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ABSTRACT
Internet traffic is bursty and network servers are often overloaded
with surprising events or abnormal client request patterns. This
paper studies a load shedding mechanism called selective early re-
quest termination (SERT) for network services that use threads to
handle multiple incoming requests continuously and concurrently.
Our investigation with applications from Ask.com shows that dur-
ing overloaded situations, a relatively small percentage of long re-
quests that require excessive computing resource can dramatically
affect other short requests and reduce the overall system through-
put. By actively detecting and aborting overdue long requests, ser-
vices can perform significantly better to achieve QoS objectives
compared to a purely admission based approach. We have pro-
posed a termination scheme that monitors running time of requests,
accounts for their resource usage, adaptively adjusts the selection
threshold, and performs a safe termination for a class of requests.
This paper presents the design and implementation of this scheme
and describes experimental results to validate the proposed approach.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Information Storage and Retrival—
Online Information Services

General Terms
Performance, Design, Experimentation

Keywords
Internet services, Load Shedding, Request Termination

1. INTRODUCTION
Busy Internet service providers often use a service-level agree-

ment in terms of response time and throughput to guide perfor-
mance optimization and guarantees. It is challenging to satisfy
performance requirements of requests at all times because Inter-
net traffic is bursty, and resource requirement for dynamic content
is often unknown in advance. Even with over-provisioning of sys-
tem resources, a web site can still be overloaded in a short period of
time due to flash crowds under an unexpected high request rate [7,
18]. Sometimes an abnormal change in the characteristics of re-
quest traffic may also cause service overloading. For example, an
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unexpected increase in the percentage of long requests or heavy re-
quests that require a large amount of processing time can cause the
slowness of the overall system performance. This is because long
requests can take over most of the system resource even when the
request rate is relatively low.

Previous work has been using admission control [16, 9, 31, 34,
36, 6] and adaptive service degradation [3, 10, 36] to curb response
time spikes during overload. Admission control improves the re-
sponse time of admitted client requests by rejecting a subset of
clients. Admission control techniques include using performance
feedbacks [6, 36], bounding the incoming request queue length [16,
31], and policing TCP SYN packets [34].

In this paper, we explore a new load shedding mechanism that
monitors request resource usage and terminates overdue long re-
quests after they have been admitted to the system. Since a web site
typically has an expectation to deliver results within a soft dead-
line, long requests passing the deadline often have minimal value
for end users. In addition, an excessive accumulation of long re-
quests in a server can significantly reduce the success chance of
other short requests completed within a deadline. By terminating
selected overdue long requests, the system can accommodate more
short requests during load peaks and thus increase the throughput.
Certainly not every request can be terminated safely. In this pa-
per we are targeting a class of requests in which the termination
of an individual request does not affect other requests. Examples
of such applications include read-only index matching service in
search engines. Our scheme called SERT monitors running times
and resource usage of requests, adaptively adjusts the termination
threshold, and aborts selected long requests safely.

We have implemented our scheme in the Neptune clustering mid-
dleware for network services [31, 29]. An application can link our
library with little or no code modifications in deploying selective
early termination of requests. The rest of the paper is organized
as follows. Section 2 discusses the background on multi-threaded
Internet services and motivates this work with a micro-benchmark.
Section 3 gives the design considerations, architecture, and API of
SERT. Section 4 describes our implementation. Section 5 evalu-
ates SERT with application benchmarks from Ask.com. Section 6
summarizes related work. Finally, Section 7 concludes the paper.

2. BACKGROUND

2.1 Cluster-based Internet Services and Con-
currency Control

An Internet service cluster hosts applications handling concur-
rent client requests on a set of machines connected by a high speed
network. A number of earlier studies have addressed providing
middleware-level support for service clustering, load balancing, and
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Figure 1: A three-tier keyword-based document search service.

availability management [11, 31, 35, 24]. In these systems, a ser-
vice component can invoke RPC-like service calls or obtain com-
munication channels to other components in the cluster. A complex
Internet service cluster often has multiple tiers and service compo-
nents depend on each other through service calls.

For example, Figure 1 shows the architecture of a three-tier search
engine. This service contains five components: query handling
front-ends, result cache servers, tier-1 index servers, tier-2 index
servers, and document servers. When a request arrives, one of the
query front-ends parses this request and then contacts the query
caches to see if the query result is already cached. If not, index
servers are accessed to search for matching documents. Note that
index servers are divided into two tiers. Search is normally con-
ducted in the first tier while the second tier database is searched
only if a first tier index server does not contain sufficient match-
ing answers. Finally, the front-end contacts the document servers
to fetch a summary for relevant documents. There can be multiple
partitions for cache servers, index servers, and document servers. A
front-end server needs to aggregate results from multiple partitions
to complete the search.

