NetStub: A Framework for Verification of Distributed Java
Applications’

Elliot D. Barlas and Tevfik Bultan
Computer Science Department
University of California
Santa Barbara, CA 93106, USA
{ebarlas,bultan}@cs.ucsb.edu

ABSTRACT

Automated verification of distributed programs is a chal-
lenging problem. Since the behavior of a distributed pro-
gram encompasses the behavior of the network, possible con-
figurations of the network have to be investigated during
verification. This leads to very large state spaces, and auto-
mated verification becomes infeasible. We present a frame-
work that addresses this problem by decoupling the behavior
of distributed programs from the behavior of the network.
Our framework is based on a set of stub classes that replace
native methods used in network communication and enables
verification of distributed Java applications by isolating their
behavior from the network. The framework supports two
modes of verification: unit verification and integration ver-
ification. Integration verification checks multiple interact-
ing distributed application components by running them in
a single JVM and simulating the behavior of the network
within the same JVM via stub classes. Unit verification
targets a single component of a distributed application and
requires that the user write an event generator class that
utilizes the API exported by the framework. While unit
verification only checks a single application component, it
benefits from a greatly reduced state space compared do
that of integration verification.

1. INTRODUCTION

In recent years, model checking software has become an
active area of research [6, 4, 3, 11, 12, 5, 8]. Model check-
ing is an attractive alternative to software testing since it
provides a way to systematically explore the state space of
a program, and produces a counter-example trace in case a
bug is detected.

Software model checkers can be divided into two cate-
gories: symbolic model checkers (such as [3, 5, 8]) and ex-
plicit state model checkers (such as [6, 4, 11, 12]). Symbolic

*This work is supported by NSF grants CCF-0614002 and
CCF-0341365.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASE’07, November 4-9, 2007, Atlanta, Georgia, USA.

Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

model checkers encode a program’s states symbolically (for
example as Boolean predicates as in [3]) which typically re-
quires an abstraction that maps the states of the program
to symbolic states. Explicit-state model checkers, on the
other hand, explicitly store the states of the program and
do not require an extra abstraction step. An explicit-state
model checker systematically explores the state space of a
program by visiting the program states based on a traversal
algorithm such as depth-first or breadth-first search.

In order to develop an explicit-state model checker, one
has to decide how to capture the program state. Since com-
puter systems themselves are built using layers of abstrac-
tions there is no obvious answer to this question. For exam-
ple, capturing the program state at the hardware level by
recording the configurations of the processor and memory
would not be suitable. On one hand, such a representation
will contain too much information by recording the states of
the operating system and all the processes running on the
same system in addition to the state of the application that
is being verified. On the other hand, such a representation
will contain too little information if we are interested in veri-
fication of a distributed application that involves interaction
among multiple computers through the network.

In this paper, we focus on the problem of capturing the
state space of a distributed Java application for software
model checking. Our framework is based on a set of stub
classes written in Java that simulate the behavior of the
network and enable verification of a distributed Java appli-
cation using a single Java Virtual Machine (JVM). Hence,
using our approach, it is possible to verify a distributed Java
application by only recording the configurations of a single
JVM. In this paper, we demonstrate the use of our frame-
work with the Java PathFinder model checker.

Java PathFinder (JPF) [4] is an explicit-state model check-
er for verification of Java applications. JPF captures the
program state at the JVM level by keeping track of the JVM
configurations using its own JVM implementation. This way
JPF is able to check behavior of a Java application for all
possible thread interleavings. However, since JPF only keeps
track of the JVM configurations, it is not capable of check-
ing Java programs that use native methods. This means
that JPF is unable to verify distributed Java applications
since network communication requires invocation of native
methods that move the program execution outside the scope
of a JVM.

Capturing the program state at the JVM level by exclud-
ing native methods represents a compromise between accu-
rate state depiction and scalability. As the state represen-

tation moves downward closer to the hardware level, it be-
comes more accurate, but complexity increases and the state
space explodes due to the extra information that the model
checker must store, even though this extra information is
not always relevant to the program behavior.

In the absence of native method support by a model check-
er, one must implement environments that model the be-
haviors of native methods. This is necessary particularly
for verifying distributed applications, since they are built on
top of a network stack implemented in the operating system
using native code. Modeling a network need not, and should
not, encompass all of the complexities of a real network, for
they are not relevant to most applications and needlessly in-
crease the state space. Instead, it is sufficient to implement a
network model as a highly simplistic program module which
does not consider packet formats, routers, routing paths,
fragmentation, reordering, duplicates, or the multitude of
other complexities and artifacts seen in the Internet. Such
a simplification enables us to focus on the verification of the
target distributed application rather than possible errors in
the implementation of the network operations at the oper-
ating system level. This type of modularization is necessary
for the efficiency of software model checking. It is possible to
model the behavior of the network using a moderate amount
of information that is much less than the information re-
quired to keep track of a realistic network environment.

