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I. Abstract 

The monitoring of vegetation moisture content (VWC) is a critical part of any fire danger rating 

system, since VWC determines fire ignition and propagation. The relationship between time-

series of the normalized difference infrared index (NDWI) and Keetch-Byram drought index 

(KBDI), both related to VWC dynamics, is studied. Serial correlation of time-series, however, is 

a major issue when the relationship between time-series is analyzed.  Serial correlation affects 

correlation between variables measured in time, and violates the basic regression assumption of 

independence. This chapter therefore focuses on the extraction of non-serially correlated 

seasonal metrics from time-series to evaluate quantitative relationships between remote sensing 

and meteorological time-series, using as test area the savanna ecosystem of Kruger National 

Park, South Africa. 

It was demonstrated that serial correlation between extracted seasonal metrics was minimal and 

that seasonality in time-series was an important factor influencing the relationship between the 

NDWI and KBDI time-series. Statistical analysis of the temporal occurrence of extracted metrics 

revealed that NDWI and KBDI time-series are not significantly different (p > 0.1), except at the 

beginning of the rain season (p < 0.01).  The actual values of extracted metrics of NDWI and 

KBDI, however, only were related significantly at the end of the rain season (R2 = 0.49). 

Furthermore, results have shown that correlation coefficients estimated by ordinary least squares 

regression were overestimated when serial correlation of the residuals was not taken into account 

resulting in a mean R2 -value of 0.7. 

The serial correlation effect was taken into account by extraction of seasonal metrics from time-

  



Signal and Image Processing for Remote Sensing                                 3 

series. Seasonal metrics can be used to study the relationship between remote sensing and 

ground-based time-series (i.e. meteorological or field measurements). A better understanding of 

the relationship between remote sensing and in situ observations at regular time intervals will 

contribute to the use of remotely sensed spectral data in the development of an index to represent 

seasonal vegetation moisture dynamics. 

II. Introduction 

The repeated occurrence of severe wildfires, which affect various fire-prone ecosystems of the 

world, has highlighted the need to develop effective tools for monitoring fire-related parameters. 

Vegetation water content (VWC), which influences the biomass burning processes, is an 

example of one such parameter [1-3].The physical definitions of VWC vary from water volume 

per leaf or ground area (equivalent water thickness) to water mass per mass of vegetation dry or 

fresh matter (fuel moisture content) [4]. VWC therefore also could be used to infer vegetation 

water stress and to assess drought conditions that linked with fire risk [5]. Decreases in VWC 

due to the seasonal decrease in available soil moisture can induce severe fire danger in most 

ecosystems. VWC is particularly important for determining the behavior of fires in savanna 

ecosystems, since the herbaceous layer becomes especially flammable during the dry season 

when VWC is low [6-7].  

VWC in savanna ecosystems typically is measured using labor-intensive vegetation 

sampling.  Several studies, however, indicated that VWC can be characterized temporally and 

spatially using meteorological or remote sensing data, which could contribute to the monitoring 

of fire risk [1, 4]. The meteorological Keetch-Byram drought index (KBDI) was selected for this 

study. This index was developed to incorporate soil water content in the root zone of vegetation 
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and is able to asses the seasonal trend of VWC [3, 8]. The KBDI is a cumulative algorithm for 

estimation of fire potential from meteorological information, including daily maximum 

temperature, daily total precipitation, and mean annual precipitation [9-10]. The KBDI also has 

been used for the assessment of VWC for vegetation types with shallow rooting systems, e.g. the 

herbaceous layer of the savanna ecosystem [8, 11]. 

The application of drought indices, however, presents specific operational challenges. 

These challenges are due to the lack of meteorological data for certain areas, as well as spatial 

interpolation techniques that are not always suitable for use in areas with complex terrain 

features. Satellite data provide sound alternatives to meteorological indices in this context. 

Remotely sensed data have a significant potential for monitoring vegetation dynamics at regional 

to global scale, given the synoptic coverage and repeated temporal sampling of satellite 

observations (e.g. SPOT VEGETATION or NOAA AVHRR) [12-13]. These data have the 

advantage to provide information on remote areas where ground measurements are impossible to 

obtain on a regular basis. 

Most research in the scientific community using optical sensors (e.g. SPOT 

VEGETATION) to study biomass burning has focused on two research areas [4]: (i) The direct 

estimation of VWC, and (ii) the estimation of chlorophyll content or degree of drying as an 

alternative to the estimation of VWC. Chlorophyll-related indices are related to VWC based on 

the hypothesis that the chlorophyll content of leaves decreases proportional to the VWC [4]. This 

assumption has been confirmed for selected species with shallow rooting systems (e.g. 

grasslands and under-story forest vegetation) [14-16], but cannot be generalized to all 

ecosystems [4]. Therefore, chlorophyll-related indices, such as the Normalized Difference 

Vegetation Index (NDVI), only can be used in regions where the relation between chlorophyll 

  



Signal and Image Processing for Remote Sensing                                 5 

content, degree of curing, and water content has been established.  

