2 illustrates this result for the case of Poisson spike
trains.
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FIG. 2. Probability prob(A¢). Points are obtained from simulation with two
Poisson spike trains (\;=25 Hz, A,=100 Hz). The solid curve is the theo-
retical prediction.

For STDP with latest-neighbor pairing rule, we thus
have

oo

P(Atlg) ~ C(Adg) + AN, f (1), (12)
o

where ®(T)=®d;,\(T) if Ar>0(<0); the term C(Ar|g) rep-
resents the causal factor, and the second term the noncausal.

If both C(At|g) and ®(T) are known, we could solve for
P(g,1) from Eq. (3). However, C(At|g) and ®(T) also de-
pend on the weight distribution P(g,f). Given an initial
weight distribution P(g,7=0), synaptic weights in a large
network may evolve in a complicated way and, hence, Eq.
(3) has to be solved self-consistently. To gain insight into the
problem, we assume, with time-invariant external inputs to
the network, the random process can achieve an asymptotic
steady state, at which C(At|g) and ®(T) for each network
neuron are invariant (Assumption I). Furthermore, we as-
sume spike trains are Poisson (Assumption II),

O(T) =Ne ™M, (13)

where N is the firing rate of the pre- or the postsynaptic
neuron. To obtain a simple form for C(At|g), we also assume
there is only one-way connection and no other indirect con-
nections (e.g., common inputs) between two neurons exist
(Assumption IIT). We will relax these three assumptions and
discuss the corresponding consequences.

Under Assumption III, we have C(At|g)=0 if Ar<0,
since the pre- and postsynaptic events are not correlated, and
C(At|g) #0 if Ar>0, representing the effect that a presyn-
aptic spike always enhances the probability of postsynaptic
firing. Although the shape of C(At|g) depends on the details
of the system model, in general, C(At|g) is small and can be
assumed to be proportional to g and )\,».]O The integration of
C(At|g) inside the STDP learning window is
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FIG. 3. (a) A (g) for =0.02,0.2,0.4, respectively (from left to right). Input
and output firing rates are 5 Hz. (b) Final weight distribution P(g) due to
A,(g) in (a) estimated from 200 runs. (c) Qualitative consistency with BCM.
The drift term A,(g), or the expected value of Ag, depends on output firing
rate \,. Three curves correspond to different initial synaptic weights (from
top to bottom, g=0.25,0.3,0.35). (d) The dependence of g" on \;,=(\;
+1/7,)/ (N, +1/7).

f C(At|g)e*"dr =~ \ag, (14)

where 7=7,=7, and « is a small positive constant propor-
tional to the correlation between the input and the output
spike trains, or equivalently, to the correlation among all in-
puts. This is reasonable considering that dozens of coincident
presynaptic spikes are needed to evoke a postsynaptic firing
and more correlated inputs result in higher probability of
postsynaptic firing and hence higher correlation between pre-
and postsynaptic activities. These considerations lead to

Ailg)

1 87
)\l)\()

)8
N+ Um, N, ) N+ 1Ty

Cp(l _g)(

where the first term on the right-hand side of the equation
represents the strength of LTP, and the second the LTD.
The dependence of A;(g) on input correlation is illus-
trated in Fig. 3(a) for three values of a. Let g* be the point
where LTP and LTD are balanced, i.e., A;(g")=0. We see that
the position of g* moves to the right as « increases; so does
the final weight distribution [Fig. 3(b)]. This indicates that
the correlation between inputs can be encoded into the syn-
aptic strength due to the STDP learning rule, similar to other
STDP implementations.&9 If the constraint on connections is
removed, e.g., network neurons can have recurrent connec-
tions and/or common inputs, C(At|g) will become more
complicated. For example, C(At|g) # 0 even if Ar<0. As a
consequence, the integration of C(At|g) inside the STDP
learning window can be positive or negative for different
neurons in the network, which results in different LTP/LTD-
balancing positions for different synapses. Especially for the
case of two neurons with recurrent connections, competition
between the two synapses can be induced. As we will show
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later in a simulation example, this effect becomes more and
more evident as the correlation among external inputs in-
creases.