In this paper, we present a framework to facilitate the
verification of distributed Java applications using JPF, in-
cluding those that use non-blocking I/O. The framework is
based on a set of stub classes that replace native methods
used in network communication. Our framework supports
two modes of verification: unit verification and integration
verification. Integration verification checks multiple inter-
acting distributed application components together in a sin-
gle JVM. Unit verification targets a single component of a
distributed application and requires that the user write an
event generator class that utilizes the API exported by our
framework. Unit verification leads to more efficient verifi-
cation by focusing on a single application component and,
hence, reducing the state space that has to be explored by
the model checker. We demonstrate the use of our frame-
work by applying it to verification of a simple echo applica-
tion and a large peer-to-peer overlay network system called
Pastry. Since high-level networking constructs such as RMI,
RPC, and web services are built on top of Java’s networking
primitives that we target here, we feel that the framework
lends itself nicely to extensions that support these alterna-
tive communication mechanisms.

The rest of the paper is organized as follows. In Section 2
we discuss some of the related work. In Section 3 we give an
overview of the NetStub framework. in Section 4 we discuss
the replacement packages provided by the NetStub frame-
work and in Section 5 we discuss the network representation
used by these replacement packages. In Section 6 we briefly
discuss the different verification strategies used by the Net-
Stub framework. In Section 7 we discuss our experiments on
a simple application and in Section 8 we discuss our exper-
iments on a large peer-to-peer networking application. We
conclude the paper in Section 9.

2. RELATED WORK

Artho and Garoche [1] present a centralization approach
for verification of distributed Java programs using JPF. They

focus on the challenges of wrapping applications as threads
and running them in the same JVM, and apply the con-
cepts to simple distributed Java applications. Their ap-
proach uses bytecode instrumentation to stub out native
methods in the Java network libraries. They disclose few
details about the performance of their system aside from
JPF runtimes, which makes comparisons difficult. Their
automated approach contrasts with our framework which
is driven manually by the user. In a follow-up paper, Artho,
Sommer, and Honiden [2] develop a fault model for model
checking networked Java applications. The model gener-
ates exceptions non-deterministically for Java networking
methods. This approach is automated, employing bytecode
instrumentation techniques. We believe that a fully auto-
mated approach is unlikely to scale to verification of large
applications. The NetStub framework supports a spectrum
of verification approaches which can be used to improve the
efficiency of verification by sacrificing the level of automa-
tion.

Musuvathi, Park, et al [11] present CMC, a C and C++
model checker. They discuss the need for a test environ-
ment in the context of network protocols, suggesting a re-
placement, or stub, approach analogous to the NetStub re-
placement packages. They utilize the stubbing approach in
checking several AODV protocol implementations, finding
numerous bugs in each. One of the benefits of the NetStub
framework is it is not tied to a single verification tool. Net-
Stub can be used by different verification or testing tools
that focus on individual Java applications, in order to ex-
tend their applicability to distributed Java applications.

There have been previous work on verification of synchro-
nization behavior in distributed systems that are based on
analysis of design or architectural specifications (such as [10]
and [9]). Our focus in this paper is verification of Java pro-
grams, not UML design models or architectural specifica-
tions. Moreover, our framework can be used to check arbi-
trary assertions in addition to synchronization behavior.

Environment generation problem is a critical problem in
model checking and it has been studied before [7, 14]. In this
paper we focus on the environment generation problem in
the context of network communication. Using a domain spe-
cific approach enables us to provide a faithful environment
for distributed applications. Our approach can be combined
with other environment generation techniques to handle in-
teractions that do not involve network communication.

3. NETSTUB FRAMEWORK

The NetStub framework components are illustrated in
Figure 1. The framework consists of several components in
addition to the application under test. The components in
the NetStub framework can be divided to three categories:
1) The code provided by the NetStub framework that is used
as is without any modification. 2) The application code that
is being verified. 3) The code that the user has to write in
order to do verification with the NetStub framework.

The components that are provided by the NetStub frame-
work and do not require any modification are:

e NetStub is the component that models the network.
It is responsible for maintaining the data buffers and
connection queues associated with sockets. It is a foun-
dation class that provides an API to facilitate the re-
placement of native methods. It also has an event

Unit Driver

Integration

Driver

Spawn Thread Spawn Thread

Application
Component

Event
Generator

Event Notification
Standard Network
Method Invocation

Event Notification

Replacements

Spawn Thread

Application
Components

Standard Network
Method Invocation

Code Introduced
By User

Package

Existing Application
Code

(> Framework Code

Figure 1: NetStub framework

notification mechanism by which listeners are notified
of various network events.

¢ Replacement Packages contain replacements for
Java networking packages and the classes therein. The
classes are based directly on their standard Java li-
brary counterparts except they do not contain any
native method invocations. The native methods in
the standard Java classes are replaced with calls to
the NetStub in the replacement classes. At verifica-
tion time, the replacement packages are used by the
application components instead of the standard Java
packages. This can be accomplished by replacing all
occurrences of the standard Java networking package
names with the names of the replacement packages.

In order to use the NetStub framework, the user is respon-
sible for writing one or two components, depending on the
desired mode of verification. For integration verification, the
user must implement an integration driver. For unit verifi-
cation, the user must implement both a unit driver and an
event generator.

e Integration Driver is used during integration ver-
ification. Integration driver is responsible for start-
ing each application component under test in its own
thread. Ordering constraints, such as “the client must
start after the server enters the listening state,” must
be established by the integration driver.

e Event Generator is a component used during unit
verification. Its sole purpose is to generate network
events for the target application component to process.
It can use the NetStub class API directly to do so,
thereby avoiding the overhead incurred by using the
high-level Java networking replacement classes. An
event generator can be implemented in a thread-based
manner or it can be entirely event-driven, responding
to event notifications from the NetStub class.

e Unit Driver is analogous to the integration driver,
but is used during unit verification. It spawns the

target application component and the event genera-
tor component in their own threads. It must establish
any ordering constraints among these components.

