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Advances in our ability to model complex environmental systems are currently driven by at least

four needs: (1) the need for the inclusion of uncertainty in monitoring, modelling and decision-

making; (2) the need to provide environmental predictions everywhere; (3) the need to predict the

impacts of environmental change; and (4) the need to adaptively evolve observation networks to

better resolve environmental systems and embrace sensing innovations. Satisfying these needs

will require improved theory, improved models and improved frameworks for making and

evaluating predictions. All of these improvements should result in the long-term evolution and

improvement of observation systems. In the context of this paper we discuss current bottlenecks

and opportunities for advancing environmental modelling with and without local observations of

system response. More realistic representations of real-world thresholds, nonlinearities and

feedbacks motivates the use of more complex models as well as the consequent need for more

rigorous evaluations of model performance. In the case of gauged systems, we find that global

sensitivity analysis provides a widely underused tool for evaluating models’ assumptions and

estimating the information content of data. In the case of ungauged systems, including the

modelling of environmental change impacts, we propose that the definition of constraints on the

expected system response provides a promising way forward. Examples of our own work are

included to support the conclusions of this discussion paper. Overall, we conclude that an

important bottleneck currently limiting environmental predictions lies in how our model

evaluation and identification approaches are extracting, using and evolving the information

available for environmental systems at the watershed scale.

Key words | climate change, model diagnostics, multi-objective optimization, predictions in

ungauged basins, sensitivity analysis, uncertainty analysis

INTRODUCTION

Sustaining human life as well as aquatic and terrestrial

ecosystems requires the availability of sufficient quantities

of freshwater of appropriate quality. The watershed

provides a convenient spatial unit to define the collection,

storage and release of freshwater; the provision of fresh-

water for a wide range of purposes can be defined as a

watershed service (Wagener et al. 2007). Humans and

ecosystems are embedded in large-scale environmental

systems that can exhibit a wide range of characteristics

depending on their location and the degree of human impact.

The environmental systems’ internal heterogeneity leads to

a complex and uncertain system, although such systems

usually exhibit some level of organization (Sivapalan 2005).

An important responsibility for the hydroinformatics

community is to support improvements in sustainable

integrated water resource management of watershed

doi: 10.2166/hydro.2009.040

266 Q IWA Publishing 2009 Journal of Hydroinformatics | 11.3–4 | 2009



services using environmental models, which enable us to

better understand these complex systems and to predict

their response to future environmental change. This

predictive capability is necessary to achieve water security

for people and for the environment in an increasingly non-

stationary world (Falkenmark 2001; Milly et al. 2008), where

water security can be defined as protection from both excess

water and from water scarcity (Gleick 2002) or as maximiz-

ing services and minimizing disservices (e.g. low flows or

floods). Models of water-driven environmental systems at

the watershed scale play a fundamental role in under-

standing the underlying real world system, in providing the

necessary predictive power and in guiding the establishment

of better observational networks.

Environmental models applied at the watershed scale

originated as simple mathematical representations of the

input response behaviour of catchment-scale environmental

systems through parsimonious models such as the Unit

Hydrograph (for flow routing) (e.g. Dooge 1959) and the

Rational Formula (for excess rainfall calculation) (Dooge

1957) as part of Engineering Hydrology. Such single purpose

models are still widely used to estimate design variables or

to predict floods. These approaches formed the basis for

a generation of more complete, but spatially lumped,

representations of the terrestrial hydrological cycle, such

as the Stanford Watershed Model in the 60s (which formed

the basis for the currently widely used Sacramento model;

Burnash 1995). This advancement enabled the continuous-

time representation of the rainfall–runoff relationship and

models of this type are still at the heart of many operational

forecasting systems throughout the world. While the general

equations of models such as the Sacramento model are

based on conceptualizing plot (or smaller) scale hydrologic

processes, their spatially lumped application at the catch-

ment scale means that parameters have to be calibrated

using observations of rainfall–runoff behaviour of the

system under study.

Interest in predicting land use change leads to the

development of more spatially explicit representations of

the physics (to the best of our understanding) underlying

the hydrological system in the form of the SHE model in the

80s (Abbott et al. 1986). The latter is an example of a group

of highly complex process-based models whose develop-

ment was driven by the hope that their parameters could be

directly estimated from observable physical watershed

characteristics, thus enabling the direct assessment of

change impacts (Ewen & Parkin 1996; Dunn & Ferrier

1999). At that time, these models were severely constrained

by our lack of computational power; a constraint that

decreases in its severity with increases in computational

resources with each passing year.