As discussed above, each machine in a service cluster handles
requests concurrently sent from another machine in the cluster or
from clients through Internet. In this paper, we focus on the execu-
tion of each request using a thread. Multi-threaded programming
is widely used for concurrency control in Internet services such as
Apache [1] and IIS [23] Web servers, BEA WebLogic application
server [5], and Neptune clustering middleware [31, 29]. Each ma-
chine maintains a set of active worker threads and each accepted re-
quest is dispatched to a worker thread for processing. Each worker
thread performs a continuous loop to receive a new request, pro-
cess it with an application logic, and then send results back. The
thread pool size typically has a limit in order to control resource
contentions in a heavy loaded situation. Additionally, admission
control may be used to regulate incoming requests during a busy
period.

For an interactive Internet service, the design of service software
often imposes an implicit or explicit soft deadline on its response
time because a user normally expects a fast turnaround time. The
performance of a service system is often measured by the number
of requests that can be processed per second while each request is
expected to meet a soft deadline.

2.2 Impact of Long Requests and Motivation
for Early Request Termination

In a complicated web service, most requests are expected to com-
plete by a soft deadline. However, a few requests may not be able to
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Figure 2: The impact of distribution increase in long requests on
system throughput and mean response time for a CPU spinning
micro-benchmark.

meet the soft deadline. For example in Ask.com search site, some
uncached requests may take over one second but such a query will
be answered quickly next time from a result cache. These long re-
quests are often kept running because the number of such requests
is small, and derived results can be cached for future use. In certain
cases, current users may also still benefit despite the slow response.

However, when the percentage of such long requests exceeds a
certain threshold, the system behavior can become extremely ab-
normal because long requests take an excessive amount of resource
and affect short requests. The following experiment demonstrates
the above phenomena. In this CPU spinning micro-benchmark, the
average request arrival rate is at 50 per second, and there are two
types of requests: one has the CPU cost of about 5 milliseconds
while the other type costs 500 milliseconds. Initially the percent-
age of long requests (500 millisecond request) is around 0.1%. We
gradually increase the percentage from 0.1% to 10%.

We run a server that handles these two types of requests with
admission control. Each server maintains a waiting queue, and
new requests will not be admitted if the queue is full (exceeding a
threshold of 15 in this case). Figure 2 depicts the system throughput
and response time for this server as the percentage of long requests
increases. When the percentage is less than one, the system can
handle incoming requests well with a throughput about 50 requests
per second. With some increase in long request distribution, the
system throughput falls rapidly. For example, the throughput drops
to 29 from 50 when there are 5% of long requests and the response
time increases from about 15 milliseconds to 309 milliseconds.

This experiment shows that although the majority of requests are
short, a small portion of long requests can still dominate the overall
system performance. Admission control without request differen-
tiation on their resource usage is ineffective for load shedding in
such cases.

It would be ideal that the admission controller can detect over-
due long requests and reject them when load is heavy. However, it
is hard to predict if a request takes a long time or not. For a web re-
quest that access static HTTP documents, previous job scheduling
work [8, 15, 28] uses the file size as an estimator, but the execution
time for accessing dynamic content is unpredictable in general. A
viable way is to monitor the running time of each request and then
terminate those detected overdue queries.



3. DESIGN OF SELECTIVE EARLY REQUEST
TERMINATION (SERT)

Our strategy is to let a request run for a while so that long re-
quests can be distinguished from short requests. Once a long re-
quest exceeds its deadline, the request can be dropped if it meets
the selection criteria. There are several challenges to be addressed
in this approach:

• Execution timing and termination. We need to monitor
the elapsed execution time for each request and send a ter-
mination instruction. For the thread-based concurrent model
using a thread to execute a sequence of requests, the SERT
mechanism should be able to set a timer for each request.
After passing a given deadline, the mechanism can perform
termination of a request by rolling back program’s control
flow so that a new request can be processed.

• Adaptive selection of timeout threshold. Termination thresh-
old selection should be based on system load situation. When
the load is light, we should let each request be executed as
long as an application permits. Otherwise if feasible, the
timeout threshold should be adjusted adaptively following
the load index.