The integration and unit drivers are small modules that
are easy to write. The complexity of the event generator
depends on the application. In the following sections we will
discuss all the components used in the NetStub framework
in detail.

4. REPLACEMENT PACKAGES

Although native methods are confined to relatively few
classes in the Java networking packages, in our framework,
we provide stub classes that replace the contents of en-
tire Java packages. The main reason for this is network-
ing classes are highly interdependent. Writing a stub for a
widely-used class with native methods, such as InetAddress,
requires a stub to be written for all classes that depend on
InetAddress, all classes that depend on classes that depend
on InetAddress, and so on. For this reason, it is more prac-
tical to simply replace all classes within a given networking
package even though many may require no changes other
than package membership. Moreover, creating entire pack-
age replacements makes verification setup easier. Users of
our framework can switch to the stub classes by making
only simple import statement modifications to the applica-
tion under test.

The replacement packages replace all core, public, network-
related classes in the java.net and java.nio packages, and
the packages therein. The replacement packages use the
prefix netstub instead of java. The following describes the
challenges and replacement strategies for the various pack-
ages:

java.net replacement.

This is the core networking package in Java. It con-
tains three socket abstractions: Socket, ServerSocket, and
DatagramSocket. A Socket is an active TCP communica-
tion endpoint capable of sending and receiving data through
a stream-oriented connection. A ServerSocket is a passive
TCP communication endpoint capable of accepting incom-

ing connections and creating Sockets for them. A Datagram-
Socket is an active UDP communication endpoint capable
of sending and receiving data packets. Each of the three
socket classes implements error-checking, synchronization,
and high-level socket state management while leaving the
low-level socket management to an implementation class.
Socket and ServerSocket are built on top of a SocketImpl
instance variable. SocketImpl is an abstract class specifying
low-level ~methods relevant to a Socket and
ServerSocket such as accept, connect, getInputStream,
getOutputStream, and listen. Similarly, the Datagram-
Socket class is built on top of a DatagramSocketImpl in-
stance variable. The impl class that backs a socket is not
accessible to the user. Concrete implementations of Socket-
Impl and DatagramSocketImpl in the java.net package have
package-level access. This is where the bulk of native meth-
ods in the java.net package occur. Custom concrete im-
plementations of SocketImpl and DatagramSocketImpl were
written for the netstub.net package. These classes are built
on top of the NetStub foundation class, discussed in the fol-
lowing section. Most calls to an impl class are simply for-
warded to the NetStub class.

The public replacement classes have identical interfaces to
those in the java.net package, with the exception of several
classes with extended interfaces in the netstub.net pack-
age. The socket and impl classes have extended interfaces
to support non-blocking operations. The non-blocking oper-
ations are utilized by replacement classes in the netstub.-
nio.channels package. All blocking operations available
in Socket, ServerSocket, and DatagramSocket are avail-
able in a non-blocking form. The following non-blocking
methods are part of the netstub.net socket API: attempt-
Accept, startConnect, finishConnect, attemptSend, and
attemptReceive. In addition, non-blocking extensions to
InputStream and QutputStream are available with attempt-
Read and attemptWrite non-blocking methods. The socket
classes also have a public instance method called setChannel
for setting the channel associated with a socket if one exists.
The setChannel method passes a channel reference down to
the underlying socket implementation instance. When the
socket implementation is notified of an event relevant to the
current socket by the NetStub class, it can wakeup the selec-
tor that the channel is registered with. The netstub.nio.-
channels package is discussed in more detail below. Inet-
Address also has an extended interface to allow the binding
of an application component to a host name and IP address
using thread groups. This extension to InetAddress is dis-
cussed in the Integration Verification and Unit Verification
sections.

java.nio replacement.

This is the non-blocking 1/O base package. It contains
the Buffer abstract base class as well as abstract Buffer
implementations such as ByteBuffer, IntBuffer, and Char-
Buffer. A buffer is a finite sequence of elements of a specific
primitive type. Buffers are used by the channel classes spec-
ified in the java.nio.channels package. They are instan-
tiated via a static allocate method of an abstract Buffer
implementation. The most commonly used abstract Buffer
implementation is ByteBuffer, since it is a generic buffer
capable of converting other primitive data types to a se-
quence of bytes via calls such as putChar, putDouble, and
putInt. ByteBuffer is the only Buffer subclass that is in

the netstub.nio replacement package since it can effectively
store any primitive data type. With the decomposition of
other primitive types into bytes, it is necessary to know the
system byte order. ByteOrder is a class in the java.nio
package for precisely this purpose. The static nativeOrder
method of the ByteOrder class makes native system calls to
determine the byte order. In the replacement package, the
ByteOrder class is abandoned and big endian is always used.

java.nio.channels replacement.

