
 

Reducing Reconfiguration Time of Reconfigurable Computing Systems in 

Integrated Temporal Partitioning and Physical Design Framework 

 
Farhad Mehdipour

1
, Morteza Saheb Zamani

1
, Hamid Reza Ahmadifar

3
,  

Mehdi Sedighi
1
 and Kazuaki Murakami

2
 

 

1
Amirkabir University of Technology 

 IT and Computer Engineering Department 

#424 Hafez Ave., Tehran, Iran 

{mehdipur, szamani, msedighi}@ce.aut.ac.ir 

 

 

2
Kyushu University  

Dep. of Informatics  

Graduate School of Information Science and 

Electrical Engineering 

 Fukuoka, Japan 

murakami@i.kyushu-u.ac.jp
3
Guilan University  

Engineering Faculty 

Rasht, Iran 

 

 

 

 
Abstract 

In reconfigurable systems, reconfiguration latency is a 

very important factor impact the system performance. In 

this paper, a framework is proposed that integrates the 

temporal partitioning and physical design phases to 

perform a static compilation process for reconfigurable 

computing systems. A temporal partitioning algorithm is 

proposed which attempts to decrease the time of 

reconfiguration on a partially reconfigurable hardware. 

This algorithm attempts to find similar single or pair of 

operations between subsequent partitions. Considering 

similar pairs instead of single nodes brings about less 

complexity for routing process. By using this technique, 

smaller reconfiguration bit-stream is obtained, which 

directly decreases the reconfiguration overhead time at 

the run-time. A complementary algorithm attempts to 

increase the similarity of subsequent partitions by 

searching for similar pairs and using a technique called 

dummy node insertion. An incremental physical design 

process based on similar configurations produced in the 

partitioning stage improves the metrics over iterations.  

 

1. Introduction 

Recent advances in the programmable hardware and 

architecture have resulted in the introduction of 

reconfigurable computing systems (RCS) [1, 3]. These 

systems usually consist of a host processor connected to a 

reconfigurable hardware, like a field programmable gate 

array (FPGA) [2, 3]. Reconfigurable systems offer a 

compromise between the performance advantages of fixed 

functionality of ASIC and the flexibility of general-

purpose processors [13].  Currently, it appears that 

general-purpose CAD tools for reconfigurable computing 

systems that support design and implementation of desired 

applications are not readily available. Absence of 

appropriate design methodology and appropriate compiler 

and long reconfiguration time of programmable devices 

are some of the main challenges in reconfigurable 

computing [6, 7].  

To implement a large circuit on an FPGA, it has to be 

partitioned into multiple stages. Then, the configurations 

of the FPGA are swapped in and out to implement each 

stage one by one and perform the function of the original 

circuit. This type of partitioning is known as temporal 

partitioning [14]. Using partially reconfigurable devices, 

parts of the design can be replaced while other parts are 

still active. This is useful in systems that must implement 

many modules at different periods of time on a device [20].  

The focus of this work is physical design as well as 

temporal partitioning. Two major phases of physical 

design are placement and routing. Physical design for 

reconfigurable computing systems is often done according 

to traditional placement and routing algorithms used for 

FPGAs [18]. In the placement phase, optimal positions of 

modules on the target device should be determined. 

Minimizing the connection length, area and the longest 

wire are some of the main objectives in this process [18]. 

Simulated annealing has long been one of the most 

1-4244-0054-6/06/$20.00  ©2006 IEEE



successful placement algorithms. Routing is the process of 

identifying exactly, which routing segments and switches 

should be used to create connected paths from net sources 

to net destinations for all nets in a circuit. Global and 

detailed routing should be done after placement for 

creating the routes between modules [4]. 