Currently available high performance computing

enables us to explore the behaviour of highly complex

models in new ways (Tang et al. 2007; VanWerkhoven et al.

2008a). However, this increased power is insufficient by

itself to eliminate the problems associated with current

models. Problems include those of conceptualization and

parameterization of underlying processes, and of our

limited ability to observe important subsurface character-

istics at the scale of interest (Beven 1989). New theory and

new observational capabilities will be needed to achieve

better representations of environmental systems (Wagener

& Gupta 2005; Kirchner 2006; Reed et al. 2006; Gupta et al.

2008). New concepts for process-based models have been

put forward in recent years, but more testing is required to

assess whether previous limitations of physically-based

models have yet been overcome (e.g. Reggiani et al. 1998,

1999, 2000, 2001; Panday & Huyakorn 2004; Qu & Duffy

2007; Kollet & Maxwell 2006, 2008).

What are the main drivers for advancing environmental

modelling?

We hypothesize that there are at least four distinct (but

inter-related) drivers, as follows.

1. The need for understanding, estimating and commu-

nicating uncertainty in order to understand both the

limitations of our science as well as to provide decision

makers with more appropriate information (e.g. Neuman

2002; McIntyre et al. 2003; Wagener & Gupta 2005;

Beven et al. 2008).

2. The need to provide guidance on the optimal design

of observational networks at large catchment scales

(Langbein 1979; Reed et al. 2006; National Research

Council 2008).

3. The need to build environmental models of everywhere (e.g.

Sivapalan et al. 2003; Wagener et al. 2004; Beven 2007).
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4. The need to predict the impacts of environmental

change, i.e. mainly land cover and climate change (e.g.

Harbor 1994; Beven 2000; Allen & Ingram 2002; Milly

et al. 2002, 2008; Porporato et al. 2004; Poff et al. 2006a,b;

Wagener 2007).

In this article we will explore the impact of these four

drivers on current research needs, bottlenecks and oppor-

tunities. We will mainly focus on the task of environmental

model evaluation and identification at gauged and

ungauged locations in the context of these drivers. The

main challenges associated with these problems are how to

extract maximum information from time-series of system

responses (e.g. streamflow) and how to evaluate/identify a

model at locations where such time-series are not available.

We will close with a discussion of open questions and

research needs.

DRIVERS OF ADVANCEMENT

First driver: uncertainty

Uncertainty analysis in environmental modelling has been

investigated for many years, but recent computational

advancements have significantly pushed our ability to sample

from high dimensional spaces and therefore relax some of the

limiting assumptions that previously had to be made in an

uncertainty analysis (e.g. McIntyre et al. 2002; Vrugt et al.

2003; Wagener 2003; Marshall et al. 2004). The main sources

of uncertainty in environmental modelling are as follows.

† Input data uncertainty: Uncertainties originate from both

the measurement itself, but also from data processing

required to translate proxy data into the variable of

interest or for deriving variables at the necessary spatial

and temporal scale (e.g. Kavetski et al. 2006a,b; Hong

et al. 2006; Schoups & Hopmans 2006). One example is

the uncertainty in precipitation, which originates for

example from errors in individual raingauge observations,

but also from spatial interpolation between gauges or

from the translation of a radar signal to a rainfall estimate

(e.g. Kavetski et al. 2006a,b; Yatheendradas et al. 2008).

† Output data uncertainty: Uncertainty in observations of

the system response has generally received less attention

since it is often assumed to be much smaller than the

uncertainty in the model input (e.g. Franks et al. 1998;

Freer et al. 2004). This does not necessarily have to be the

case, since uncertainties of the response in water quality

studies are for example often very high (e.g. McIntyre

et al. 2003). Problems of scale can occur similar to those

present in input data.

† Parameter uncertainty: Many studies have focused on

estimating the uncertainty in identifying the model

parameters during model calibration, although signifi-

cant differences in philosophy remain as will be

discussed later (e.g. Beven & Binley 1992; Vrugt et al.

2003, 2006; Marshall et al. 2004; Smith & Marshall 2008).

† Model structural uncertainty: Recent years have seen a

surge in methods to consider uncertainty in the structure

of environmental models (e.g. Shamseldin et al. 1997;

Uhlenbrook et al. 1999; Ajami et al. 2007). This surge is

partially caused by findings of multiple studies that

suggest the parametric uncertainty, previously thought to

be dominating, can be small compared to the uncertainty

introduced by the model structure (Neuman 2002). Most

studies suggest the use of multiple model structures

simultaneously in a Bayesian framework; however,

proper statistical approaches to deal with model struc-

tural uncertainty for complex environmental models still

pose a significant challenge (Clark et al. 2008; Beven

2009). It might be possible to include some type of ‘model

inadequacy function’ if the model structural error is not

too complex (Kennedy & O’Hagan 2001).