Accordingly, a remote sensing index that is directly coupled to the VWC is used to 

investigate the potential of hyper-temporal satellite imagery to monitor the seasonal vegetation 

moisture dynamics. Several studies [4, 16-17] have demonstrated that VWC can be estimated 

directly through the normalized difference of the near infrared reflectance (NIR, 0.78 - 0.89 µm) 

NIRρ , influenced by the internal structure and the dry matter, and the shortwave infrared  

reflectance (SWIR, 1.58 - 1.75 µm) SWIRρ  , influenced by plant tissue water content: 

 

NIR SWIR

NIR SWIR
NDWI ρ ρ

ρ ρ
−

=
+

         (1) 

 

The NDWI or normalized difference infrared index (NDII) [19] is similar to the Global 

Vegetation Moisture Index (GVMI) [20].  

The relationship between NDWI and KBDI time-series, both related to VWC dynamics, 

is explored. Although the value of time-series data for monitoring vegetation moisture dynamics 

has been firmly established [21], only a few studies have taken serial correlation into account 

when correlating time-series [6, 22-25]. Serial correlation occurs when data collected through 

time contains values at time t which are correlated with observations at time t-1.  This type of 

correlation in time-series, when related to VWC dynamics, is mainly caused by the seasonal 

variation (dry-wet cycle) of vegetation [26]. Serial correlation can be used to forecast future 

values of the time-series by modeling the dependence between observations but affects 

correlations between variables measured in time, and violates the basic regression assumption of 

independence [22]. Correlation coefficient of serially correlated data cannot be used as indicators 
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of goodness-of-fit of a model since the correlation coefficients are artificially inflated [22, 27]. 

The study of the relationship between NDWI and KBDI is a non-trivial task due to the 

effect of serial correlation. Remedies for serial correlation include sampling or aggregating the 

data over longer time intervals, as well as further modeling which can include techniques such as 

weighted regression [25, 28]. However, it is difficult to account for serial correlation in time-

series related to VWC dynamics using extended regression techniques. The time-series related to 

VWC dynamics often exhibit high non-Gaussian serial correlation and are more significantly 

affected by outliers and measurement errors [28]. A sampling technique therefore is proposed 

which accounts for serial correlation in seasonal time-series in order to study the relationship 

between different time-series. The serial correlation effect in time-series is assumed to be 

minimal when extracting one metric per season (e.g. start of the dry season). The extracted 

seasonal metrics are then utilized to study the relationship between time-series at a specific 

moment in time (e.g. start of the dry season). 

The aim of this chapter is to address the effect of serial correlation when studying the 

relationship between remote sensing and meteorological time-series related to VWC by 

comparing non-serially correlated seasonal metrics from time-series. This chapter therefore has 

three defined objectives. Firstly, an overview of time-series analysis techniques and concepts 

(e.g. stationarity, autocorrelation, ARIMA, etc.) is presented and the relationship between time-

series is studied using cross-correlation and ordinary least square (OLS) regression analysis. 

Secondly, an algorithm for extraction of seasonal metrics is optimized for satellite- and 

meteorological time-series. Finally, the temporal occurrence and values of extracted non-serially 

correlated seasonal metrics are analyzed statistically to define the quantitative relationship 

between NDWI and KBDI time-series. The influence of serial correlation is illustrated by 
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comparing results from cross-correlation and OLS analysis to results from the investigation of 

correlation between extracted metrics. 

III. Data 

A. Study area 

The Kruger National Park (KNP), located between latitudes 23°S and 26°S and longitudes 30°E 

and 32°E in the low-lying savanna of the northeastern part of South Africa, was selected for this 

study (Fig. 1). Elevations range from 260 to 839 m above sea level, and mean annual rainfall 

varies between 350 mm in the north and 750 mm in the south. The rain season within the annual 

climatic season can be confined to the summer months (i.e. November to April), and over a 

longer period can be defined by alternating wet and dry seasons [7]. The KNP is characterized by 

an arid savanna dominated by thorny, fine-leafed trees of the families Mimosaceae and 

Burseraceae. An exception is the northern part of the KNP where the Mopane, a broad-leafed 

tree belonging to the Ceasalpinaceae, almost completely dominates the tree layer. 

 

[Insert Fig. 1 around here] 

 

B. Climate Data 

Climate data from six weather stations in the KNP with similar vegetation types were used to 

estimate the daily KBDI (Fig. 1). KBDI was derived from daily precipitation and maximum 

temperature data to estimate the net effect on the soil water balance [3]. Assumptions in the 

derivation of KBDI include a soil water capacity of approximately 20 cm and an exponential 

moisture loss from the soil reservoir. KBDI was initialized during periods of rainfall events (e.g. 
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rain season) that results in soils with maximized field capacity and KBDI-values of zero [8]. The 

preprocessing of KBDI was done using the method developed by Janis et al.[10]. Missing daily 

maximum temperatures were replaced with interpolated values of daily maximum temperature, 

based on a linear interpolation function [29]. Missing daily precipitation, on the other hand, was 

assumed to be zero. A series of error logs automatically were generated to indicate missing 

precipitation values and associated estimated daily KBDI values. This was done since zeroing 

missing precipitation may lead to an increased fire potential bias in KBDI. The total percentage 

of missing data gaps in rainfall and temperature series was maximally 5% during the study 

period for each of the six weather stations. The daily KBDI time-series were transformed into 

10-daily KBDI series, similar to the SPOT VEGETATION S10 dekades (i.e. 10-day periods), by 

taking the maximum of each dekad. The negative of the KBDI time-series (i.e. -KBDI) was 

analyzed in this chapter such that the temporal dynamics of -KBDI and NDWI were related (Fig. 