In this paper, a new temporal partitioning algorithm for 

partitioning and scheduling is proposed which tries to 

increase similarity of subsequent configurations in such a 

way that the time of reconfiguration on a partially 

reconfigurable hardware decreases. In this version of 

temporal partitioning algorithm, the similarity of node 

pairs and interconnection between them are taken into 

account. The similarity of the interconnections similar 

between node pair can largely reduce the reconfiguration 

time because of the major effect of routing stage in 

compilation process. Integration of temporal partitioning 

as a post synthesis stage and physical design as a low level 

process is one of the main contributions of this work.  

We explain temporal partitioning and physical design 

phases and related works in Section 2. New similarity-

based temporal partitioning algorithms, which exploit the 

single node and node pair similarity, are proposed in 

Section 3. Section 3 explains also the details of dummy 

node insertion technique as a new method for increasing 

node pair similarity in subsequent configurations. Section 

4 explains the integrated temporal partitioning and 

physical design approach. In Section 5, the details of our 

framework are explained and experimental results are 

presented. Finally, Section 6 concludes the paper. 

2. Related Works 

Temporal partitioning can be stated as partitioning a 

data flow graph into a number of partitions such that each 

partition can fit in the device and also, dependencies 

among the graph nodes are not violated. For a partially-

reconfigurable hardware, parts of the hardware can be 

programmed without disturbing the rest of the design since 

common parts of two successive configurations can 

remain unchanged. 

Karthikeya et al. [10] proposed algorithms for temporal 

partitioning and scheduling of large designs on area 

constrained reconfigurable hardware, but do not consider 

the reconfiguration time overhead. Bobda [6] proposed 

two methods to solve temporal partitioning problem. The 

first one is an enhancement of the well-known list vector 

space. The second method uses a spectral placement to 

position the modules in a three-dimensional space. In [21], 

Spillane and Owen have focused on finding a sequence of 

conditions for activating an appropriate component at a 

particular time and optimization successive configurations 

to achieve the desired trade-offs among reconfiguration 

time, operation speed and area. SPARCS [9] is an 

integrated partitioning and synthesis framework which has 

a temporal partitioning tool to temporally divide and 

schedule the tasks on a reconfigurable system. SPARCS 

does not perform physical design with respect to the 

partitions generated by the temporal partitioner. Luk et al. 

[12] proposed a methodology to take advantage of 

common operators in successive partitions. It attempts to 

reduce configuration time and thus the application 

execution time. This model does not consider timing 

aspects and does not perform any partitioning but 

Tanougust et al. [22] attempt to find the minimum area 

while meeting timing constraints.  

In our previous work [15], a similarity based 

partitioning algorithm was proposed which addresses the 

long reconfiguration time of the programmable hardware. 

The proposed algorithm finds modules with identical 

functionality in a data flow graph and then attempts to 

increase the similarity of adjacent configurations. This 

results in a smaller placement time for similar partitions in 

FPGA at the compilation process and shorter 

reconfiguration time.  Our proposed algorithm is 

performed at the design time and therefore, there is 

enough time to explore for the optimality of design criteria.  

We develop a static compiler and use traditional 

iterative placement and routing algorithms for producing 

high quality placed and routed configurations. We 

integrate temporal partitioning and physical design and 

develop a framework, which performs partitioning taking 

design performance into account. None of the above 

approaches proposed physical design algorithms to be 

performed after temporal partitioning. In this work pair 

similarity based algorithms as a complementary algorithm 

for temporal partitioning is proposed which attempt to 

increase the similarity of partitions by using a new 

technique called dummy node insertion. 

3.  Similarity-Based Temporal Partitioning 

Algorithms 

In our previous work [15], A new factor, namely 

similarity value, has been defined, which determines the 

level of similarity (in terms of the functionality of their 

nodes) between two succeeding partitions. Our main goal 

is to reduce the reconfiguration time and overall run-time 

of applications and the area needed for their 

implementation. We assume that the target programmable 

device is partially programmable. In this section, first, we 

represent a temporal partitioning algorithm, which works 

based on the similarity factor and considers the single 

node similarity [15]. Then, the similarity of node pairs is 

taken into account to consider the interconnection between 

nodes and reducing the routing process complexity and 

reconfiguration time.  