This package contains the classes for performing non-block-
ing network operations. It contains abstract channel classes
for the three socket abstractions. The channel classes are
SocketChannel, ServerSocketChannel, and DatagramChan-—
nel. The channels can be configured to be non-blocking.
Channels can be registered with a Selector. A selector’s
select method is a blocking call that returns when chan-
nel operations are available, such as a read from a Socket-
Channel, much like the select UNIX system call in C. A
single thread can process many channels using a Selec-
tor. Concrete implementations of SocketChannel, Server-
SocketChannel, DatagramChannel, and Selector are ob-
tained via public static open methods. Concrete implemen-
tations do not accompany the package but rather platform
specific implementations are obtained internally with native
method invocations. This made replacement more challeng-
ing since Java source implementations were not available.
The channel replacement classes in netstub.nio.channels
are built on top of the netstub.net socket abstractions.
SocketChannel is built on top of Socket, ServerSocket-
Channel on ServerSocket, and DatagramChannel on Data-
gramSocket. This made for a clean implementation since
non-blocking functionality was available in the extended
socket classes in the netstub.net package, as explained
above. A socket channel passes a self-reference to the un-
derlying socket via the setChannel method. This way, the
socket can notify the selector associated with the channel
when a relevant network event occurs, waking a thread wait-
ing on the selector’s select method.

java.nio.channels.spi replacement.

This package is a small extension to the java.nio.chan-
nels package containing abstract channel subclasses of the
abstract base classes in the parent package. Virtually no
changes occurred in this package. The netstub equivalent
contains the same set of public classes with few changes.

5. NETSTUB CLASS

The replacement packages are built on top of a singleton
class called NetStub. This class provides an abstraction for
all behavior below the application layer and it encapsulates
all network activity. It simulates an ideal network in which
no packets are lost, reordered, or corrupted. Note that in
a real network implementation such behavior is handled by
the TCP/IP protocol suite. By providing an idealized net-
work, NetStub class decouples the behavior of a distributed
Java application from the behavior of the network level pro-
tocols such as TCP/IP. Extending the framework to model
imperfect network scenarios, similar to that proposed in [2],
is left as future work.

Figure 2 shows a high level overview of our approach. A
distributed Java application consists of multiple application

Application Application
Component Component

Application
Component

i

Application
Component

a

JVM

Application
Component
Threadgroup

Application
Component
Threadgroup

Application Application
Component Component
Threadgroup Threadgroup

Figure 2: NetStub Approach

components executing in different computers. These com-
ponents interact with each other through the Internet using
network communication. Using the NetStub class we are
able to replace the entire network with a set of buffers that
keep track of the current state of the network traffic. This
allows us to execute the distributed Java application within
a single JVM without executing any native methods. Each
application component is mapped to a different thread group
in order to manage the host addressing as we will discuss in
the following section. Note that, by encapsulating the be-
havior of the whole distributed Java application in a single
JVM, we are able to use a model checker such as JPF for ver-
ification of a distributed Java application. Below we discuss
some of the important features of the NetStub class.

The NetStub class provides a rich interface consisting of
dozens of methods for performing blocking and non-blocking
network operations. The interface also contains methods
for registering event listeners. Registered event listeners
are notified when various types of events occur. The five
classes of listeners are ByteStreamListener, PacketListen-
er, ConnectionListener, ServerListener, and Datagram-
SocketBindListener (Figure 3 shows the listener classes
and the methods that are relevant to a ServerListener
as an example). Classes in the replacement packages use
this API instead of invoking native methods. The event
notification mechanism enables an efficient implementation
of the non-blocking networking classes. The SocketImpl
and DatagramSocketImpl concrete subclasses in the net-
stub.net package register themselves as listeners of various
events with the NetStub. When an event occurs, such as
the receipt of data, the implementation class is notified by
the NetStub and can subsequently notify the selector asso-
ciated with the corresponding channel if one has been set.
The event notification mechanism is also a helpful tool in
implementing both drivers and event generators. A verifi-
cation driver may spawn one or more clients upon receiving
notification that a server has entered the listening state. An
event-driven event generator may read a sequence of bytes
from a connection upon receiving notification that the des-

new Thread(new ThreadGroup("server"), new Runnable() {
public void run() {
InetAddress.register("server.cs.ucsb.edu");
// start server ...
}
}) .startQ);

Figure 4: Host Addressing Code Example

Socket socket = new Socket(servAddr, servPort);
socket.getOutputStream() .write(data);

for(int i=0; i<data.length; i++) {
byte b = (byte)socket.getInputStream().read();
assert(datali] == b);

}

socket.close();

Figure 5: Client for Echo Server

tination sent a message.

The NetStub class maintains different state for a Socket,
ServerSocket, and DatagramSocket. For a Socket, the Net-
Stub maintains two queues: an incoming byte stream queue
and an outgoing byte stream queue. The other Socket in
the connection has references to the same queues, but for
the opposite purpose. The input queue of one Socket is the
output queue of the other and vice versa. When one Socket
issues a send, bytes are placed on the back of its output
queue and the destination’s input queue. The queues are
bounded to allow situations where a write is attempted and
fewer than the requested number of bytes are written, which
is a case that is rarely checked in applications and can cause
elusive bugs. Note that this behavior does not resemble a
dropped packet, but rather a full queue on the sending host.
For a ServerSocket, the NetStub maintains an accept queue
for pending connections. When a Socket issues a connect
to a ServerSocket, a connection request is placed on the
back of the ServerSocket’s accept queue and the issuing
Socket enters a wait state. When the ServerSocket accepts
the connection request, Socket state is initialized for both
parties and the issuing Socket is awoken. For a Datagram-
Socket, the NetStub maintains only an input queue of bytes.
All sent packets arrive to the same input queue since there
is no notion of a connection.