• Resource accounting for safe termination. To ensure the
correctness of applications, the mechanism needs to prop-
erly account for various resources (e.g., memories, locks, and
sockets) used in serving a request so that these resources can
be deallocated when terminating a request. Otherwise, termi-
nation without complete resource release could cause errors
such as resource leaks and deadlocks.

• Simplicity in programming. The mechanism should re-
quire minimal or no changes to applications and should en-
sure the correctness of the application execution.
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Figure 3: Architecture.

Not every request or every application can use SERT. We target
classes of requests or applications where termination of one request
does not affect the application semantics of another request. For
example, when a request is stateless, performing read-only infor-
mation retrieval, such a request can be terminated without affect-
ing other requests. The stateless property ensures that there are no

shared states among different requests, thus terminating one request
will not affect the correctness of another request. The read-only
property simplifies early termination because disk states remain in-
tact.

The architecture for early termination contains the following com-
ponents as illustrated in Figure 3.

• Request Timer and Terminator. A dedicated thread is re-
sponsible for monitoring the elapsed time of each request and
sending a termination signal to the request execution thread
once such a request passes its deadline.

• Threshold controller. This component monitors load condi-
tion and selects the timeout threshold periodically and adap-
tively.

• Termination handler. This component receives a termina-
tion signal and checks if it is safe to proceed to termination.
It also releases the resource allocated for a request to be ter-
minated.

• Resource accounting. This module records all resources ac-
quired by each request. This information will be used by the
termination handler to release all allocated resources before
aborting a request safely.

The rest of this section describes our design in details.

3.1 Execution Flow of Requests with SERT
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Figure 4: Request execution flow with SERT.

The early termination requires the execution of a request to be
timed. It is possible to use kernel timers to notify a request pro-
cessing thread of passing deadline events with upcalls or scheduler
activations [4]. However, this approach would require many kernel
modifications as well as application changes. To achieve minimum
changes to applications and better portability, we choose a user-
level design using signals.

Figure 4 illustrates the flow of request execution incorporated
with SERT. Each thread that handles an incoming request goes
through the following steps. First, a rollback point is set so that
when a request is terminated, the execution can return back this
safe point. After a new request is received, the request processing
thread notifies the Timer thread to start timing this request process-
ing operation.

This dedicated Timer thread receives a startup message from the
request processing threads to monitor the elapsed time spent for
each request. The threshold controller dynamically selects the ter-
mination time for each request based on the system load. If a re-
quest exceeds the selected processing time limit, the Timer thread



will send a termination message to the corresponding request pro-
cessing thread.

The Timer thread can also receive a cancellation instruction to
stop timing certain requests. That is designed to avoid unsafe ter-
mination of some classes of requests. For example, when a request
writes to a connection socket and then a termination is performed
for the request, the calling tier that reads the socket only receives
partial results and could generate faults. The solution is to monitor
write events on connection sockets and to cancel the termination
after the write event.

We also provide temporary termination masking capability. Namely
a termination is temporarily delayed until a certain function call
completes. For example, there are classes of system calls in which a
signal can interrupt and cause the system call to fail. Thus we mask
the termination signal during the system call. Some GLIBC func-
tions internally use locks for serial execution, for instance printf()
function. If a signal is delivered after locks are acquired and the
program jumps back to the rollback point, deadlocks will occur for
future calls. We wrap these special functions and mask the termi-
nation signal during their executions.

There is a potential race condition caused by a late delivered sig-
nal, i.e., a signal to abort a request is delivered after the request
processing has finished. To avoid such races, we associate a per
thread sequence number with each request. This sequence number
is carried with the signal so that it can be checked by the signal han-
dler. If the sequence number matches the current request, rollbacks
are allowed. Otherwise, the signal is delivered late and rollbacks
are denied.

3.2 Threshold Controller
Applications can specify a termination threshold or a range of

timeout values for each class of requests. When a range is speci-
fied, the threshold controller can assign a timeout value adaptively
within the given range that maximizes the system throughput. The
upper bound value of this range indicates that the request result is
not acceptable for the application if such a limit is reached. The
lower bound value of this range indicates a minimal interval that
should be allowed for a request to complete.

The basic idea behind our adaptive controlling strategy is that
when the system load is excessively high, the controller should use
a smaller threshold to minimize the adverse effect of long requests.
Otherwise the controller sets a larger timeout threshold value so
that long requests can complete without being terminated. For ex-
ample, in web search applications, completion of such a long re-
quest may not be valuable for a current client, but can be useful for
future requests with the same query since results can be cached.