The proposed algorithm in [15] takes a data flow graph 

(DFG), the nodes of which represent pre-designed firm 

modules in a library. In order to ensure that all 



computations will be performed correctly when the circuit 

is decomposed into stages, certain temporal constraints 

must be satisfied [14]. For example, a node can be 

executed if all of its predecessors have already been 

executed. In an algorithm, in the first stage, level 

assignment is performed according to as soon as possible 

(ASAP) algorithm [6, 16]. ASAP schedules a data flow 

graph in an attempt to minimize latency by topologically 

sorting of the nodes of the graph. In the partitioning stage 

of DFG, the level number of modules, their sizes and the 

size of target hardware are the most important factors 

which should be considered. After generating initial 

partitions, a complementary iterative algorithm tries to 

increase the similarity between two successive partitions.   

3.1. Node Pair Similarity Algorithm 

By using the algorithm presented in [15], only non-

similar parts of configurations have to be placed and 

routed. This brings about the reduction in time needed to 

generate configurations and also in run-time 

reconfiguration latency.  

Routing is a time consuming process at the compilation 

phase and also in routing resources reconfiguration phase. 

Generally, about 70-90% of configuration bit-stream 

relates to routing resources and interconnections. In 

addition, 80% of path delay is related to interconnections 

[24]. In this section, a new temporal partitioning algorithm 

is proposed, which considers the node pairs and the 

interconnections between them as a basic component to 

apply the similarity-based algorithm but first, the 

definitions of some terms and symbols are presented. 

Definition 1: For a node i in a DFG, F(i) represents a 

module in the module library with the same functionality 

as the node i. 

Definition 2: For two nodes I and j in a DFG, and a 

partition kP of the DFG, NP(i,j,k) is a Node Pair where 

kPi∈  and kPj∈ and i and j represent two nodes in the 

DFG with an edge from i to j. 

Definition 3: For two node pairs NP(i1, j1, k) and  

NP(i2, j2, k+1) in a DFG, and two consecutive 

partitions kP and 1+kP  of the DFG, SNP(i1, j1, i2, j2 , k) is a 

Similar Node Pair where kPji ∈11,  and 122 , +∈ kPji and  

F(i 1 ) = F(i 2 ) and F(j 1 ) = F(j 2 ). 

Definition 4: Similar Node Pair Set (SNPS) of partition 

kP  is defined as the set of all Similar Node Pairs in kP  

and 1+kP :  

}
,

,
),,,,({)(

122

11
2211

+∈∀

∈∀
=

k

k
k

Pjiand

Pji
kjijiSNPPSNPS

Definition 5: Partition Pair Similarity Value (PPSV) for 

Pk is the number of similar pairs between two subsequent 

partitions k and k+1:  )()( kk PSNPSPPPSV =  

Definition 6: Graph Pair Similarity Value is the number 

of total similar pairs in the DFG. 

∑
−

=

=
1

1

)(

N

k

kPPPSVGPSV , N is the number of partitions  

Definition 7: Dummy Node is a node, which performs no 

operation such as addition to 0 or multiplication by 1 and 

does not affect the running sequence of DFG. 

In the proposed pair similarity based algorithm, first, 

input DFG is partitioned using previous temporal 

partitioning algorithm, which considers the 

reconfiguration overhead time and area constraints. Then 

node pairs list in each partition is created and similar pairs 

in subsequent configurations is found. 

In Figure 1(a), a DFG is shown. In Figure 1(b), this DFG 

is partitioned and node pairs for each partition are shown. 

Figure 1(c), shows the single node similarity in subsequent 

partitions and Figure 1(d), shows the similar node pairs 

extracted from the DFG. 