The NetStub class does full synchronization with a lock
member object. This not only guarantees thread safety
among the possibly many application component threads us-
ing it, but it also resembles a discrete network event model
that greatly reduces the state space by limiting the number
of thread interleavings. In addition, the lock is available for
use by other classes via the getLock instance method. This
allows for the use of a single, shared lock among network
classes that require synchronization. This prevents nested
lock acquisitions, which can cause deadlocks in methods that
block, and reduces the state space further by limiting the
number of thread interleavings outside of the NetStub class.

6. VERIFICATION USING NETSTUB

As mentioned above, our framework supports both inte-
gration and unit verification. Both integration verification
and unit verification drivers spawn the application compo-
nents under test in their own threads. Note that, application

ByteStreamListener

ServerListener

ConnectionListener

serverListening(addr : InetSocketAddress)
connectionAccepted(client : InetSocketAddress, server : InetSocketAddress)
connectionWaiting(client : InetSocketAddress, server : InetSocketAddress)

*

PacketListener

NetStub

accept(local : InetSocketAddress) : InetSocketAddress
addServerListener(listener : ServerListener)
DatagramSocketBindListener attemptAccept(local : InetSocketAddress) : InetSocketAddress

I connect(local : InetSocketAddress, remote : InetSocketAddress)
listen(addr : InetSocketAddress)

Figure 3: NetStub and Listener Classes

ServerSocket serverSocket = new ServerSocket(port);

for(int i=0; i<maxConnections; i++) {
Socket socket = serverSocket.accept();

while(true) {
int b = socket.getInputStream().read();
if(b < 0) break;
socket.getOutputStream() .write(b);

}

socket.close();

}

serverSocket.close();

Figure 6: Echo Server

components should appear to be running on unique hosts,
despite sharing a single JVM. The getLocalHost static meth-
od of the InetAddress class should return different addresses
for different application components. Similarly, the loop-
back address of an application component should point to
itself and not to other application components. The NetStub
framework achieves this isolation by associating applications
with thread groups.

Application components are spawned in threads with
unique thread groups. When an application component calls
getLocalHost, InetAddress looks into a table mapping
thread groups to addresses and retrieves the InetAddress
corresponding to the thread group of the current thread.
The map entry for an application component can be set
explicitly inside of a thread via the registerThreadGroup
static methods, as shown in Figure 4, or it can be gener-
ated lazily by InetAddress upon the first address query.
The registerThreadGroup methods can be used to regis-
ter a host name, IP address, or both with the thread group
of the current thread. Java has a built-in thread group fa-
cility. If no thread group is provided to the thread con-
structor, Java puts the new thread in the parent’s thread
group. As long as the application components being verified
do not themselves employ thread groups, all threads in a
given application component will belong to the same thread
group and therefore will be on the same logical host. Fig-

ure 2 illustrates addressing in the NetStub framework where
each application component in the distributed application is
mapped to a separate thread group in a single JVM.

When using the NetStub framework for integration ver-
ification several application components are executed in a
single JVM. In order to use a model checker such as JPF,
all native code must be eliminated from each application
component. Native code that is used in network packages is
eliminated by replacing the standard Java networking pack-
ages with NetStub replacement packages. Integration ver-
ification requires that the user write an integration driver
that spawns each application component in its own thread.
Each application component thread should be instantiated
with a unique thread group to ensure that each application
component runs on its own logical host. Running multi-
ple application components in separate threads generates a
massive state space even for very small programs. Unit ver-
ification offers an alternative to running multiple high-level
application components.

Unit verification targets a single application component.
As with integration verification, native methods present in
the standard Java networking code is eliminated by using the
NetStub replacement packages. Unit verification requires
that the user write a unit driver and an event generator.
The unit driver is analogous to the integration driver. It
spawns the application component under test and the event
generator in their own threads. The application component
thread should be instantiated with a unique thread group to
ensure it runs on its own logical host. An event generator is
a module engineered specifically for testing the application
component. It is optional for an event generator to belong
to a unique thread group. If the event generator doesn’t
invoke getLocalHost or make use of the loopback address,
it need not worry about which thread group it belongs to.
An event generator can utilize the NetStub API instead of
the high-level socket API, allowing it to avoid a considerable
number of instructions and variables. This property leads
unit verification to perform better than integration verifica-
tion.

Event generators can be thread-based or event-driven. A
thread-based event generator executes as a separate thread

and interacts with the target application component using
blocking or non-blocking network communication primitives
provided by the NetStub API. Note that, a thread-based
event generator executes concurrently with the target appli-
cation component. Possible interleavings of the event gener-
ator and the target application component increase the state
space, and, hence, the cost of verification. Event-driven
event generation is an efficient alternative to thread-based
event generation.