To judge if the load of the system exceeds its capacity, we use
the throughput loss as an indicator, which is defined as

p =
The number of requests dropped/terminated during last interval

The total number of requests arrived during last interval. .

The controller monitors such a number with a fixed interval.
When the throughput loss exceeds a high watermark (HW), we

consider the system is extremely overloaded, and the lower bound
value for termination threshold should be used to terminate more
requests and to create room to accommodate as many new requests
as possible. When the throughout loss p is below a low watermark
(LW), we consider the system load is still acceptable, and an upper
bound may still be used. When the loss is between LW and HW, we
compute the selection threshold as a nonlinear function of p with a
scaling factor α as described below.

Let the range of timeout threshold be [LB, UB], where LB and
UB represent the lower and upper bounds respectively. Our for-

mula for computing and readjusting a timeout value at each moni-
toring time interval is expressed as follows.

Threshold = LB + F (p) × (UB − LB),

where

F (p) =

8

>

<

>

:

1 p <= LW

( HW−p

HW−LW
)α LW < p < HW

0 p >= HW
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Figure 5: Illustration of threshold function.

As shown in Figure 5, the α value can control the tradeoff be-
tween the threshold lower bound and upper bound when the load
index changes. When α is zero, the upper bound is used, suitable
for a lightly loaded condition. When α is very large, a value close
to the lower bound is used, suitable for a heavy loaded condition.
In addition to α value, other parameters can be adjusted and dif-
ferent applications may use a different parameter setting. For our
tested applications, we use α = 4, HW = 15%, and LW = 5%
with a 10 seconds monitoring interval. In Section 5, we will present
experiment results on the choices of these parameters.

3.3 Resource Accounting
After the deadline of a request is passed, the program changes

its control flow to a pre-defined rollback point. To avoid resource
leaks and other errors, all resources (e.g., memories, sockets, file
descriptors, and locks) allocated while servicing the request need
to be deallocated. This requires proper accounting of the resources
and we discuss resources accounted in SERT as follows.

• Memory. The memory resource includes dynamic allocated
memory from heaps using library functions such as malloc()
and new(), memory mapped regions returned by mmap()
calls, and local variables allocated on the stack. We track
memory usage of heaps and memory mapped areas. Memo-
ries allocated on the stack are reclaimed after stack unwind-
ing and not accounted.

• Locks. Locks are another type of resource that must be ac-
counted to avoid deadlocks that can happen if the execution
rolls back right after acquiring a shared lock. Since the lock
is not freed, all subsequent attempts to acquire the lock would
block the calling thread, causing deadlocks. We solve this
problem by delaying the termination until it is safe to do
so. Since a thread may hold multiple locks, we use a integer
counter to track the number of locks held by a thread and only



allow the termination when the counter is zero. The counter
is increased before a lock is acquired and is decreased after
releasing the lock. If a signal is delivered inside the criti-
cal section, the signal handler simply marks a flag associated
with the thread. After releasing the lock, this flag is checked
to see if a termination is needed.

• Sockets and file descriptors. If not accounted, socket or file
descriptor leaks can cause further allocation error, because
each process has an upper limit for them. Proper accounting
of these resources is required since our service applications
should be able to run for months without interruptions.

The SERT library tracks all resources allocated by a thread for
a request, thus the resources can be deallocated before the control
flow returns to the rollback point.

For some applications that involve resource sharing among re-
quest processing threads, some minor change in applications can be
made to take advantages of SERT. For example, if there is an appli-
cation module that handles memory objects among requests, and
this module guarantees the memory is allocated and deallocated
properly independent of the success of request execution. Then we
do not need to account for resources allocated in such a module and
SERT can be used safely for such applications.

3.4 SERT API
We provide SERT library functions to be used for request execu-

tion control. If a middleware such as Neptune [31] controls the high
level execution flow of a request, then the code change will happen
in the middleware level as we will illustrate later in Figure 7. No
code change is necessary in the application level. If an application
directly writes the thread control code for executing a request, then
this application needs to be modified slightly to insert the proper
SERT control functions.

Figure 6 illustrates the API functions of the SERT library that
need to be inserted to applications. SERT start() and SERT end()
define the beginning and the end of a request processing respec-
tively. A termination threshold value or range is made explicit
to the SERT library with SERT set args() call, which spec-
ifies the deadline range and other control parameters of a request.
Note that applications may want to set different criteria for different
types of requests for differentiated quality control. SERT init timer()
starts the timer thread and registers the signal type that is used for
notifying timeout event. SERT register rollbackpoint()
registers the return point for execution rollback.