† State uncertainty: Advances in dealing with state

uncertainty have been made through the introduction

of new filtering techniques, such as particle filters or

ensemble Kalman filters into environmental modelling

(e.g. Moradkhani et al. 2005a,b; Vrugt et al. 2005; Kollat

& Reed 2008).

Issues of particular interest include the search for an

uncertainty estimation and propagation approach in which

all sources of uncertainty can be considered simultaneously

(data, model structural, parameter, state uncertainty, etc.),

the need to understand and consider model structural

uncertainty in general and the need for uncertainty esti-

mation of highly complex (and therefore expensive to run)

environmental models (see discussion in Neuman 2002).

Several studies found that inclusion of uncertainty in
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environmental modelling leads to better decision-making,

which suggests that establishing uncertainty estimation as a

standard for any environmental predictions (despite some

remaining problems) represents an important step to make

our work better suited for decision makers (Reichert &

Borsuk 2005).

Second driver: observation network design

As noted by Dooge (1986) our ability to understand, predict

and manage environmental systems is dependent on our

ability to observe both the natural and human systems that

shape their evolution. Fundamentally, the observation

network design problem seeks to maximize the value of

information gained with new observables. This is particu-

larly challenging and important when seeking to detect

and/or predict the impact of long-term systematic changes

(non-stationarity). Reed et al. (2006) posit that our ability

to understand human-climate impacts on environmental

systems will require a paradigmatic shift away from static

observation network design frameworks. Alternatively, new

tools are needed for adaptively characterizing knowledge

gaps and critical system gradients in both space and time.

Recent work (Tang et al. 2007; Van Werkhoven et al.

2008a,b) has explicitly mapped the information content of

rainfall–runoff observations. Their results demonstrate that

the information content in these rainfall–runoff data is

dynamic and has complex spatial variability.

The quantification of information content is a challen-

ging problem that can be substantially biased by the models

used. As a field, we must acknowledge and elucidate how

our predictive modelling frameworks have shaped our

historical and ongoing observation strategies for environ-

mental systems. Information content is often quantified

using model-based projections of uncertainty and sensitivity

that will always be impacted by model structural errors.

It has long been recognized that these structural errors

can strongly bias our observation systems (Moss 1979a,b).

This long-term evolution of our knowledge can be rep-

resented mathematically using Bayesian frameworks that

simultaneously account for both model and observation

errors to forecast how critical system gradients as well

as their uncertainties vary in space and time (Evensen

1994; Miller et al. 1999; Christakos 2000; Neuman 2002;

Drécourt et al. 2006; Kollat & Reed 2008). These frame-

works provide adaptivity for observation network design

that can take advantage of both modelling and sensing

innovations to improve our theoretical understanding. In

turn, theoretical innovations will then feed forward to

produce improved model-based predictions of our observa-

tional needs and uncertainties.

Third driver: models of everywhere

Historical observations of the response of environmental

systems are crucial for the development of reliable environ-

mental models due to the dependence of our models on

calibration. For currently available models, some degree of

parameter calibration (for at least some of the key

parameters) is required to achieve reliable predictions

since (at least some) model parameters cannot be estimated

from measurable physical watershed characteristics (Beven

2001; Wagener et al. 2004; Wagener & Wheater 2006).

Calibration is the process of adjusting model parameters to

match the observed and simulated system response of

interest (e.g. streamflow). This issue poses a significant

problem due to the lack of historical observations at many

places, especially the lack of streamflow observations at the

watershed scale. Headwater streams, in particular, are

increasingly recognized for their importance in controlling

ecological and water quality functions throughout river

basins (Alexander et al. 2007). Protection of the integrity

of and services for aquatic and terrestrial ecosystems as well

as for human water consumption cannot be achieved

without intact and functional headwaters (Lowe & Likens

2005). The maintenance of these services will require

significant advances in our understanding and in our ability

to predict natural system response patterns and their

controls (Palmer et al. 2004).