To find the dependence of A(g) on input and output fir-
ing rates, we assume a=0 in Eq. (15) and obtain

. { cd()\,»+1/7')]_1
g =1t (16)
cp(N, + 1/7y)

which suggests that synaptic weights are also sensitive to
input and output firing rates, as shown in Fig. 3(d). If the
distribution of neuron firing rate is broad, the weight distri-
bution in the network must be broad, too [unlike the distri-
bution in Fig. 3(b)]. Although the diversity in cross correla-
tions between pre- and postsynaptic neurons can broaden the
weight distribution too, it is not likely to be the major cause
because neurons in reality are only weakly correlated. The
diversity of the firing rate is partially caused by induced
competition between neurons, which can be understood as
follows. If the firing rate of the postsynaptic neuron (excita-
tory) increases, for example, g will increase according to Eq.
(16) and at the same time local inhibition will be strength-
ened due to the increased excitation to the local inhibitory
neurons. The increased local inhibition will lower the firing
rates of local excitatory neurons. The lost excitation of
postsynaptic neuron will be less than that of the presynaptic
neuron because of increased g, causing the ratio A;/\, to
decrease and g to increase further. As a consequence of this
chain reaction, one neuron becomes less active because an-
other become more active, naturally introducing neural com-
petition. It is also important to note that the STDP with
latest-neighbor pairing rule is compatible13 with rate-based
Hebbian learning rules. For example, the BCM rule® has the
form

rgil—f =NN(N\, = 0), (17)
where T, is a time constant, and 6 is a variable threshold used
to induce and stabilize LTP/LTD. In general, it is assumed
that 6 depends on the activity of the postsynaptic neuron and
increases faster than the postsynaptic firing rate to prevent g
from having unrealistically large values. To compare STDP
with BCM, we can rewrite Eq. (15) as

d
E8 _\NF(N,6),
dt
(18)
Ca8
o= —4E _(\,+1/7) - Ur,
c(l1—g) r ¢

where F(x,y)>0 for x>y, and F(x,y)<O0 for x<y. If \, is
fixed, the threshold 6 depends on g. As shown in Fig. 3(c), 6
increases with g. Because increasing g can cause only a
slight increase in A,, 6 will increase much faster than A,.
Note that the constraint g,,,, and the term (1—g) in Eq. (8)
are not essential for weight-dependent STDP, but they ensure
a faster convergence. It can thus be seen that this learning
rule is able to induce LTP/LTD and stabilize synaptic modi-
fications as BCM, but with higher temporal accuracy. Al-
though spike trains in reality are not perfectly Poissonian
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(e.g., having refractory phase), the above general conclusions
should still hold qualitatively.

Assumption I in our model is that an asymptotic steady
state can be achieved under invariant external inputs to the
network. It is not clear how good this assumption is. Thus,
we have carried out numerical simulations using a random
network model, with results in good agreement with our the-
oretical analysis. The simulation results will be shown in
Sec. III.

2. A{(g) from alternative implementations of STDP

In the following, the correlation between pre- and
postsynaptic neurons is assumed to be zero since it is small
in reality. Similar to the derivation of Eq. (10), the probabil-
ity that pre- and postsynaptic spikes are separated by At for
the all-to-all rule is

prob(Af) = N\,. (19)
For the nearest-neighbor rule, the probability is the reverse

of the one for the latest neighbor,

o0

prob(At|At > 0) = )\,-)\of
|Ar]

®,(T)dT.

(20)

e}

prob(Az|Ar < 0) = )\[)\of
|

®,(T)dT.

For weight-independent STDP paired with the all-to-all rule,
we have

A(g)

—— =C,T,— C Ty, 21

)\i)\o p'p d'd ( )
which implies that all synapses are either depressed to zero
or potentiated to a maximum value depending on the sign of
¢,T,— 47, This appears unrealistic.

For weight-independent STDP paired with the nearest-

neighbor rule, we have

Al(g)_ Cp _ Cq
NN, )\0+1/T,, )\l-+l/7'd’

(22)

which also implies an unrealistic bimodal distribution.
For weight-independent STDP paired with the latest-
neighbor rule, we obtain

Al(g)= Cp _ Ca
NN, N+ T, N+

(23)

which also implies an unrealistic bimodal distribution.
For weight-dependent STDP paired with the all-to-all
rule, we find

-1
g*=[1+%] , (24)
CpTy
which does not depend on the firing rates. So, this implemen-
tation is not compatible with rate-based Hebbian rules such
as the BCM rule.
For weight-dependent STDP paired with the nearest-
neighbor rule, we have
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0/8 o

FIG. 4. Influence of HSP on A(g). (a) The drift term A(g) for \,=X\,
=1 Hz,5 Hz, respectively. @=0.02, 735p=1000 s, g,05/N=0.15. The dotted
curve is A (g) (STDP) with \; ,=5 Hz. (b) P(g) due to A(g) in (a) is esti-
mated from 200 runs.