3.2. Dummy Node Insertion Algorithm 

In the configurations generated by the compilation 

process, some wasted area is usually produced. This area 

may be large enough to insert extra small modules. In this 

case, small modules can be selectively added to each 

partition to increase node pair similarity. A new node 

should be dummy node which performs a null operation. 

Dummy node insertion algorithm is as follows: 

1. Perform temporal partitioning according to temporal 

partitioning algorithm in [15]. 

2. Create node pair list for each partition. 
3. For k= 0 to n-1 (n is the number of partitions) 

3.a. Select a node pair NP( i, j, k) from the list of node 

pairs in kP . 

3.b. Select node 1+∈ kPt  in such a way that t is similar 

to node kPi∈ (i.e. F(i)=F(t)). If there is not          any 

node in 1+kP  similar to i, repeat steps 3.a and 3.b 

3.c. Add a dummy node l to 1+kP  similar to 

node kPj∈ . 

3.d. Compute total configuration area plus the memory 

required for intermediate data between kP  and 1+kP  in 

partition 1+kP . 

3.e. If the space required by partition  1+kP  is smaller 

than the target hardware area, then commit the node 

insertion operation and perform necessary changes   in 

dependencies between nodes of partition 1+kP . In this 

case, NP(t,l,k) is added to SNPS(Pk) and so, PPSV(Pk)  

 



 
(a) 

  
(b) 

 
(c) 

  
(d) 

Figure1.(a) A task graph, (b) a partitioned 
task graph and node pairs, (c) single similar 
nodes and (d) similar node pairs. 

 
and GPSV  increases by 1. 

3.f. If the space required by partition 1+kP is larger than 

the target hardware area, then remove the dummy node 

l from 1+kP . In this case, PPSV(Pk) and GPSV  remain 

unchanged. 

3.g. Repeat the steps 3.b to 3.f for all node pairs in 

partition kP . 

 In Figure 2(a), a partitioned DFG is shown. Only one 

similar pair (MUL, SUB) exists in the second and third 

partitions, so PPSV(P2)= 1 and GPSV= 1. Insertion of a 

dummy node ADD to the second partition adds a new 

node pair (SUB, ADD) to it (Figure 2(b)). This pair is 

similar to the pair (SUB, ADD) in the first partition. In 

addition, insertion of a dummy node SUB in the third 

partition adds another new pair (SUB, SUB) to the second 

and the third partitions. Therefore, the number of similar 

pairs in the DFG increases by 2 (GPSVnew= 3).  

3.3. Choosing Between Single and Pair Similarity 

The single and the pair similarity algorithms were 

presented for temporal partitioning. In the former case, the 

number of similar nodes between subsequent 

configurations is considered. This similarity decreases the 

placement time and does not affect the routing process. On 

the other hand, in the latter case, the interconnection 

between modules is also taken into account. Therefore, 

similar nodes in two adjacent partitions remain unchanged 

during placement. In addition, routing resources between 

the two nodes remain unchanged during routing. Thus, by 

using pair similarity instead of single node similarity, 

complexity and the time of both placement and routing 

processes are reduced. In addition, during run-time 

reconfiguration, reconfiguration latency decreases 

accordingly. 

In the single similarity case, the part of the bit-stream 

which is related to the placement of similar modules is not 

reloaded into the hardware and the reconfiguration time of 

logic blocks decreases. On the other hand, in the pair 

similarity case, both the placement and routing part of the 

bit-streams related to the similar node pair and their 

interconnections are not need to be loaded into the 

hardware. Therefore, the time needed to reconfiguration 

logic blocks and routing resources decrease. 

Assume that S is the single node similarity value and P 

is the node pair similarity value in DFG. There are S 

modules, whose positions remain unchanged in the 

subsequent configurations. The value of S affects the 

placement process time in compilation and reconfiguration 

phases. On the other hand, there are 2xP similar nodes and 

P similar interconnections in the configurations. Therefore, 

the placement of 2xP modules plus the routing of P 

connection wires are not performed and also 

reconfiguration time of 2xP logic blocks and some parts of 

routing resources are not needed to perform in run-time 

reconfiguration phase. 