2). The -KBDI and NDWI are used throughout this chapter. The Satara weather station, centrally 

positioned in the study area, was selected to represent the temporal vegetation dynamics. The 

other weather stations in the study area demonstrate similar temporal vegetation dynamics. 

 

[Insert Fig. 2 around here] 

 

C. Remote sensing data 

The data set used is composed of 10-daily SPOT VEGETATION (SPOT VGT) composites (S10 

NDVI maximum value syntheses) acquired over the study area for the period April 1998 to 

December 2002. SPOT VGT can provide local to global coverage on a regular basis (e.g. daily 

for SPOT VGT).  The syntheses result in surface reflectance in the blue (0.43 - 0.47 µm), red 
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(0.61 - 0.68 µm), NIR (0.78 - 0.89 µm), and SWIR (1.58 - 1.75 µm) spectral regions. Images 

were atmospherically corrected using the Simplified Method for Atmospheric Correction 

(SMAC) [29]. The geometrically and radiometrically corrected S10 images have a spatial 

resolution of 1 km.  

The S10 SPOT VGT time-series were preprocessed to detect data that erroneously 

influence the subsequent fitting of functions to time-series, necessary to define and extract 

metrics [6]. The image preprocessing procedures performed were:  

(1) Data points with a satellite viewing zenith angle (VZA) above 50° were masked out 

since pixels located at the very edge of the image (VZA > 50.5°) swath are affected by re-

sampling methods that yield erroneous spectral values.  

(2) The aberrant SWIR detectors of the SPOT VGT sensor, flagged by the status mask of 

the SPOT VGT S10 synthesis, also were masked out.  

(3) A data point was classified as cloud-free if the blue reflectance was less than 0.07 

[31]. The developed threshold approach was applied to identify cloud-free pixels for the study 

area.  

NDWI time-series were derived by selecting savanna pixels, based on the land cover map 

of South Africa [32], for a 3 x 3 pixel window centered at each of the meteorological stations to 

reduce the effect of potential spatial misregistration (Fig. 1). Median values of the 9-pixel 

windows then were retained instead of single pixel values [33]. The median was preferred to 

average values since it is less affected by extreme values and therefore is less sensitive to 

potentially undetected data errors. 
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IV. Serial correlation and time-series analysis 

Serial correlation affects correlations between variables measured in time, and violates the basic 

regression assumption of independence. Techniques that are used to recognize serial correlation 

therefore are discussed by applying them to the NDWI and -KBDI time-series. Cross-correlation 

analysis is illustrated and used to study the relationship between time-series of -KBDI and 

NDWI. Fundamental time-series analysis concepts (e.g. stationarity and seasonality) are 

introduced and a brief overview is presented of the most frequently used method for time-series 

analysis to account for serial correlation, namely autoregression. 

A. Recognizing serial correlation  

This chapter focuses on discrete time-series which contain observations made at discrete time 

intervals (e.g. 10-daily time steps of -KBDI and NDWI time-series). A time-series is defined as a 

set of observations, xt, recorded at a specific time, t [26]. Time-series of -KBDI and NDWI 

contain a seasonal variation which is illustrated in Fig. 2 by a smooth increase or decrease of the 

series related to vegetation moisture dynamics. The gradual increase or decrease of the graph of a 

time-series is generally indicative of the existence of a form of dependence or serial correlation 

among observations.  

The presence of serial correlation systematically biases regression analysis when studying 

the relationship between two or more time-series [25]. Consider the ordinary least squares 

regression (OLS) line with a slope and intercept: 

 

0 1( ) ( ) ( )Y t a a X t e t= + +           (2) 

 

where t is time, a0 and a1 are the respective OLS regression intercept and slope parameter, Y(t) 
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the dependent variable, X(t) the independent variable, and e(t) the random error term. The 

standard error of each parameter is required for any regression model in order to define the 

confidence interval and to derive the significance of parameters in the regression equation. The 

parameters a0, a1, and the confidence intervals, estimated by minimizing the sum of the squared 

“residuals”, are valid only if certain assumptions related to the regression and e(t) are met [25].  