. A, +1/7) |7
g'={l+—M( 7)] (25)
c,(N+1/7y)

which implies that the larger A, is, the smaller g*. This con-
tradicts the BCM rule.

There can be many other possible implementations of
STDP. Here, we only wish to emphasize that any meaningful
implementation should be consistent with existing knowl-
edge. It can be seen that some implementations, such as ones
discussed above, are not realistic. In the rest of this paper,
only weight-dependent STDP with latest-neighbor pairing
rule will be considered.

C. A,(9) and A(g)
The drift force caused by HSP can be written as

. o
Ay(g) = @[%‘;—1 - f gP(g,t= oc)dg] , (26)

where N is the total number of input synapses. We see that
A,(g) does not depend on g in the asymptotic state since the
second term on the right-hand side is the mean, which does
not depend on g. For simplicity, we write A,=A,(g).

Under the three assumptions made in Sec. II B 1, A;(g)
is given by Eq. (15). Finally, we have

Alg)
)\i)\o

1 %) _Ca8 Ay (27)

+ - + .
i+ Tp )\g )\0+ Ta )\i)\()

= Cp(l - g)( N
Comparing Egs. (15) and (27), we see that A(g) is approxi-
mately a shifted version of A;(g), as shown in Fig. 4(a). The
amplitude of this shift is proportional to A,/N,\,. If A, is
fixed and \;\, is large, i.e., sensory inputs are activated, the
influence of HSP can be negligible. If \;\, is small, i.e., the
neuron undergoes spontaneous activities, the influence of
HSP cannot be neglected and the mean of the weight distri-
bution is shifted.
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Another important feature that HSP introduces is the
competition between inputs. Suppose there are two groups of
inputs: one is strong and another is weak. The relative
strength may be induced by different firing rates, the fre-
quencies of activation, correlations, and so on. According to
the relative strength of their drift forces produced by STDP,
the additional drift force produced by HSP will be allocated
to the two groups. That is, the two groups of inputs have to
compete for the total available weight or the control of the
neuron. Thus, we see that HSP naturally introduces compe-
tition among neurons.

lll. NUMERICAL SIMULATIONS

Our model network consists of 240 excitatory:60 inhibi-
tory neurons. The excitatory:inhibitory ratio is set to be 4:1,
representing the statistics of neurons in local neural networks
of brain. The network receives inputs from 100 excitatory
neurons that generate Poisson spike trains. The probability
that a neuron is connected with another through a synapse is
0.3, which is a little higher than values obtained by many
experimental studies. For example, it was shown in Ref. 17
that the connection rate among thick tufted layer 5 neurons
in rat visual cortex is about 11.6%. Although the connection
rate of 0.3 might be higher than reality, the equivalent con-
nection rate after learning should be much lower because
many synapses during the learning process could be largely
depressed. Each network neuron is modeled by the following
set of ordinary differential equations:18

dv 5
=~ (1781+47.58V+33.8V)(V - 0.48)

—26R(V+0.95) +Ig+1,
(28)

dR
e (1/7p)[- R+ 1.29V +0.79 + 3.3(V + 0.38)?],

where V is the membrane potential, R is the recovery vari-
able with time constant 7,=5.6 ms for excitatory neurons
and 2.1 ms for inhibitory neurons, and current /, is due to the
synaptic inputs from neurons modeled in the network. The
background current / to each neuron is modeled as synaptic
current due to uncorrelated Poissonian spike trains. In simu-
lation, 7 results in a firing rate of about 1 Hz (7 Hz) for
excitatory (inhibitory) neurons when I¢=0. These equations
are a simplified version of the Hodgkin-Huxley equations for
mammalian cortical neurons, being able to produce a good
approximation to spike shapes, firing rates, and bursting be-
havior throughout the physiological range. Each synapse is
modeled by the following set of ordinary differential
equations: 18
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d
d—{: (1 7g)[= f + Hys(V e — Q)]
(29)
das
E = (I/Tsyn)(_ S+f)a

where f is an intermediate variable for the synaptic potential
S, Tyn is the time delay of the synapse, Hvs(x) is the Heavi-
side step function,

if x>0,

i
Hvs(x) = {0 ifx<0. (30)