Headwaters contain over 50% of the total strength

length in the Eastern US (Nadeau & Rains 2007), but are

severely under-represented in operational gauging in the US

in general (Freeman et al. 2007), where nearly 95% of

smaller streams are poorly characterized with less than 3%

of all gauges (Poff et al. 2006a,b). At the same time,

processes and ecosystem habitats in headwaters are

particularly sensitive to atmospheric and terrestrial disturb-

ances (Buttle & Meatcalfe 2000), and therefore likely to be
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considerably impacted in our increasingly non-stationary

world (Milly et al. 2008). The National Research Council

(2004) stresses that the lack of gauges in small streams

requires research into better modelling tools for streamflow

simulations across hydroclimatic and geologic settings,

since “for the majority of streams that support aquatic life,

a systematic understanding is lacking on water quality,

habitat, biota, specific discharge … ” (Bishop et al. 2008).

The lack of observations of environmental indicators in

the vast majority of our river network and the large

uncertainty associated with model predictions at these

locations are seen as major limitations to solving many

environmental problems today (Sivapalan et al. 2003; Vogel

2006). The situation is much worse in a global context

where existing monitoring networks are declining in many

countries (Stockstad 1999), significantly limiting the

possible assessment of conditions and trends in ecosystem

services (MEA 2005) and limiting the quality of hydrologic

predictions for water resources applications in regions of

the world where resources for hazard mitigation and for

adaptation are extremely poor (GRDC 2004; Widen-Nilsson

et al. 2007).

Of course one has to keep in mind that the lack of

in situ observations does not mean that there are no

observations at all, given the increasingly widespread

availability of remotely sensed information (see the discus-

sion in Lakshmi 2004). We can remotely obtain obser-

vations of hydrologic variables such as near-surface air

temperature and precipitation, of landscape characteristics

such as land cover or topography and even of watershed

response characteristics such as soil moisture and surface

water levels (e.g. Alsdorf & Lettenmaier 2003; Lakshmi

2004). Differences in space-time scales and frequency of

measurements mean that the value of in situ and remotely

sensed data will differ, at least for a while.

Predictions of everywhere (i.e. at any location) implies

that for many of these locations no suitable or sufficiently

long observations of the response variable of interest will be

available—they are ungauged (Sivapalan et al. 2003). The

modeller has to rely on a relationship between natural

system characteristics (such as soils and vegetation) and

model parameters to parameterize the environmental

model. However, most model parameters have limited

relationships to real world (measurable) characteristics

and model predictions for changed or ungauged situations

are very uncertain (Wagener & Wheater 2006). The success

of modelling ungauged situations therefore hinges on how

well model parameters and model structure can be

estimated from a priori information of static system

characteristics (e.g. soil type, vegetation cover, etc.).

Parkin et al. (1996) put this to the test and performed a

blind validation on the Rimbaud watershed in Southern

France using the SHE model. Their model predictions were

highly uncertain, and they did not meet most of their self-

declared measures of success. Refsgaard & Knudsen (1996)

compared both physically-based and conceptual models in

ungauged watersheds in Zimbabwe. They found that a

spatially distributed model structure resulted in better

predictions compared to a lumped one, but could not

unambiguously show that the physically based model was

better than another distributed model that was more

conceptual in structure.

Fourth driver: modelling change

The increasing non-stationarity of our world (largely due to

increased human activity) will have significant implications

for the water environment that we need to anticipate. “The

United States is facing unprecedented environmental

changes, but decision makers do not have the information

they need to understand and respond to these changes in a

timely fashion” (Heinz Center 2008). Disturbances that

impact the water environment include land cover change,

largely due to urbanization (DeWalle et al. 2000) and the

increasing impacts of a changing climate (US Climate

Change Science Program 2008).

The potential of developing successful strategies to deal

with these changes lies in our capacity to anticipate their

impact (Clark et al. 2001). For predictions of environmental

change, assuming that the change that occurs at a study

location is not too severe, this change can likely be reflected

through adjusting the model parameters. If the model is to

be run in predictive mode where no observations of the

‘changed system response’ are available, then we need to

adjust the parameters based on our knowledge of how the

physical characteristics of the system change (e.g. the land

use). We therefore require a relationship between physical

characteristics and model parameters similar to the
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ungauged case discussed above. “Techniques for the

analysis of the effects of land use change on modelled

hydrological responses are still very much at an early stage”

(Beven 2000). Origins of environmental change include

deforestation and reforestation (e.g. Likens et al. 1977;

Swank & Crossley 1988; Calder 1990); effects of fire (e.g.

Parkin et al. 1996; Cerda 1998), urbanization (e.g. DeWalle

et al. 2000), effects of beetle infestation, agricultural

drainage (e.g. Robinson 1986; Dunn & Mackay 1996), as

well as climate change (e.g. Allen & Ingram 2002; Milly et al.