/∗ s t a r t t i m e r t h r e a d and s e t s i g n a l t y p e ∗ /
e x t e r n i n t S E R T i n i t t i m e r ( i n t signum ) ;

/∗ s t a r t & end o f a r e q u e s t ∗ /
e x t e r n void S E R T s t a r t ( ) ;
e x t e r n void SERT end ( ) ;

/∗ s e t t i m e o u t v a l u e and c o n t r o l l e r p a r a m e t e r s ∗ /
e x t e r n void S E R T s e t a r g s ( s t r u c t s e r t a r g ∗ ) ;

/∗ s e t t h e r o l l b a c k p o i n t ∗ /
e x t e r n void S E R T r e g i s t e r r o l l b a c k p o i n t ( void ∗ ) ;

Figure 6: API functions of the SERT library.

To allow targeted applications to run without code change, SERT
intercepts GLIBC/Pthread functions to add needed control for re-
source accounting. The library defines a set of GLIBC functions
related to memory management (e.g., malloc() and free()),
Pthread functions (e.g., pthread mutex lock()), and file op-

erations (e.g., open() and close()). When linked with applica-
tions, these functions will first perform internal logging of resource
usage and then invoke corresponding GLIBC or Pthread routines.

4. IMPLEMENTATION
We have implemented the SERT library and have linked it with

the Neptune clustering middleware [31, 29], which has been used
in Ask.com and internal servers supporting many different Internet
and data mining applications running on giant-scale clusters. The
dynamic memory management code is a modified version of TC-
Malloc [12].

To implement the termination through execution rollback, we
need to let control flow jump to a saved stack context (rollback
point), we use C library setjmp(3) and longjmp(3) pair in-
stead of C++ exceptions. Though the exception handling feature
of the C++ language can simplify some of our work (deallocate re-
sources by destruction of local objects), it is not suitable for us to
define a special exception to achieve stack unwinding. This is be-
cause the programmer can specify a catch(...) block to cap-
ture all exceptions, thus preventing further stack unwindings. Be-
cause our use of jumps is inside a signal handler, the actual imple-
mentation uses sigsetjmp(3) and siglongjmp(3) variants
to ensure that correct signal masks are saved and restored.

Figure 7 gives a pseudo-code example of using the SERT library.
The Neptune middleware [31] is easily modified by adding about
ten lines of code using the SERT API. Note that applications run-
ning on top of Neptune require no changes.

void worker ( )
{

whi le ( 1 ) {
Request ∗ r e q u e s t = g e t r e q u e s t ( ) ;
jump buf env ;

i f ( s i g s e t j m p (&env , 1 ) = = 0 ) {
S E R T r e g i s t e r r o l l b a c k p o i n t (&env ) ;

} e l s e {
/∗ long jmp back , r e s o u r c e s has a l r e a d y

been d e a l l o c a t e d ∗ /
c o n t i n u e ;

}

S E R T s t a r t ( ) ;
p r o c e s s r e q u e s t ( r e q u e s t ) ;
SERT end ( ) ;

s e n d r e s u l t ( r e q u e s t ) ;
}

}

Figure 7: A pseudo-code example of using SERT.

5. EVALUATION
In this section, we will compare the SERT approach with an ad-

mission control based load shedding method. This admission con-
trol method is called AC in this section which uses the queue length
of incoming requests to shed the load. Note that SERT uses both
selective request termination and AC method. We will also assess
the effectiveness of adaptive termination threshold selection. Our
experiments show that SERT has negligible performance impact on
applications and are not reported here.

We will use the following two types of traces:

• Size distribution shift. In this type of trace, the total number
of queries arrived per second remains constant. The distribu-
tion of long queries changes during some period. This trace



evaluates the algorithm’s capability in dealing with the shift-
ing of query size patterns.

• Traffic peaks. In this type of trace, the total number of
queries increases gradually while the distribution of long queries
remains the same. This trace evaluates the algorithm’s capa-
bility in dealing with traffic with different load conditions.

The performance metrics we use are response time and through-
put. In measuring the sustained throughput compared to the arrival
rate, we use the loss percentage which is defined as

LossPercent =
TotalRequests − SuccessfulRequests

TotalRequests
×100.