Vire 18 the membrane potential of the presynaptic neuron, and
) is the threshold for synaptic conductance change. The cur-
rent into the postsynaptic neuron is Ig=-gS(V~-E,y,), where
E, is the synaptic reversal potential, g controls the synaptic
conductance, and V is the postsynaptic membrane potential.
In our simulations, g,.x=1.0 (i.e., 1000 pS). For excitatory
synapses, we set 7,,=2.0 ms, =-0.3 (i.e., =30 mV), and
E,=0. For inhibitory synapses, we use 7,,=0.5 ms, ()
=-0.4 (i.e., =40 mV), and E,,=-0.75 (i.e., =75 mV). More
details about the parameter selection can be found in Ref. 18.
Using this parameter set of neurons and synapses, the total
current into a postsynaptic neuron due to one excitatory pr-
esynaptic action potential (AP) is 1.5 times of the one due to
inhibitory AP. The networks are in random state with aver-
aged firing rate for excitatory neurons of 1 Hz and inhibitory
ones of 7 Hz when the input neurons are silent; E-E
(excitatory-excitatory) synapses are initialized by a uniform
distribution between 0 and g,,,, all other types of synapses
are g..« and are not plastic.

While there are well-established learning rules for E-FE
synapses, learning rules involving inhibitory neurons have
not been well established. Thus, in this study, only E-E syn-
apses are plastic; all others are assumed to be constant. In
reality, STDP and HSP operate on different time scales. To
make simulation feasible, however, we assume a smaller
time scale, mygp=10 s, for HSP in Eq. (2).

A. Self-organization

Although sensory experience is important to refining
neural circuits, spontaneous activities are believed to be criti-
cal to the circuit formation during early developrnent.19 So,
we first study how STDP learning rules sculpt the neural
network from spontaneous activities. In this simulation,
E-FE synapses are initialized by a uniform distribution be-
tween 0 and g, as shown in Fig. 5(a). All other types of
synapses are gn... Lhen, the synapses between excitatory
network neurons are allowed to undergo self-organization
due to the spontaneous activities while input neurons are
kept silent. The firing rates of network neurons become ap-
proximately invariant after 60 s. Simulation runs until
1000 s, at which steady state is assumed to be achieved. As
shown in Fig. 5(b), the final distribution of network synaptic
conductances has a peak at g=0.25, which is consistent with
the prediction on the single postsynaptic neuron model by
the Fokker-Planck theory with zero correlation [Eq. (16)].
This can be understood since network neurons are weakly
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FIG. 5. Self-organization of network excitatory synapses through STDP. (a)
The initial distribution of E-E synaptic conductance. (b) The final distribu-
tion of E-E synaptic conductance with a peak at 0.25.

correlated and inputs to each neuron should be Poissonian
during spontaneous activities. This result is quite similar to
the one based on the single postsynaptic neuron model,® in
which multiplicative noise is added in the STDP learning
rules to mimic experimental observations.

B. Correlation-based learning, dependence
on firing rate, and neural competition

In this simulation, E-E synapses are initialized by a uni-
form distribution between 0 and g, and all other types of
synapses are gn... After the first 100 s, during which the
network undergoes spontaneous activities with input neurons
at silence, the input neurons are activated at 30 Hz. Firing
rates of network neurons become approximately invariant
after 1000 s. The simulation runs until 2000 s, at which we
assume the learning process achieves the asymptotic steady
state.

Figure 6(a) shows the firing rate distribution of the ex-
citatory network neurons with independent inputs, or C=0.
Roughly speaking, network neurons can be divided into two
groups according to firing rates, higher or lower than 1 Hz.
The total weights of afferent synapses on neurons from dif-
ferent groups are also different, corresponding to the two
groups shown in Fig. 6(b). This is the result of competition
between neurons. The dependence of g on firing rate is
shown in Fig. 7 (dots). A closer examination shows that the
data points, obtained from neurons with firing rate higher
than 1 Hz, appear close to the theoretical prediction [Eq.
(16)] (not shown in this figure). The small deviations are
mainly caused by the fact that the ISI distributions are not

(a) (b)

60
150

340

=100 T

o
0
50 2 -1 1
log(%)
0
0 10 20 30 40 20 30 40 50
A (Hz) b

FIG. 6. Simulation 2. Distributions of firing rate and summation of weights.
(a) Histogram of firing rates of excitatory network neurons. The inset plot is
on a semilogarithmic scale. (b) Histogram of X, the total E-E synaptic
weights converging on one excitatory network neuron. In simulation, inputs
are independent with firing rate 30 Hz.
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0.75