Event-driven event generators utilize the event notifica-
tion mechanism offered by the NetStub class. Rather than
performing network operations in a separate thread, event-
driven event generators react to network events initiated by
the target application component. Even for an event-driven
event generator a separate (short-lived) thread is necessary
to do initialization operations, but all subsequent code is ex-
ecuted in event handlers, by the target application thread.
For example, if a server application component sends a mes-
sage, the server thread will execute the byteSent event han-
dler of all ByteStreamListeners from within the NetStub’s
send method. This can greatly reduce concurrency, and
state space, since event notifications are made in the same
thread that initiated the operation. However, it also im-
poses some restrictions on what can be called from within an
event handler. One must avoid making calls that block until
being acknowledged in some way by the application com-
ponent, otherwise deadlock will ensue. Event-based event
generators offer the highest degree of performance through
reduced concurrency while increasing the difficulty of the
event generator implementation.

7. ASIMPLE EXAMPLE: ECHO SERVER

In this section we will demonstrate the use of the Net-
Stub framework using an example distributed application.
The echo application is a simple distributed application com-
posed of two application components, a client and a server.
The server accepts a fixed number of connections, and for
each, echoes every byte received back to the client until the
connection is closed by the client. The code for the server
is shown in Figure 6. The client connects to a server, sends
a fixed number of bytes, receives the same number of bytes,
and then closes the connection. The client code is shown
in Figure 5. Despite the brevity and triviality of the appli-
cation, it cannot be verified by the JPF model checker due
to the native methods within Java’s standard networking
classes. The NetStub framework provides two approaches to
verifying the components of this application. The simplest
is via integration verification, and a slightly more involved
approach to verifying the components individually is unit
verification.

Integration verification requires that the user write a driver
that spawns the client and server in their own threads, with
separate thread groups. If the driver does not take any mea-
sures to prevent the client from starting before the server
has entered the listening state, the client will throw an ex-
ception when it tries to connect to the server. Soon there-
after, JPF will generate a spurious deadlock error since the
server will be blocking indefinitely on the accept method in-
vocation. This dependency between client and server can
be established with the event notification mechanism pro-
vided by the NetStub class. The driver can register a server
listener that is notified when the server enters the listen-
ing state. The methods relevant to a ServerListener are

shown in the abbreviated class diagram in Figure 3. Upon
notification, the driver can start the client in its own thread
and thread group, thereby establishing the dependency. The
code depicting the integration driver for the echo application
is shown in Figure 7.

netStub.addServerListener(new ServerListener() {
public void connectionAccepted(...) {}
public void connectionWaiting(...) {}
public void serverListening(InetSocketAddress addr) {
for(int i=0; i<numClients; i++) {
String grp = "client" + i;
Client client = new Client(data, addr);
Thread t = new Thread(new ThreadGroup(grp), client);
t.start();
}
}
b

new Thread(new ThreadGroup("server"), new Runnable() {
public void run() {
InetAddress.register("server.cs.ucsb.edu");
new Server (25000, numClients).run();

}) .startQ);

Figure 7: Integration Driver

netstub.connect (clientAddr, serverAddr);
netstub.getOutputStream(clientAddr, serverAddr).write(data);

for(int i=0; i<data.length; i++) {
byte b = (byte)netstub.getInputStream(clientAddr,
serverAddr) .read();
assert(datal[i] == b);
}

netstub.closeConnection(clientAddr, serverAddr)

Figure 8: Thread-based Event Generator

Unit verification for the echo server requires both an event
generator and a driver. The driver also must satisfy the con-
straints mentioned above to ensure proper ordering. As dis-
cussed above there are two types of event generators for unit
verification: thread-based and event-driven. The thread-
based event generator mimicks the echo client, except calls
are made directly to the NetStub instead of the high-level
socket interface. It is a simple module that does not use the
event mechanism offered by the NetStub. Figure 8 shows
the code for the thread-based event generator for testing
the echo server.

The event-driven event generator reacts to event noti-
fications from the NetStub. Only the connection to the
server is implemented in the event generator thread and
all other operations are implemented in two event handlers:
connectionAccepted and byteSent. The connectionAc-
cepted event handler is invoked by the Net-Stub when a
server accepts a connection. The event-driven event gener-
ator sends the bytes to be echoed upon receiving this notifi-
cation. This interaction is depicted in a sequence diagram in
Figure 9. It demonstrates that the event handler method is
invoked from the server application component thread. The
byteSent event handler is invoked by the NetStub when a
byte is sent over a connection. The event generator reads a
byte and asserts that it is correct upon receiving this notifi-
cation. The event-driven event generator creates the exact
same sequence of network events as the high-level client, but

Table 1: Echo A

pplication Results

Connections | Time (MM:SS) | New States | Max Depth | Memory (MB) Mode

1 21:09 625528 912 34 Integration

1 02:19 55537 587 13 Thread-Based

1 00:46 5989 581 12 Event-Based

Table 2: Buggy Echo Application Result
Connections | Time (MM:SS) | New States | Max Depth | Memory (MB) | Bug Found Mode
1 01:04 29744 550 13 Yes Integration
2 02:45 54833 1689 24 Yes Integration
5 11:53 104257 6259 72 Yes Integration
10 46:07 191513 18755 240 Yes Integration
1 00:32 12368 425 12 Yes Thread-Based
2 01:00 15915 956 18 Yes Thread-Based
5 03:13 22327 2808 44 Yes Thread-Based
10 10:13 33824 6705 108 Yes Thread-Based
1 00:06 498 130 8 Yes Event-Based
2 00:09 1126 613 16 Yes Event-Based
5 00:48 3608 2528 43 Yes Event-Based
10 03:45 8975 6950 125 Yes Event-Based
3000 T T T T T T T T
o
—@— Integration

accept(servAddr)

N

> getAcceptRequest(addr)

createConnection(request)

o

connectionAccepted(client, server)

write(client, server, data)

——ocm -
N

e

e e S

Figure 9: Event-based Event Generator

it does so in response to network events instead of execut-
ing blocking methods while concurrently running with the
server. From the server’s perspective, there is no difference
between the original client, a thread-based event generator,
and an event-driven event generator.