These assumptions are detailed in statistical textbooks [34] but are not always met, or explicitly 

considered in real-world applications. Fig. 3 illustrates the biased confidence intervals of the 

OLS regression model at a 95% confidence level. The standard error (SE) term of the regression 

model is underestimated due to serially correlated residuals and explains the biased confidence 

interval (CI) where  . 1.96CI mean SE= ± ×

 

[Insert Fig. 3 around here] 

 

 The Gauss-Markov theorem states that the OLS parameter estimate is the Best Linear 

Unbiased Estimate (BLUE); i.e. all other linear unbiased estimates will have a larger variance, if 

the error term, e(t), is stationary and exhibits no serial correlation. The Gauss-Markov theorem 

consequently points to the error term and not to the time-series themselves as the critical 

consideration [35]. The error term is defined as stationary when it does not present a trend and 

the variance remains constant over time [27]. It is possible that the residuals are serially 

correlated if one of the dependent or independent variables also is serially correlated, because the 

residuals constitute a linear combination of both types of variables. Both dependent and 

independent variables of the regression model are serially correlated (KBDI and NDWI), which 

explains the serial correlation observed in the residuals. 
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A sound practice used to verify serial correlation in time-series is to perform multiple 

checks by both graphical and diagnostic techniques. The autocorrelation function can be viewed 

as a graphical measure of serial correlation between variables or residuals. The sample auto-

correlation function is defined when x1,…,xn are observations of a time-series. The sample mean 

of x1,…,xn is [26]:  

 

1

1 n
t

t
x x

n =
= ∑           (3) 

 

The sample autocovariance function with lag h and time t is: 

 

( ) ( )( )
| |

1

1
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n h

tt h
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−

−
+

=
= − − − <∑ .<       (4) 

 

The sample autocorrelation function is: 

 

ˆ( )ˆ ,
ˆ(0)

h n h nγρ
γ

= − < <          (5) 

 

Fig. 4 illustrates the autocorrelation function (ACF) for time-series of -KBDI and NDWI 

from the presented Kruger park data. The ACF clearly indicates a significant autocorrelation in 

the time-series, since more than 5% of the sample autocorrelations fall outside the significance 

bounds 1.96 n= ±  [26]. There also are formal tests available to detect autocorrelation such as 

the Ljung-Box test statistic and the Durbin-Watson statistic [25, 26]. 
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[Insert Fig. 4 around here] 

 

B. Cross-correlation analysis 

The cross-correlation function (CCF) can be derived between two time-series utilizing a 

technique similar to the autocorrelation function applied for one time-series [27]. Cross-

correlation is a measure for the degree of linear relationship existing between two data sets and 

can be used to study the connection between time-series. The CCF, however, can only be used if 

the time-series is stationary [27]. For example, when all variables are increasing in value over 

time, cross-correlation results will be spurious and subsequently cannot be used to study the 

relationship between time-series. 

Non-stationary time-series can be transformed to stationary time-series implementing one of 

the following techniques:  

• Differencing the time-series by a period d can yield a series that satisfies the assumption 

of stationarity (e.g. xt-xt-1 for d=1). The differenced series will contain one point less than 

the original series. Although a time-series can be differenced more than once, one 

difference is usually sufficient.  

• Lower order polynomials can be fitted to the series when the data contains a trend or 

seasonality that needs to be subtracted from the original series. Seasonal time-series can 

be represented as the sum of a specified trend, and seasonal and random terms. For 

example, for statistical interpretation results, it is important to recognize the presence of 

seasonal components and to remove them to avoid confusion with long-term trends. Fig. 

5 illustrates the seasonal trend decompositioning method using locally weighted 

regression for the NDWI time-series [36]. 
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• The logarithm or square root of the series may stabilize the variance in the case of a non-

constant variance. 

 

[Insert Fig. 5 around here] 

 

Fig. 6 illustrates the cross-correlation plot for stationary series of -KBDI and NDWI. -

KBDI and NDWI time-series became stationary after differencing with d = 1. The stationarity 

was confirmed using the ‘augmented Dickey-Fuller’ test for stationarity [26, 29] at a confidence 

level of 95% (p < 0.01; with stationarity as alternative hypothesis). Note that approximate 95% 

confidence limits are shown for the autocorrelation plots of an independent series. These limits 

must be regarded with caution, since there exists an a priori expectation of serial correlation for 

time series [37]. 

 

[Insert Fig. 6 around here] 

 

Table I illustrates the coefficients of determination (i.e. Multiple R²) of the OLS 

regression analysis with serially correlated residuals, -KBDI as dependent, and NDWI as 

independent variable for all six weather stations in the study area. The Durbin-Watson statistic 

indicated that the residuals were serially correlated at a 95% confidence level (p < 0.01). These 

results will be compared with the method presented in the ‘results and discussion’ section of this 

chapter. Table I also indicates the time lags at which correlation between time-series was 

maximal, as derived from the cross-correlation plot. A negative lag indicates that -KBDI reacts 

prior to NDWI, e.g. in the cases of Punda Maria and Shingwedzi weather stations, and 
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subsequently can be used to predict NDWI. This is logical since weather conditions, e.g. rainfall 

and temperature, change before vegetation reacts. NDWI, which is related to the amount of water 

in vegetation, consequently lags behind the -KBDI. The major vegetation type in savanna 

vegetation is the herbaceous layer, which has a shallow rooting system. This explains why 

vegetation in the study area quickly follows climatic changes and NDWI did not lag behind -

KBDI for the other 4 weather stations.  