0.25

FIG. 7. Dependence of g on firing rate. The solid curve is given by Eq. (16)
with N, =(\;+1/7,)/(\,+1/7,). The dots are obtained in a numerical
simulation.

perfectly exponential (with refractory period), while Eq. (16)
assumes they are perfectly exponential. Figure 8(a) shows
the results of weight distributions for uncorrelated inputs.
The broad weight distributions are due to the broad firing
rate distribution. The two peaks in the weight distribution of
network synapses signify weak competition between net-
work synapses. This may not be surprising if one realizes the
existence of reciprocal connections between a pair of neu-
rons. If the forward synapse is strengthened (or weakened),
the backward synapse must be weakened (or strengthened) at
the same time since changes in both synapses are induced by
the same pair of spikes. Repeating such experiences can fi-
nally result in different balancing positions for the reciprocal
connections. That is, the strength ratio of LTP and LTD in
Eq. (15) is different for the pair of synapses, resulting in
different values for g". Figures 8(b) and 8(c) show the results
for inputs with increasing correlations. Apparently, the mean
of input conductances is proportional to the correlation be-
tween inputs, as predicted by the theory [Eq. (15)]. For net-
work synapses, although the shapes of their distributions are

(a) C=0 (b) C=0.09 (c) C=0.36

Network
Synapses
P(g)

Input
Synapses
P(9)

FIG. 8. Learning input correlations. Duration of the simulation is 2000 s.
The firing rate of inputs is 30 Hz. (a) Correlation among inputs is C=0.
Upper panel: the final distribution of E-E network synaptic conductance.
Lower panel: the final distribution of E-E input synaptic conductance.
(b) €=0.09. (c) C=0.36.
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Network Input #1 Input #2
(a) (b) C=0.09 (c) C=0.36
C
o
(d (e) C=0.25 (f) C=0.25
C
o
0 0.5 1 0 05 1 0 0.5 1
Conductance

FIG. 9. Cooperative learning. Upper panels correspond to the case where
there are two independent groups of external inputs with correlations C
=0.09 and C=0.36, respectively. Lower panels are for the case where two
independent groups of external inputs have C=0.25 and C=0.25, respec-
tively. They have the same firing rate of 30 Hz. (a) The final distribution of
E-E network synaptic conductance. The final distribution of E-E input syn-
aptic conductance in group 1 (b) and group 2 (c).

slightly different from the one due to spontaneous activities,
it can still be seen that the mean is proportional to the input
correlation. The distance between the two peaks also in-
creases as input correlation increases as a result of increased
competition.

C. Cooperative learning

Synapses are initialized by using distributions obtained
in simulation 1. Duration of the simulation is 120 s. Figure 9
shows the result for the cases where there are two indepen-
dent input groups. In the first case, the cross correlation is
¢=0.09 for group 1 and ¢=0.36 for group 2. For the second
case, the cross correlation inside each group is the same,
¢=0.25. The firing rate of input spike trains is 30 Hz. Com-
paring with Fig. 8, it can be seen that there is cooperative
learning between the two groups. For example, without co-
operative learning, the two groups in the first case (upper
panels) should have different means. In particular, the mean
value of group 1 in the first case would be smaller than that
of the group in the second case since it has weaker correla-
tion (0.09<0.25).

D. Synaptic competition

Synapses are initialized by using distributions obtained
in simulation 1. In simulations, the inputs are divided into
two groups. The first group is activated during the first 40 s,
while the second is activated during the second 40 s. The
simulation results for the network trained by STDP only are
shown in the middle of Fig. 10. It can be seen that the means
of the final distributions of two groups are the same, similar
to the case in Fig. 9. The distribution of the first group is
unchanged during the second 40 s because its firing rate is
zero and STDP never updates the weights. This is not real-
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FIG. 10. Competition between inputs. Top: the network receives two groups
of inputs. Group 1 is on during the first 40 s, while group 2 is on during the
second 40 s. Upper three panels: final distributions using STDP only. Lower
three panels: final distributions using both STDP and HSP.

istic since memory can be forgotten and new sensory expe-
rience can overwrite the old one. Thus, competitive learning
is lacking in STDP.

The simulation results for the network trained by STDP
and HSP are shown in the bottom of Fig. 10, where g,q.
=30 is used. We see that the shapes of the distributions are
similar to the ones trained by STDP only. The only differ-
ences are the pronounced double peaks in network synapses
and the suppression of the first group of input synapses, as
expected due to the competition of limited total weights. Ap-
parently, HSP enhances the competition between network
and input synapses, regardless of whether they are activated
or not. At the same time, HSP does not prevent STDP learn-
ing because of the different time scale of these two learning
rules.