Experiments with the Echo Server.

We conducted two sets of experiments with the Echo ap-
plication. The purpose of the first echo server experiment
was to measure the cost of exhaustive verification with JPF
using integration verification and unit verification for a sin-
gle connection and ten bytes echoed on that connection. The
results confirm that the state space is reduced considerably
from integration verification to unit verification. Further-
more, an event-based event generator has much smaller state
space than a thread-based event generator. Table 1, shows
the results of the various runs. Note that integration verifi-
cation for this simple application takes more than 21 minutes
whereas unit verification with an event-based event genera-
tor takes less than one minute. The low memory consump-

2500 @ Thread-Based Unit 1

= € = Event-Based Unit

Elapsed Time (s)

Connections

Figure 10: Verification Comparison

tion, large elapsed time, and low maximum depth indicates
that the bottleneck for checking the applications was the
number of thread interleavings.

In the second echo server experiment, the server appli-
cation component was faced with multiple connections and
JPF’s Verify class was employed to insert a bug in the server
on some execution paths. For the last accepted connection,
the server uses JPF’s Verify class to generate multiple ex-
ecution paths, some of which echo a corrupted byte back to
the client. Both modes of verification successfully checked
the application for 10 connections. The unit verification
techniques performed much better than integration verifica-
tion due to a reduced state space through the use of the event
generator rather than a high-level client. The results are
shown in Table 2. Memory was an issue for this experiment
since it included multiple connections to the server. Figure
10 shows an elapsed time comparison for the three configu-
rations. The elapsed time increases exponentially with the
number of connections for integration verification whereas
the elapsed time increase is nearly linear for unit verifica-
tion with an event-driven event generator.

Table 3: Buggy Pastry Application - Integration Verification Results

[Time (MM:SS) | New States | Max Depth | Memory (MB) [Bug Found |

| 15:31 [20848 |

40847

| 893 | No |

Table 4: Buggy Pastry Application - Thread-Based, Capture-Replay Unit Verification Results

[Time (MM:SS) | New States | Max Depth | Memory (MB) [Bug Found |

| 04:38 [39554 |

39553

| 893 | Yes

8. PASTRY

Pastry [13] is a scalable, decentralized peer-to-peer overlay
network. Its predecessors include systems such as Napster
and Gnutella. These systems lack a scalable and decen-
tralized method for communicating with other peers in the
network. Pastry uses a technique known as key-based rout-
ing. With key-based routing, each node is associated with a
unique and uniformly distributed nodeld. Given a message
and a key, Pastry reliably routes to the node with the nodeld
that is numerically closest to the key. Pastry can perform
this service in log(N) hops, where N is the number of nodes
in the network. Pastry peers maintain routing table and leaf
set data structures that allow them to intelligently route a
message towards a destination based on the message key.

FreePastry is an open source Pastry implementation writ-
ten in Java. It is an active project at Rice University. The
core system code consists of hundreds of classes. FreePas-
try makes complete use of Java’s networking packages. It
uses the blocking network operations in the java.net pack-
age as well as the non-blocking operations in the java.nio
packages. FreePastry does its own message serialization.
This makes it an ideal candidate for the NetStub frame-
work because it does not use Java’s built-in object serializa-
tion found in the java.io package, which is not supported
by the NetStub framework as it is not strictly a network
component and does not reside within the core networking
packages. FreePastry is a massive, highly concurrent system,
which is far beyond the scope of JPF. However, it serves as a
good benchmark for the NetStub framework and showcases
the breadth of the NetStub replacement packages.

The first step in utilizing the NetStub framework for ver-
ification of FreePastry was to replace all links to the stan-
dard Java networking packages with links to the netstub
replacement packages. FreePastry contained a small num-
ber of other native methods in addition to the those in the
networking classes, mainly related to file I/O and platform-
specific properties. Most of this native code was eliminated
without modifying the FreePastry system, since FreePastry
allows the user to supply preferred logging, time source, and
property classes. However, other native code required mi-
nor modifications to the system, including the replacement
of hash functionality from the MessageDigest class of the
java.security package.

Integration Verification.

The FreePastry application we analyzed consists of two
peers. One peer starts the overlay network and the other
peer joins the existing one. The initial peer generates an
assertion violation when a neighbor successfully joins it.
Since this assertion error occurs on every execution path, it
acts as a depth gauge for JPF. The integration verification
driver simply spawns the two peers in their own threads with
unique thread groups. With integration verification, JPF

did not reach the assertion violation. During state space ex-
ploration JPF exhausted the allocated memory bound of 900
MB, with a reported usage of 893 MB. Initially, we allocated
the system’s entire 1 GB memory to JPF, but this caused
JPF to slow down to a halt after a short period, making
no progress. Hence, we tried a 900 MB memory allocation
which ran smoothly. JPF’s failure to reach the inevitable
assertion was not unexpected, as the volume of system code
for a FreePastry Peer is quite large. JPF’s state storage was
the bottleneck. The results of the verification are shown in
Table 3.