 

[Insert Table I around here] 

 

C. Time-series analysis: relating time-series and autoregression 

A remedy for serial correlation, apart from applying variations in sampling strategy, is modeling 

of the time dependence in the error structure by autoregression (AR). AR most often is used for 

purposes of forecasting and modeling of a time-series [25]. The simplest AR model for Eq. (2), 

where ρ is the result of the sample autocorrelation function at lag 1, is: 

 

1t te e tρ ε−= +             (6) 

 

where εt is a series of serially independent numbers with mean zero and constant variance. The 

Gauss-Markov theorem cannot be applied and therefore OLS is not an efficient estimator of the 

model parameters if ρ is not zero [35].  

Many different AR models are available in statistical software systems that incorporate 

time-series modules. One of the most frequently used models to account for serial correlation is 

the autoregressive-integrated-moving-average model (ARIMA) [26, 37]. Briefly stated, ARIMA 
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models can have an autoregressive term (AR) of order p, a differencing (integrating) term (I) of 

order d, and a moving average term (MA) of order q. The notation for specific models takes the 

form of (p, d, q) [27]. The order of each term in the model is determined by examining the raw 

data and plots of the autocorrelation function of the data. For example, a second order AR (p = 2) 

term in the model would be appropriate if a series has significant autocorrelation coefficients 

between xt, and xt-1, and xt-2. ARIMA models that are fitted to time-series data using AR and MA 

parameters, p and q, have coefficients Φ and θ to describe the serial correlation. An underlying 

assumption of ARIMA models is that the series being modeled is stationary [26-27]. 

V. Methodology 

The TIMESAT program is used to extract non-serially correlated metrics from remote sensing 

and meteorological time-series [38, 39]. These metrics are utilized to study the relationship 

between time-series at specific moments in time. The relationship between time-series, in turn, is 

evaluated using statistical analysis of extracted non-serially correlated seasonal metrics from 

time-series (-KBDI and NDWI). 

 

A. Data smoothing 

It often is necessary to generate smooth time-series from noisy satellite sensor or meteorological 

data in order to extract information on seasonality. The smoothing can be achieved by applying 

filters or by function fitting. Methods based on Fourier series [40-42] or least-squares fits to 

sinusoidal functions [43-45] are known to work well in most instances. These methods, however, 

are not capable of capturing a sudden, steep rise or decrease of remote sensing or meteorological 

data values that often occur in arid and semi-arid environments. Alternative smoothing and 
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fitting methods have been developed to overcome these problems [38]. An adaptive Savitzky-

Golay filtering method, implemented in the TIMESAT processing package developed by 

Jönsson P. and Eklundh L. [39], is used in this chapter. The filter is based on local polynomial 

fits. Suppose we have a time-series (ti,yi), i = 1, 2, ..., N. For each point i a quadratic polynomial 

 

2
1 2 3( )f t c c t c t= + +            (7) 

 

is fit to all 2k + 1 points for a window from n = i – k  to m = i + k by solving the system of 

normal equations 

 

ATAc = ATb             (8) 
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       (9) 

 

The filtered value is set to the value of the polynomial at point i. Weights are designated 

as w in the above expression, with weights assigned to all of the data values in the window. Data 

values that were flagged in the pre-processing are assigned weight ‘zero’ in this application and 

thus do not influence the result. The clean data values all have weights ‘one’. Residual 

negatively biased noise (e.g. clouds) may occur for the remote sensing data and accordingly the 
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fitting was performed in two steps [6]. The first fit was conducted using weights obtained from 

the pre-processing. Data points above the resulting smoothed function from the first fit are 

regarded more important, and in the second step the normal equations are solved using the 

weight of these data values, but increased by a factor 2. This multi-step procedure leads to a 

smoothed function that is adapted to the upper envelope of the data (Fig. 7). Similarly, the 

ancillary meta-data of the meteorological data from the pre-processing also were used in the 

iterative fitting to the upper envelope of the –KBDI time-series [6]. 

 

[Insert Fig. 7 around here] 

 

The width of the fitting window determines the degree of smoothing, but it also affects 

the ability to follow a rapid change. It is sometimes necessary to locally tighten the window even 

when the global setting of the window performs well. A typical situation occurs in savanna 

ecosystems where vegetation, associated remote sensing, and meteorological indices respond 

rapidly to vegetation moisture dynamics. A small fitting window can be used to capture the 

corresponding sudden rise in data values. The data in the window are scanned and if a large 

increase or decrease is observed the adaptive Savitzky-Golay method applied an automatic 

decrease in the window size. The filtering is then repeated using the new locally-adapted size. 

Savitzky-Golay filtering with and without the adaptive procedure is illustrated in Fig. 8. In the 

figure it is shown that the adaptation of the window improves the fit at the rising edges and at 

narrow seasonal peaks. 