 
(a) 

 

ADD SUB ADD MUL

ADD

SUB

ADD

SUB

SUB

ADD

SUB

MUL

SUB

 
 (b) 

Figure 2. (a) A partitioned task graph that  
have one similar pair and (b) dummy node 
insertion algorithm adds another similar 
pair to the second partition 
  

We assume that γ  is interconnection efficiency, which 

describes the interconnection routing weight relative to the 

placement of logic blocks. For example, if we assume that 

γ  is set to 2, it represents that interconnection routing 

between two modules has the same effect as the placement 

of two modules. We choose one of the single or pair 

similarity methods for generating partitions. If the overall 

similarity value of single similarity method (S) is greater 

than 2xP+ γ x P, then we choose the single similarity 

method; otherwise we choose the pair similarity method.  

4. Integrated Temporal Partitioning and 

Physical Design  

The proposed approach focuses on physical design 

stage as well as temporal partitioning. We attempt to use 

benefits of our greedy temporal partitioning approach in 

physical design process to achieve better performance in a 

reconfigurable system. VPR is one of the popular tools for 

placement and routing of FPGA designs [4, 5]. We used 

this tool as an appropriate option for developing our 

framework. VPR uses traditional FPGA placement and 

routing algorithms but we have modified it for the 

placement and routing of each configuration generated by 

our temporal partitioner. VPR uses simulated annealing 

for placement.  Our temporal partitioning algorithm 

generates a number of configurations in the first stage. 

Then, we add input and output registers as data memories 

for transferring data between successive configurations. 

The memory usage of each configuration depends on the 

number of output signals used in the succeeding 

configuration [15].  

The number of memory cells, which must be added to 

the netlist of each partition, is equal to the memory usage 

of that partition. A netlist is then generated for each 

configuration and the modified VPR is applied to it. VPR 

can generate the final configurations on a general island-

style FPGA [23, 4]. This programmable device has an 

island-style architecture, which contains a square array of 

logic blocks called configurable logic blocks (CLBs) 

embedded in a uniform mesh of routing resources. The 

FPGA CLBs contain one or more Look-up Tables (LUTs), 

that can be programmed to perform any logic function of a 

small number of inputs (typically 4-5), a small number of 

simple logic gates and one or more flip-flops [24]. 

We modified some parts of the placement algorithm 

used in VPR. In our tool, after generating the first 

configuration, the placement of subsequent partitions is 

performed incrementally. According to our design flow, 

common blocks in two subsequent configurations are 

fixed and remain unchanged during the placement phase 

of the second configuration. Since an incremental 

placement algorithm is performed, swapping and moving 

fixed blocks should be avoided. In this way, the run time 

of placement reduces, accordingly.  

5. Experimental Results 

In our developed framework, the nodes in the input 

data flow graphs are firm-modules. A library consisting of 

the required firm modules was developed. Figure 3 

illustrates the CAD flow we used for generating firm-

modules. First, each module was described in VHDL and 

was then synthesized by Leonardo Spectrum synthesis tool 

to obtain a structural description of the module based on 

logic gates. The SIS synthesis package [17] was used to 

perform technology-independent logic optimization of 

each module circuit. Next, each circuit was technology-

mapped into 4-LUTs and flip flops by FlowMap [8]. The 

output of FlowMap is a netlist of LUTs and flip flops 

in .blif format. T-VPack [4, 5] then packed this netlist of 

4-LUTs and flip flops into more coarse-grained logic 

blocks, and generated a netlist in .net format. VPR [5] then 

placed and routed the module. 