IV. DISCUSSION

Because of our limited understanding of the mechanisms
for LTP/LTD, many possible implementations of STDP
have been proposed. For example, STDP has been assumed
to be weight dependent, weight independent, or a combina-
tion of both;”® the integration of STDP may use all-to-all
pairing, nearest-neighbor pairing, or latest-neighbor pairing,
etc. Our theoretical and numerical studies at the network
level reveal that weight-dependent STDP with the latest-
neighbor pairing rule can generate stable and more realistic
distributions of synaptic conductance, induce correlation-
based learning and strong competition among network neu-
rons, and is compatible with rate-based Hebbian rules.

The major difficulty in the current theoretical analysis
using the Fokker-Planck theory lies in the fact that the exact
form of causal factor C(At|g) in Eq. (12) is unknown for
recurrent networks. To overcome this difficulty, usually some
restrictions have to be made upon the network models. For
example, Refs. 8—10 use a nonrecurrent network model,
which has a simple form of C(At|g), similar to this paper.
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Reference 21 studies a recurrent network in synchronized
state, e.g., 3-cycle state, which also has a simple form of
C(At|g) with values at a few discrete positions. In this paper,
we start from nonrecurrent networks and solve the Fokker-
Planck equation in a way similar to Refs. 8—10. Based on
this closed-form solution for nonrecurrent networks, we dis-
cuss, qualitatively, how recurrent connections would change
the form of C(At|g) and weight distributions, and then pro-
vide supporting evidence from numerical simulations.

The closed-form solution for nonrecurrent networks also
helps us in studying the consequences of different STDP
pairing rules and how compatible they are with existing
knowledge, similar to Ref. 13. Here, it should be noted that
the nearest-neighbor rule suggested in Ref. 13 is different
from the latest-neighbor rule proposed in this paper (and also
different from the nearest-neighbor rule discussed in this pa-
per). The nearest-neighbor rule in Ref. 13 assumes there is a
calcium saturation in postsynaptic neuron, so the first suc-
ceeding postsynaptic spike overrides the effect of subsequent
spikes. For example, there is no second LTP pair in Fig. 1(c)
according to this rule. If this saturation does exist, then the
question is when the dynamics of a postsynaptic calcium
channel recovers from the saturation. Implicitly assumed by
the rule of Ref. 13, it recovers suddenly and completely right
after the next presynaptic spike. In fact, as suggested in Ref.
22, saturations exist in both pre- and postsynaptic parts and
the dynamics recover from saturations exponentially with
different time constants. So, in this sense, the latest-neighbor
pairing rule with exponentially recovered saturations at both
pre- and postsynaptic sides is more realistic. As argued in
Ref. 13, on the other hand, the exponentially recovered satu-
ration has little effect on the properties of plasticity rules. So,
for simplicity, we have proposed a plain latest-neighbor pair-
ing rule for STDP in this paper. Further discussion about the
STDP pairing rules can be found in the literature, e.g.,
Refs. 23-25.

As a homosynaptic rule, STDP assumes that events hap-
pening in one synapse will not influence directly the other
synapses targeting on the same postsynaptic neuron. This
homosynaptic nature results in the lack of competitive learn-
ing between synapses converging on one neuron. In situa-
tions where strong competition is needed, e.g., developing
selectivity, some heterosynaptic mechanism is necessary.7
HSP operates on a time scale different from STDP, which
allows the coexistence of the activity-induced learning and
competitive learning. Our results demonstrate that combining
STDP and HSP can produce a biophysically plausible learn-
ing rule that better characterizes the learning mechanism of
the brain.

Apparently, the plasticity model studied in this paper is
simplified and idealized. In reality, there are not only much
more complicated heterosynaptic interactions at work,”?° but
also complicated homosynaptic dynamics. For example,
STDP may require multiple pairings and have complicated
pairing rules, take place with delays, and take different prop-
erties at different locations on the dendritic tree.”’ Further-
more, the details of STDP largely depend on the system be-
ing studied. While some of these assumptions made in this
study will change the weight distributions, such as pairing
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rules, some will not. For example, an action delay of STDP
much shorter than the mean interspike intervals would not
change the learning process. Even when they are compa-
rable, its effect should be only a delay on the learning pro-
cess and have little influence on the asymptotic weight dis-
tributions. It will be interesting to investigate the effect of
network structure on weight distributions.
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