 

[Insert Fig. 8 around here] 
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B. Extracting seasonal metrics from time-series and statistical analysis 

Four seasonal metrics were extracted for each of the rain seasons. Fig. 9 illustrates the different 

metrics per season for NDWI and –KBDI time-series. The beginning of a season, i.e. 20 % left 

of the rain season, is defined from the final function fit as the point in time for which the index 

value has increased by 20 % of the distance between the left minimum level and the maximum. 

The end of the season is defined in a similar way as the point 20 % right of the rain season. The 

80 % left and right points are defined as the points for which the function fit has increased to 80 

% of the distance between, respectively, the left and right minimum levels and the maximum. 

The current technique used to define metrics also is used by Verbesselt et al. [6] to define the 

beginning of the fire season. 

 

[Insert Fig. 9 around here] 

 

The temporal occurrence and value of each metric were extracted for further exploratory 

statistical analysis to study the relationship between time-series. The SPOT VGT S10 time-series 

consisted of four seasons (1998-2002) from which four occurrences and values per metric type 

were extracted. Twenty four occurrence-value combinations per metric type ultimately were 

available for further analysis since six weather stations were used. 

Serial correlation that occurs in remote sensing- and climate-based time-series invalidates 

inferences made by standard parametric tests, e.g. Student t test or Pearson correlation. All 

extracted occurrence-value combinations per metric type were tested for autocorrelation using 

the Ljung-box autocorrelation test [26]. Robust non-parametric techniques, such as the 
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Wilcoxon’s signed rank test were used in case of non-normally distributed data. The normality of 

the data was verified using the Shapiro Wilkinson Normality test [29]. 

Firstly, the distribution of the temporal occurrence of each metric was visualized and 

evaluated based on whether or not there was a significant difference between the temporal 

occurrence of the four metric types extracted from -KBDI and NDWI time-series. Next, the 

strength and significance of the relationship between -KBDI and NDWI values of the four 

metrics types were assessed with an OLS regression analysis. 

VI. Results and discussion 

Fig. 9 illustrates the optimized function fit and the defined metrics for the -KBDI and NDWI. 

Notice that the Savitzky-Golay function could properly define the behavior of the different time-

series. The function was fitted to the upper envelope of the data by using the uncertainty 

information derived during the preprocessing step. Results of statistical analysis based on the 

extracted metrics for -KBDI and NDWI are presented. The Ljung-box statistic indicated that the 

extracted occurrences and values were not significantly autocorrelated at a 95% confidence level. 

All p-values were greater than 0.1, failing to reject the null hypothesis of independence. 

A. Temporal analysis of the seasonal metrics 

Fig. 10 illustrates the temporal distribution of temporal occurrence from extracted metrics from 

time-series of -KBDI and NDWI. The occurrences of extracted metrics were significantly non-

normally distributed at a 95% confidence level (p > 0.1), indicating that the Wilcoxon’s signed 

rank can be used. The Wilcoxon’s signed rank test showed that -KBDI and NDWI occurrences 

of the 80 % left and right and 20 % right were not significantly different from each other at a 95 

% confidence level (p > 0.1). This confirmed that -KBDI and NDWI were temporally related. It 
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also corroborated the results of Burgan et al. and Ceccato et al. [4, 11] who found that -KBDI 

and NDWI both were related to the seasonal vegetation moisture dynamics, as measured by 

VWC.  

Fig. 10, however, illustrates that the start of the rain season (i.e. 20 % left occurrence), 

derived from the -KBDI and NDWI time-series, was different. The Wilcoxon’s signed rank test 

confirmed that the -KBDI and NDWI differed significantly from each other at a 95% confidence 

level (p < 0.01). This phenomenon can be explained by the fact that vegetation in the study area 

starts growing before the rain season starts, due to an early change in air temperature [Personal 

Communication N. Govender, Scientific Service Kruger National Park, South Africa]. This 

explained why the NDWI reacted before the change in climatic conditions as measured by the -

KBDI, given that the NDWI is directly related to vegetation moisture dynamics [4]. 

 

[Insert Fig. 10 around here] 

 

B. Regression analysis based on values of extracted seasonal metrics 

The assumptions of the OLS regression models between values of metrics extracted from -KBDI 

and NDWI time-series were verified. The Wald test statistic showed non-linearity to be not 

significant at a 95 % confidence level (p > 0.15). The Shapiro Wilkinson Normality test 

confirmed that the residuals were normally distributed at a 95% confidence level (p < 0.01) [6, 

29].  Table II illustrates the results of the OLS regression analysis between values of metrics 

extracted from -KBDI and NDWI time-series. The values extracted at the ‘20 % right’ position 

of the -KBDI and NDWI time-series showed a significant relationship at a 95% confidence level 

(p -values < 0.01). The other extracted metrics did not exhibit significant relationships at a 95% 
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confidence level (p -values > 0.1). A significant relationship between the -KBDI and NDWI 

time-series was observed only at the moment that savanna vegetation was completely cured (i.e. 