A loss percentage of zero means that all arrived requests are han-
dled successfully. In terms of response time, we measure the av-
erage response time for successfully executed requests within the
latest deadline required.

5.1 Settings and Applications
Experiments were conducted on a cluster of nine dual Pentium

III 1.4 GHz machines connected with fast Ethernet. Each machine
has 4GB memory and two 36GB, 10,000 RPM Seagate ST336607LC
SCSI disks.

The applications used for the evaluation are two services from
Ask.com [2] with different size distribution characteristics: a database
index matching service and a page ranking service. The index
matching service that finds all web pages containing certain key-
words is heavy-tailed. The ranking service, that ranks web doc-
uments based on relevancy of such documents for a given query,
is exponential. Our experiment in Section 5.2 shows that SERT is
especially effective for heavy-tailed workload.
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Figure 8: LLCD plot and CLT test for the index matching service
response time data.

Figure 8 gives the log-log complementary distribution (LLCD)
plot of response time data for the index matching service, which is
the complementary cumulative distribution F̄ (x) = 1 − F (x) =
P [X > x] on log-log axes. Plotted in this way, an estimate for
the heavy-tailed distribution is obtained as the slope of the linear
fitting. To verify that the dataset exhibits the infinite variance of
the heavy tails, the Central Limit Theorem (CLT) test is also per-
formed: the m-aggregated dataset from the original dataset is also
drawn in the LLCD plot. As we can see from Figure 8, increasing
the aggregation level doesn’t cause the slope to decline, reflecting
the distribution has infinite variance property of heavy tail. We also
employed Hill estimator to estimate tail weight in the data. The

result shows an apparent straight line behavior for large x-values
consistent with the hyperbolic tail assumption. In our experiments,
the index database size is 2.1 GB and can be completed cached in
memory. All experiments on the index matching service were con-
ducted after a warm-up process that ensures service data is com-
pletely in memory.

For the ranking service, trace data exhibits the exponential pro-
cessing time distribution. The mean and standard deviations of the
trace are close and the distribution is right-skewed (the median is
less than the mean). Though the data does not fully satisfy the
statistical patterns of exponential distributions, we can consider re-
quest time distribution of this service is close to exponential.

Table 1 shows the average, 90-percentile, and maximum response
time of these two services.

Application Ave. (ms) 90% (ms) Max (ms)
Index Matching 23.6 46 2,732
Ranking 93 212 14,035

Table 1: Characteristics of response time in index matching and
ranking services.

Table 2 lists the parameter values used in the threshold controller
of SERT for these two services.

Param. Description Rank Index
interval Controller monitoring period 10 s 10 s
LB Lower bound for timeout value 0.5 s 1.5 s
UB Upper bound for timeout value 15 s 8 s
α Scaling factor 4 4
HW High watermark for loss 15% 15%
LW Low watermark for loss 5% 5%

Table 2: Parameters used in the threshold controller for ranking and
index matching services.

For all applications, we use real traffic traces collected at Ask.com.
To determine the capacity of an application server, we increase the
request arrival rate until there are five percent throughput losses
when the standard Neptune server with admission control is used.
This probed request rate is then used as the full service capacity.
During overloaded periods, all services take advantage of the ad-
mission control mechanism of the Neptune [31] middleware which
uses request queue length to shed load.

5.2 Performance during Size Distribution Shift
In this experiment, we replayed a traffic trace from Ask.com

which has an average arrival rate of 50 requests per second. There
is a size distribution shift in this trace such that the distribution of
heavy requests increases at a certain period. While the traffic pat-
tern is normally heavy-tailed with less than 0.5% of heavy requests
(those require more than 500 ms processing time), this trace con-
tains about 10% of heavy requests during the shift period from time
30 to 155.

The throughput and response time results of the index matching
service are illustrated in Figure 9 for responding to this trace. There
is a significant throughput drop using the AC method during the dis-
tribution shift. The SERT’s throughput is 209.1% higher than AC,
because heavy requests were selectively dropped and more short
requests were completed.

The bottom graph in Figure 9 illustrates response time changes
during the experiment. SERT performs significantly better than
AC. The average response time is 0.640 second for the SERT. Com-
pared to the 1.413 second for AC, this is a 54.7% reduction.
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Figure 9: Average response time and throughput of index matching service during size distribution shift.
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Figure 10: Cumulative distribution of index matching response
time during size distribution shift.

Figure 10 gives the cumulative distribution of response time for
this experiment. Value (x,y) means that the probability of comput-
ing within response time x is y. SERT has better response times in
all cases. For example, the percentage of requests completed within
one second is 81.7% for SERT and 45.3% for AC.