In this way, the DFG nodes were generated as firm-

modules and added to our library. The architecture of the 

target programmable device was chosen to be a general 

island-style FPGA. We assume that it is a partially-

reconfigurable device. To our knowledge, there is not any 

common use or standard benchmarks for static data flow 



graphs. We chose six static data flow graphs and applied 

our tool to them. The first five of them were selected from 

[6] and [11]. The sixth one was a data flow graph for 

FEAL cryptography algorithm [19].  

Input DFGs were implemented in a reconfigurable 

hardware. Now, we show how our similarity based 

temporal partitioning and incremental physical design can 

affect the overall performance of the application in a 

reconfigurable system. Table 1 shows the results of 

incremental and non-incremental implementations 

regarding different criteria, such as placement cost (in 

terms of wire length [3]), critical path delay and the 

number of routing channels used. 

The quality of configurations produced by the 

incremental approach is comparable with those obtained 

using the non-incremental approach but the incremental 

approaches produce the results in a shorter time. In other 

words, increasing the similarity of configurations and 

using the incremental approach resulted in less placement 

cost and usually higher speed for the configurations 

produced. Table 1 also shows that for some of the DFGs, 

the number of required routing channels decreases because 

of the better quality of placement achieved in the 

incremental approach. 

We assume that the reconfiguration time can be 

approximated by a linear function of the total area of 

functional units being downloaded, which is realistic in 

practice. The full configuration time is constant for a 

particular FPGA. For the DFG we used for our 

experiments, run time of each configuration is much less 

than a microsecond, whereas the full reconfiguration of a 

programmable device is typically done in several 

microseconds. 

Therefore, reducing the reconfiguration time decreases the 

overall run time of the application accordingly. To 

evaluate our incremental approach, we attempted a non-

incremental placement and routing of the designs after the 

similarity based temporal partitioning.  

 

 
Figure 3. Generating library cells in .net format 

Table 1. Results of incremental and non-
incremental compilation 

Non-Incremental Incremental Data flow 

Graph 
 

Placement 

Cost 

Critical 

Path 

Delay 

(nsec) 

Channel 

Width 

Used for 

Routing 

Placement 

Cost 

Critical 

Path 

Delay 

(nsec) 

Channel 

Width 

Used for 

Routing 

DFG1 2.64 29.34 3 2.59 36.48 3 

DFG2 16.33 64.67 5 14.5 64.67 5 

DFG 3 1.05 8.44 3 0.97 7.84 2 

DFG 4 16.50 24.33 4 16.20 27.34 2 

DFG 5 42.58 72.29 5 41.35 70.01 5 

DFG 6 

(FEAL) 
4.54 22.25 3 4.43 13.44 3 

 

In other words, for a DFG, the placement and routing of 

each configuration are performed from the scratch in an 

attempt to obtain better results. For all the DFGs attempted, 

the reconfiguration time is reduced due to some common 

and similar parts in subsequent configurations. 

Preliminary experiments were performed according to 

the single similarity algorithms.  Figure 4, shows the 

design flow used to generate configurations based on 

single and pair algorithms. Input DFG is partitioned and 

fed to both of two single and pair similarity algorithms. 

According to approach mentioned in Section 3.4, one of 

the two outputs is selected and then the partitions 

generated are used to generate the netlist of each partition. 

In final step, placement and routing of each netlist is 

performed and final configurations are generated.  

Two single and pair similarity algorithms are compared 

in Table 2. Experiments show that the dummy node 

insertion algorithm can increase the number of similar 

pairs in the generated configurations. Furthermore, the 

time needed to run the placement stage is reduced 

accordingly because the CLB’s in similar operations have 

fixed positions. According to [24], we assume that the 

routing resources bit-stream is at least 70% of the total bit-

stream size. Table 3 shows the effect of single similarity 

algorithm on the placement time, as well as the effect of 

pair similarity on the placement and routing time at the 

compilation phase. In addition, reconfiguration speedup is 

shown in Table 3 for both of the similarity-based 

algorithms. 