20 % right hand side). The savanna vegetation therefore reacted differently to changes in climate 

parameters such as rainfall and temperature, as measured by KBDI, depending on the 

phenological growing cycle. This phenomenon could be explained because a living plant uses 

defense mechanisms to protect itself from drying out, while a cured plant responds to climatic 

conditions [46]. These results consequently indicated that the relationship between extracted 

values of -KBDI and NDWI was influenced by seasonality. This is in corroboration with the 

results of Ji et al. [23], who indicated that seasonality had a significant effect on the relationship 

between vegetation as measured by a remote sensing index and drought index. These results 

further illustrated that the seasonal effect needs to be taken into account when regression 

techniques were used to quantify the relationship between time-series related to vegetation 

moisture dynamics. The seasonal effect also can be accounted for by utilizing auto-regression 

models with seasonal dummy variables, which take the effect of serial correlation and 

seasonality into account [23, 26]. However, the proposed method to account for serial correlation 

by sampling at specific moments in time had an additional advantage, since the influence of 

seasonality could be studied by extracting metrics at the specified moments, besides the fact that 

serial correlation was taken into account. 

 

[Insert Table II around here] 

 

It furthermore was shown that serial correlation caused an overestimation of the 

correlation coefficients when comparing results from Table I and II. The coefficient of 
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determination (R²) of Table I all were significant with an average value of 0.7, while only the 

correlation coefficient at the end of the rain season (20 % right hand side) was significant (R² = 

0.49).  This confirmed the importance of accounting for serial correlation and seasonality in the 

residuals of a regression model, when studying the relationship between two time-series. 

C. Time-series analysis techniques 

Time-series analysis models most often are used for purposes of describing current conditions 

and forecasting [25]. The models use the serial correlation in time-series as a tool to relate 

temporal observations. Future observations can be predicted by modeling the serial correlation 

structure of a time-series [26]. Time-series analysis techniques (e.g. ARIMA) can be used to 

model a time-series by using other, independent time-series [27]. ARIMA subsequently can be 

used to study the relationship between -KBDI and NDWI. However, there are constraints that 

have to be considered before ARIMA models can be applied to a time-series, e.g. drought index, 

by using other predictor time-series, e.g. satellite index.  

Firstly, the goodness-of-fit of an ARIMA model will not be significant when changes in 

the satellite index precede or coincide with those in the drought index. The cross-correlation 

function (CCF) can be used in this context to verify how time-series are related to each other. 

Time lag results in Table I indicate that the -KBDI (drought index) precedes or coincides with 

the NDWI time-series. This illustrates that ARIMA models can not directly be used to predict the 

–KBDI, with NDWI as predictor variable. Other more advanced time-series analysis techniques 

consequently are needed to model vegetation dynamics, since they will precede or coincide with 

the dynamics monitored by remote sensing indices in most of the cases. Such more advanced 

time-series analysis techniques, however, are not discussed since they are outside the scope of 

this chapter.  
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A second constraint is the limited availability of data for time-series analysis, namely 

1998 to 2002.  This is an important constraint, since two separate datasets are needed in order to 

parameterize and evaluate an ARIMA model. One set is needed for parameterization, while the 

other is used to forecast and validate the ARIMA model through comparison of the observed and 

expected values.  It accordingly is necessary to interpolate missing satellite data that were 

masked out during preprocessing to ensure adequate data are available for parameterization.  

Thirdly, the proposed sampling strategy made investigation of the time lag and 

correlation at a defined instant in time possible, as opposed to ARIMA or cross-correlation 

analysis, through which only the overall relationship between time-series can be studied [25]. 

The applied sampling strategy is thus ideally suited to study the relationship between time-series 

of climate and remote sensing data, characterized by seasonality and serial correlation.  The 

sampling of seasonal metrics minimized the influence of serial correlation, thereby making the 

study of seasonality possible.  

VII. Conclusions 

Serial correlation problems are not unknown in the field of statistical or general meteorology. 

However, the presence of serial correlation, found during analysis of a variable sampled 

sequentially at regular time intervals, seems to be disregarded by many agricultural 

meteorologists and remote sensing scientists. This is true despite abundant documentation 

available in the traditional meteorological and statistical literature. An overview therefore was 

presented of the most important time-series analysis techniques and concepts, i.e. stationarity, 

autocorrelation, differencing, decomposition, autoregression and ARIMA.  

A method was proposed to study the relationship between a meteorological drought index 
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(KBDI) and remote sensing index (NDWI), both related to vegetation moisture dynamics, by 

accounting for the serial correlation effect. The relationship between -KBDI and NDWI was 

studied by extracting non-serially correlated seasonal metrics, e.g. 20 % and 80 % left and right 

hand side metrics of the rain season, based on a Savitzky-Golay fit to the upper envelope of the 

time-series. Serial correlation between the extracted metrics was shown to be minimal and 

seasonality resulted to be an important factor influencing the relationship between NDWI and -

KBDI time-series. Statistical analysis using the temporal occurrence of the extracted metrics 

revealed that NDWI and -KBDI time-series are temporally connected, except at the beginning of 

the rain season. The fact that the savanna vegetation starts re-greening before the start of the rain 

season explains this inability to detect the beginning of the rain season. The values of the 

extracted seasonal metrics of NDWI and -KBDI were significantly related only at the end of the 

rain season, namely at the 20 % right hand side value of the fitted curve. The savanna vegetation 

at the end of rain season was cured and responded strongly to changes in climatic conditions 

monitored by the -KBDI, such as rain and temperature. The relationship between -KBDI and 

NDWI consequently changes during the season, which indicates that seasonality is an important 

factor that needs to be taken into account. It moreover was shown that correlation coefficients 

estimated by OLS regression analysis were overestimated due to the influence of serial 

correlation in the residuals. This confirmed the importance of taking serial correlation of the 

residuals into account by sampling non-serially correlated seasonal metrics when studying the 

relationship between time-series. 