5.3 Performance during Traffic Peaks

5.3.1 A comparison of SERT and AC in ranking ser-
vice

This experiment examines and compares the performance of SERT
and AC when the traffic load gradually increases. Figure 11 il-
lustrates our evaluation results of throughput loss percentage for
the ranking service in both underloaded and overloaded scenarios.
Both schemes perform mostly similar to each other in underloaded
situations. During the overloaded cases, SERT performs better and
reduces the loss percentage by 7.5% to 27.9% compared to the AC
scheme.
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Figure 11: Throughput loss in ranking service with AC and with
SERT under different load conditions.

Figure 12 illustrates the response time for the ranking service.
Again, both approaches have comparable results in underloaded
scenarios. Compared to AC, the overloaded response time of SERT
is from 38.0% to 75.4% lower. In SERT, the response time drops
to a certain degree from 120% to 140% load. This is because the
threshold controller gradually reduces the termination threshold,
which leads to more dropping of heavy requests.

In summary, both approaches have comparable performance in
underloaded situations, while SERT outperforms AC during traffic
peaks. The main reason is that SERT drops heavy requests and
allows the system to serve more short requests, augmenting both
throughput and response time.

5.3.2 A comparison of SERT and AC in index match-
ing service

Figure 13 gives the results of throughput loss of the index match-
ing service in both underloaded and overloaded situations. Both
schemes have very little throughput loss when the system is under-
loaded and has sufficient resources. During the overloaded cases,
the loss percentage of SERT is 2.7% to 13.8% lower than AC.
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Figure 12: Response time of ranking service with AC and with
SERT.
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Figure 13: Throughput loss in index matching service with AC and
with SERT under different load conditions.

Figure 14 shows response time for the index matching service.
For underloaded cases, two schemes have comparable performance.
For overloaded cases, AC has much higher response time than SERT
because heavy requests adversely affect short requests in AC.

5.4 An Evaluation of Threshold Controller

5.4.1 Effectiveness of adaptive threshold selection
We evaluate the effectiveness of adaptive termination threshold

selection by comparing with a fixed threshold policy. Figure 15
illustrates a comparison of the adaptive selection policy with three
fixed threshold polices in terms of throughput and response time
in the ranking service. The fixed termination thresholds used are:
0.5 seconds, 3 seconds, and 15 seconds. From the figure, we can
see that a fixed policy with a higher threshold value performs better
when the load is 100% loaded or less. For example, when system is
100% loaded, the 0.5 second threshold has 11.2% throughput loss,
while the 15 second policy and the adaptive selection have 4% loss.
When system load increases beyond 140%, a lower threshold has
better throughput by rejecting heavy requests as earlier as possible.

The threshold controller adapts to load conditions and performs
favorably under different load conditions. For 120% load or less,
the controller uses a high threshold and performs better than the
fixed 0.5 second threshold in terms of throughput. The average re-
sponse time with 0.5 second threshold is lower, because it rejects
too many requests. As the load becomes excessively high, the con-
troller uses a lower termination threshold with a competitive perfor-

20 40 60 80
20

30

40

50

60

70

80

Load (%)

M
ea

n 
R

es
po

ns
e 

T
im

e 
(m

s)

Underloaded

100 120 140 160 180 200
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Load (%)

M
ea

n 
R

es
po

ns
e 

T
im

e 
(m

s)

Overloaded
AC
SERT

Figure 14: Response time for index matching with AC and with
SERT.
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Figure 15: A comparison of ranking service using fixed termination
thresholds (0.5s, 3s, 15s) with adaptive threshold selection.

mance as using fixed 0.5 second threshold, and outperforms other
fixed policies.

Figure 16 shows a similar comparison for the index matching
service. For fixed thresholds, using the 1.5s value always performs
better and the adaptive selection has a comparable performance.

5.4.2 Impact of varying control parameters
We vary the value of throughput loss watermarks for the thresh-

old formula described in Section 3.2. Since low watermark is effec-
tive when the load has not reached or is near the system capacity,
the evaluation is focused on the throughput loss in such situations.
For high watermark, evaluation is focused on overloaded scenar-
ios. Figure 17 and Figure 18 illustrate the comparison results for
the ranking and index matching services respectively when using
1%, 3%, 5%, and 7% for low watermarks, and 10%, 15%, 20%,
and 25% for high watermarks. For both services, there is actually
no significant performance difference for using these tested water-
mark values. Thus we choose 5% for low watermark and 15% for
high watermark for both services.