6. Conclusion 

In this paper, a framework was proposed for the static 

compilation of reconfigurable computing systems. This 

framework integrates the temporal partitioning and 

physical design stages. Similarity-based algorithms 

proposed as complementary algorithms to temporal 

partitioning which attempt to increase the similarity of 

adjacent partitions and so, decrease the physical design 

process time and the latency of run-time reconfiguration 



overhead. Pair similarity-based algorithm considers two 

nodes and the interconnection between them to decrease 

the routing time in the compilation stage and run-time 

reconfiguration phase. Using a dummy node insertion 

technique brings about more similarity between adjacent 

partitions. 

Our experiments show that the presented algorithm 

increases the similarity of partitions, and consequently, the 

hardware reconfiguration time decreases accordingly. An 

iterative incremental approach, developed for the 

placement stage, generated good quality configurations in 

a shorter time comparing with the non-incremental 

algorithm. In addition, this approach reduced the total 

application run-time. 

Temporal

Partitioning

Input  DFG

Library of Firm

Modules

Partitions of

input DFG

Flattend Netlist

of each Partition

VPR: Placement &

Routing of each

Partition

Final

Configurations

Single Similarity

Algorithm

Pair Similarity

Algorithm

Choose Single or

Pair Similarity Algorithm

 
Figure 4. Stages of final configurations 
generation by using the single and pair 
similarity algorithms 

References 

[1] Barr M, A reconfigurable computing primer, Miller Freeman 

Inc., 1998. 

[2] Bazargan K and Kastner R and Sarrafzadeh M, Fast template 

placement for reconfigurable computing systems, IEEE 

Design and Test of Computers, January-March 2000, pp. 68-

83. 

[3] Bazargan K and Orgenci M and Sarrafzadeh M, Integrating 

Scheduling and Physical Design into a Coherent Compilation 

Cycle for Reconfigurable Computing Architectures,  

Design Automation Conference (DAC), 2001, pp. 635-640. 

[4] Betz V and Rose J and Marquardt, Architecture and CAD for 

deep-submicron FPGAs, Kluwer Academic Publishers, 1999. 

[5] Betz V, VPR and T-VPack1 user’s manual (Version 4.30), 

http://www.eecg.toronto.edu/~vaughn, 2000.  

[6] Bobda C, Synthesis of dataflow graphs for reconfigurable 

systems using temporal partitioning and temporal placement, 

Ph.D thesis, Faculty of Computer Science, Electrical 

Engineering and Mathematics, University of Paderborn, 

2003.  

[7] Compton K and Hauck S, Reconfigurable computing: A 

survey of systems and software, ACM Computing Surveys, 

34 (2) (2002) 171-210. 

[8] Cong J and Ding Y,  Flowmap: An optimal technology 

mapping algorithm for delay optimization in lookup-table 

based FPGA designs,  IEEE Transactions on CAD (1994)1-

12. 
 

[9] Govindarajan S and Ouaiss I and Kaul M and Srinivasan V 

and Vemuri R,  An effective design approach for 

dynamically reconfigurable architectures,  IEEE Symposium 

on FPGAs for Custom Computing Machines, 1998, pp.312-

320. 

[10] Karthikeya M and Gajjala P and Bhatia D,  Temporal 

partitioning and scheduling data flow graphs for 

reconfigurable computers,  IEEE Transactions on Computers, 

48 (6) (1999) 579-590. 

[11] Kastner R and Kaplan A and Sarrafzadeh M, Synthesis 

techniques and optimizations for reconfigurable systems, 

Kluwer-Academic Publishers, 2004.  

[12] Luk W and Shirazi N and Cheung P Y K, Modeling and 

optimizing run-time reconfiguration systems, in:K.L. Pocek, 

J. Arnold (Eds.), Proceedings of IEEE Symposium on 

FPGA’s Custom Computing Machines, IEEE Computer 

Society Press, 1996, pp.167-176. 