The serial correlation effect consequently was taken into account by extraction of 

seasonal metrics from time-series. The seasonal metrics in turn could be used to study the 

relationship between remote sensing and ground-based time-series, such as meteorological or 
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field measurements. A better understanding of the relationship between remote sensing and in 

situ observations at regular time intervals will contribute to the use of remotely sensed data for 

the development of an index that represents seasonal vegetation moisture dynamics. 
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Fig. 1. The Kruger National Park study area with the weather stations used in analysis (right). 

South Africa is shown with the borders of the provinces and the study area (top left). 
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Fig. 2. The temporal relationship between NDWI and -KBDI time-series for the ‘Satara’ weather station (Fig. 1). 
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Fig. 3. Result of the OLS regression fit between -KBDI and NDWI as dependent and 

independent variables, respectively, for the Satara weather station (n=157). Confidence intervals 

(---) at a 95% confidence level are shown, but are ‘narrowed’ due to serial correlation in the 

residuals. 
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 (a) 

 

 

(b) 

 
 
Fig. 4. The autocorrelation function (ACF) for (a) -KBDI and (b) NDWI time-series for the 

Satara weather station. The horizontal lines on the graph are the bounds 1.96 n= ±  (n=157). 
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Fig. 5. The results of the seasonal trend decomposition (STL) technique for NDWI time-series of 

Satara weather station. The original series can be reconstructed by summing the seasonal, trend, 

and remainder. In the y-axes the NDWI-values are indicated. The grey bars at the right hand-side 

of the plots illustrate the relative data range of the time-series. 
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Fig. 6. The cross-correlation plot between stationary –KBDI and NDWI time-series of the Satara 

weather station, where CCF indicates results of the cross-correlation function. The horizontal 

lines on the graph are the bounds ( 1.96 n= ± ) of the approximate 95% confidence interval. 
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(a)        (b) 

        

Fig. 7. The Savitzky-Golay filtering of NDWI (——) is performed in two steps. Firstly, the local 

polynomials are fitted using the weights from the preprocessing (a). Data points above the 

resulting smoothed function (▬ ▬ ▬) from the first fit are attributed a greater importance. 

Secondly, the normal equations are solved with the weights of these data values increased by a 

factor 2 (b). 
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(a)       (b) 

 

Fig. 8. The filtering of NDWI (——) in (a) is done with a window that is too large to allow the 

filtered data (▬ ▬ ▬) to follow sudden increases and decreases of underlying data values. The data 

in the window are scanned and if there is a large increase or decrease, an automatic decrease in 

the window size will result. The filtering is then repeated using the new locally adapted size (b). 

Note the improved fit at rising edges and at narrow peaks. 
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(a)       (b) 

 

Fig. 9. The final fit of the Savitzky-Golay function (▬ ▬ ▬) to the NDWI (a) and –KBDI (b) series 

(——), with the four defined metrics, i.e. 20 % left and right and 80 % left and right (■), overlaid 

on the graph. Points with flagged data errors (+) were assigned weights of zero and did not 

influence the fit. A dekad is defined as a 10-day period. 
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Fig. 10. Box plots of the temporal occurrence of the four defined metrics, i.e. 20 % left and right 

and 80 % left and right, extracted from time-series of –KBDI and NDWI. The dekades (10-day 

period) are shown on the y-axis and are indicative of the temporal occurrence of the metric. The 

upper and lower boundaries of the boxes indicate upper and lower quartiles. The median is 

indicated by the solid line (▬) within each box.  The whiskers connect the extremes of the data, 

which were defined as 1.5 times the inter-quartile range. Outliers are represented by (ο). 
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Table I. Coefficients of determination of the OLS regression model between -KBDI and NDWI 

are shown (n = 157). The time expressed in dekades of maximum correlation of the cross-

correlation between -KBDI and NDWI also is indicated. 

 

Station R² Time lag 

Punda Maria 0.74 -1 

Letaba 0.88 0 

Onder Sabie 0.72 0 

Pretoriuskop 0.31 0 

Shingwedzi 0.72 -1 

Satara 0.81 0 

 

Table II. Coefficients of determination of the OLS regression models (NDWI ~ -KBDI) for the 

four extracted seasonal metric values between -KBDI and NDWI time-series of (n = 24 per 

metric).  

 

NDWI ~ -KBDI R² p-values 

20 % left 0.01 0.66 

20 % right 0.49 < 0.01 

80 % left 0.00 0.97 

80 % right 0.01 0.61 
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