For α value, the experiment results in the previous subsection
actually reflect the cases of α = 0, α = 4, and α = ∞ while
α = 4 has a significant advantage. We have done experiments to
vary α from 4 to 8 and did not find significant performance differ-
ence. When α drops from 4 to 1, α value 4 outperforms α value
1 significantly. Due to paper length limit, we do not include the
experimental details on these results.

For the monitoring interval, we find that the 10 seconds interval
gives a better performance than a small interval such as 2 seconds,
especially for the ranking service. This is because traffic is bursty,
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Figure 16: A comparison of index matching service using fixed
termination thresholds (1.5s, 3s, 15s) with adaptive threshold se-
lection.
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Figure 17: Varying throughput loss watermarks in ranking service.

and a small interval can yield an unstable prediction of traffic be-
havior. When increasing the interval from 10 seconds, there is no
significant gain.

6. RELATED WORK
Admission control is an effective way to protect Internet services

from being overloaded. Some of the work focuses on reducing the
amount of work [6, 9, 16, 36], and others differentiate classes of re-
quests so that response time of preferred clients do not suffer much
during load peaks [29, 34, 39]. While admission control rejects a
request before entering the system, our approach is complementary
and allows the request to enter the system and to be rejected later
based on its resource usage.
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Figure 18: Varying throughput loss watermarks in index matching.

Our work is also motivated by the previous work on size-based
scheduling for accessing static web content [8, 15, 28]. These stud-
ies prioritize short requests so that they are serviced first, while our
approach actively detects and drops long requests. Based on the
finding that different servlets of TPC-W benchmark have relatively
consistent execution time, Elnikety et al. [9] schedule requests for
known servlet types where each type represents a different resource
need. This optimization is performed based on the static applica-
tion knowledge.

Previous studies on Internet service infrastructure have addressed
load balancing issues [11, 13, 14, 26, 30, 31, 37, 38]. Our work in
this paper complements these studies by focusing on load shedding
to improve quality of service.

Database concurrency control has employed the abort technique
[17, 20, 32]. Particularly in real-time databases, the execution of
higher priority transactions may cause lower priority transactions
to be aborted. These studies have focused on the restoration of data
dependence and studied REDO and UNDO logs for recovery of
database transactions. In SERT, while the procedure for a general
Internet request can be arbitrary and more complicated than ones
using a database transaction language, we focus on a simplified de-
pendence scenario where requests are independent, e.g., read-only
and stateless requests. Recently, McWherter et al. [22] show that
selectively aborting certain lower priority transactions can signif-
icantly improve the response time of higher priority transactions
for TPC-C type workloads, where database locking dominates the
response time. They have proposed lock-related abort techniques.

Recoverable virtual memory [27] and Rio Vista [21] are user-
level recoverable memory libraries designed for database transac-
tions. Both approaches require application modifications to access
memory regions for safe transaction control. Our approach inter-
cepts applications’ memory allocation calls so that user code does
not need to be changed for classes of applications we are targeting.

Process checkpointing and rollback [19, 33, 25] has been ex-
plored for fault tolerance, deterministic program replay and debug-
ging. Instead of checkpointing, SERT logs resource usage after the
execution of a request begins and rollbacks a program state by deal-
locating these resources. Additionally, such a rollback is performed
on threads, not processes, so that other threads can continue serving
new requests without interruptions.

7. CONCLUDING REMARKS
The main contribution of this work is the design and implemen-

tation of an early termination mechanism for busy dynamic Inter-
net services that use the multi-threaded programming model. Our
design dynamically selects termination threshold, adaptive to load
condition and performs early termination safely. Our experiments
with two applications from Ask.com indicate the proposed tech-
niques can effectively reduce response time and improve through-
put in overloaded situations. It should be noted that for different
classes of requests, an application may deploy different termina-
tion ranges and control parameters and our API design can support
such differentiation.

Techniques proposed in this paper have been applied in each sin-
gle tier within a multi-tier application. Each node makes an inde-
pendent decision in dealing with concurrent requests from clients
of a website or from other service modules within a large cluster for
other tiers. One future work is to study the impact of cooperative
request-aware early termination among different nodes and tiers.
Currently the threshold controller uses a number of parameters that
are determined through offline profiling. A further improvement is
to use online monitoring as feedbacks for adjusting these parame-
ters.
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