[13] Maestre R and Kurdahi F J and Bagherzadeh N and Singh H 

and Hermida R and Fernandez, M, Kernel scheduling in 

reconfigurable computing, Proceedings of Design, 

Automation and Test in Europe Conference and Exhibition, 

1999, pp.90-96.  

[14] Mak W.K and Young E.F.Y, Temporal logic replication for 

dynamically reconfigurable FPGA partitioning, IEEE 

Transactions of Computer-Aided Design of Integrated 

Circuits and Systems, 22(7):952-959, 2003. 

[15] Mehdipour F and Saheb Zamani M and Sedighi M, A New 

Iterative Design Flow for Static Compilation of 

Reconfigurable Computing Systems, Proceedings of the 10th 

International Symposium on Integrated Circuits, Devices and 

Systems, Singapore, 2004. 

[16] Micheli G.D, Synthesis and optimization of digital circuits, 

McGraw-Hill, 1994. 



[17] Sentovich E M, SIS: A system for sequential circuit 

analysis, Tech. Report No.UCB/ERLM92/41, University of 

California, Berkeley, 1992. 

[18] Sherwani N, Algorithms for VLSI physical design 

automation, Kluwer-Academic Publishers, Third Edition, 

1999. 

[19] Shimizu A and Miyaguchi S, Fast data encipherment 

algorithm FEAL,Transaction of IECE of Japan, J70-D (7) 

(1987)1413-1423. 

[20] Shirazi N and Luk W and Cheung P Y K, Automating 

production of run-time reconfigurable designs, IEEE 

Symposium on FPGAs for Custom Computing Machines, 

IEEE Computer Society Press, 1998, pp. 147-156.  

[21] Spillane J and Owen H, Temporal partitioning for partially 

reconfigurable field programmable gate arrays, IPPS/SPDP 

Workshops, 1998, pp. 37-42. 

[22] Tanougast C and Berviller Y and Brunet P and Weber S and 

Rabah H , Temporal partitioning methodology optimizing 

FPGA resources for dynamically reconfigurable embedded 

real-time system,  Microprocessors and Microsystems, 27 

(2003)115-130. 

[23] Tessier R, Fast place and route approaches for FPGAs, PhD 

thesis, Massachussetts Institute of Technology, 1999. 

[24]www.cs.caltech.edu/research/ic/transit/rcgp/chapter1.6.1.htm 

 
Table 2. Comparison of single and pair similarity algorithms 

Single Similarity Alg. Pair Similarity Alg. Data flow 
Graph 

 
No. of similar single nodes 

(before running similarity-
based algorithm) 

No. of similar single nodes 

(after running similarity-based 
algorithm) 

No. of similar pairs (before 

dummy node insertion 
algorithm) 

No. of similar pairs (after 

dummy node insertion 
algorithm) 

DFG1 0 2 1 2 

DFG2 3 3 0 0 

DFG 3 0 0 0 0 

DFG 4 4 4 0 2 

DFG 5 5 5 0 2 

DFG 6 

(FEAL) 

9 11 5 7 

 

Table 3.  Single and pair similarity algorithms effects on compile time and reconfiguration speedup 
Single Similarity Alg. Pair Similarity Alg. Data flow 

Graph 
 

Placement 

time 
improvement 

Reconfiguration 

speedup 

Placement time 

improvement 

Routing time 

improvement 

Reconfiguration 

speedup 

DFG1 10% 1.03 13.7% 14% 1.16 

DFG2 5.8% 1.02 0.0% 0.0% 0 

DFG 3 0.0% 0.0 0.0% 0.0% 0 

DFG 4 50% 1.17 48% 13.5% 1.31 

DFG 5 64% 1.24 18% 7.5% 1.12 

DFG 6 

(FEAL) 

37.5% 1.12 58% 16.6% 1.32 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