Unit Verification with Capture-Replay.

The initial peer was the target application component for
unit verification. Unit verification for a large system such
as FreePastry is difficult because implementing an event
generator requires knowledge of all network communication
within the system. This knowledge is required because the
event generator must invoke the same network operations
on the NetStub class directly. In the echo application ex-
ample, this was a simple task. The event generator was
based directly on the client, with all networking calls made
to the NetStub instead of the high-level networking API. In
FreePastry, network calls are initiated throughout the sys-
tem and determining the sequence they are invoked can be
difficult. We overcame this problem by using a thread-based,
capture-replay style event generator. The goal is to record
the network events during a normal execution of the dis-
tributed application and then to replay the recorded event
sequence within the event generator during unit verification.

To generate a capture-replay style event generator for the
FreePastry peer we recorded the sequence of calls to the Net-
Stub by that peer during normal program execution, without
JPF. The recorded sequence of calls provides a trace that the
event generator should follow during unit verification. The
NetStub’s event notification mechanism provides support for
this recording capability. A recording class can simply reg-
ister interest in all types of network events and therefore
receive notification for all network operations. After captur-
ing the sequence of network operations that take place when
a peer joins another peer, the event generator can replay the
same sequence of network operations using the NetStub API
during unit verification. The capture-replay technique was
employed to implement a thread-based event generator for
performing unit verification on the FreePastry application.
This lean event generator allowed JPF to reach the assertion
violation in the FreePastry peer under test despite reaching
the same memory threshold as the failed integration veri-
fication run. The JPF results are shown in Table 4. We
believe that capture-replay is a useful technique for writing
event generators for larger applications and for applications
unfamiliar to the user of the NetStub framework.

9. CONCLUSION

We presented a framework for verification of distributed
Java applications. The NetStub framework enables verifica-
tion of distributed Java applications by running them in a
single JVM. This is achieved by using the replacement pack-
ages provided by the framework which simulate the behav-
ior of the network. The NetStub framework supports both
integration and unit verification. We conducted some exper-
iments demonstrating the use of the NetStub framework for
verification of distributed Java applications using the JPF
model checker. These distributed applications cannot be
verified with the JPF model checker without the NetStub
replacement packages.

10. REFERENCES

[1] C. Artho and P.-L. Garoche. Accurate centralization
for applying model checking on networked
applications. In Proc. 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE
2006), pages 177-188, 2006.

[2] C. Artho, C. Sommer, and S. Honiden. Model
checking networked programs in the presence of
transmission failures. In Proc. 1st Joint IEEE/IFIP
Symposium on Theoretical Aspects of Software
Engineering (TASE 2007), 2007.

T. Ball and S. K. Rajamani. Automatically validating

temporal safety properties of interfaces. In Proc. 8th

International SPIN Workshop, volume 2057 of LNCS,

pages 103-122, 2001.

[4] G. Brat, K. Havelund, S. Park, and W. Visser. Model
checking programs. In Proc. 15th IEEE/ACM
International Conference on Automated Software
Engineering (ASE 2000), pages 3-12, 2000.

[5] E. M. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In Proc. 10th
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS
2004), pages 168-176, 2004.

[6] P. Godefroid. Model checking for programming
languages using verisoft. In Proc. 24th ACM
Symposium on Principles of Programming Languages
(POPL 1997), pages 174-186, 1997.

[7] P. Godefroid, C. Colby, and L. Jagadeesan.
Automatically closing open reactive programs. In
Proceedings of the 1998 ACM SIGPLAN Conference
on Programming Language Design and
Implementation (PLDI 1998), pages 345-357, 1998.

[8] T. A. Henzinger, R. Jhala, and R. Majumdar. The
BLAST software verification system. In Proc. 12th
International SPIN Workshop (SPIN 2005), pages
25-26, 2005.

[9] P. Inverardi and M. Tivoli. Deadlock-free software
architectures for com/dcom applications. J. Syst.
Softw., 65(3):173-183, 2003.

[10] N. Kaveh and W. Emmerich. Deadlock Detection in
Distributed Object Systems. In V. Gruhn, editor,
Joint Proc. of the 8" European Software Engineering
Conference and the 9" ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages
44-51. ACM Press, 2001.

[11] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and
D. L. Dill. CMC: A Pragmatic Approach to Model

3

(12]

(13]

Checking Real Code. In Proc. 5th Symposium on
Operating Systems Design and Implementation (OSDI
2002), 2002.

Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An
extensible and highly-modular software model
checking framework. In Proc. 11th ACM Symposium
on Foundations of Software Engineering held jointly
with the 9th European Software Engineering
Conference (ESEC/FSE 2003), pages 267-276, 2003.
A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proc. IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware), pages 329-350, 2001.

O. Tkachuk, M. B. Dwyer, and C. Pasareanu.
Automated environment generation for software model
checking. In Proceedings of the 4th Joint Meeting of
the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2003), pages
116-129, 2003.