2005; Nohara et al. 2006; Oki & Kanae 2006).

An environmental modelling framework

To discuss the implications of the four drivers listed above

on environmental modelling, it is convenient to formalize a

typical modelling framework (Figure 1). The framework

separates an observation layer and a modelling layer, both

consisting of three main elements represented as ovals and

connections within and between layers.

The observation layer consists of an oval representing

the observation of system dynamic variables (e.g. streamflow,

precipitation, evapotranspiration, groundwater flow and

transport, sediment fluxes or soil moisture) and one

representing the observation of system static characteristics

(e.g. topography, soil and vegetation characteristics or

channel network). Depending on the temporal extent of a

study, several variables could be considered either as

dynamic or as static, e.g. land cover or vegetation. Even

topography or other geological and geomorphological

characteristics could be considered dynamic if very long

time-scales are to be modelled (Tucker et al. 2001). The third

oval represents the perceptual model, which is based on (and

partially limited by) our observations of real world dynamics

and statics. This model represents the modeller’s perception

of the environmental system without a formalized math-

ematical abstraction. The perceptual model represents the

summary of our perceptions of how the environmental

system under study functions (Beven 2000). It is therefore a

subjective model, depending on the individual modeller’s

knowledge and level of understanding.

On top of the observation layer sits a modelling layer

with three components that are related to or derived from

observations and perceptions. The bottom oval represents

the conceptual model of our system. This is a formalization

(and usually simplification) of our perceptual model.

At this point, the hypotheses and assumptions being

made to simplify the description of the processes need to

be made explicit (Beven 2000). The modeller has to make

decisions regarding the main state variables and their

distribution in space, types of boundary conditions,

dominant processes etc.

Figure 1 | Schematic representation of a typical environmental modelling framework.

271 T. Wagener et al. | Identification and evaluation of complex environmental systems models Journal of Hydroinformatics | 11.3–4 | 2009



This conceptualization forms the basis from which a

mathematical model is built: the next oval. This mathemat-

ical model (i.e. the model equations implemented in

computer code) might be impacted by the modeller’s ability

to translate the conceptual model into mathematical form.

An additional consideration at this stage might be the

purpose of our modelling exercise. For example, if one is

interested in modelling the annual water balance, then the

number of state variables might be very low and a spatially

distributed representation of processes might be unnecess-

ary. The third oval in the modelling layer represents what

we call here the information model. This is the model used

to extract information from the data and to merge (through

processes of calibration, conditioning or data assimilation)

this information with the mathematical model, or to

evaluate the model by comparing observations and simu-

lations. Typical examples of information models are the

residual-based objective or likelihood functions used

in typical model/parameter identification (calibration)

procedures. The overall goal is to maximize the amount of

information that can be extracted from observation data

by improving the information model using a variety of

methods (e.g. Wagener et al. 2003; Gupta et al. 2008).

In the following section we will discuss and provide

some examples of how parts of this framework can or even

need to be advanced, while largely focusing on the

information model. We will concentrate on the issue of

how to quantify and how to maximize extraction of

information from observations of system dynamics and

statics for model identification and evaluation in gauged

and ungauged watersheds. This issue links to driver 1

(uncertainty) in the sense that maximal utilization of

available information for model identification and evalu-

ation will (or at least should) reduce uncertainty. It relates

to drivers 3 and 4 (predictions everywhere and of

environmental change impacts) in the sense that we have

to find ways to develop reliable models without recourse to

‘local’ calibration using observations of real world system

dynamics which, by definition, are not available in these

circumstances. Driver 2, observational network design, is

addressed in the sense that better understanding of the

information content of observations, i.e. their value, as well

as better quantification of the spatial and temporal extent of

the information can help to enhance network design.

ADVANCES IN ENVIRONMENTAL MODEL

IDENTIFICATION AND EVALUATION IN THE

CONTEXT OF THESE DRIVERS

An area of active research in the framework discussed in the

previous section is the information model. The main

question under consideration is: how can we quantify and

extract available information from observations of static

and dynamic system characteristics to identify and evaluate

models at gauged and ungauged locations? For ease of

discussion, we will break this question into two com-

ponents: the gauged and the ungauged case. Gauged in the

context of this discussion refers to the availability of

historical observations of the output variable(s) of an

environmental system for purposes of model calibration

and evaluation. We will point out some of the main research

issues that require addressing and provide examples of how

this could be done from our own work on modelling the

rainfall–runoff relationship of watersheds.

Advances in gauged systems

An important issue in the case of gauged systems is how

much information can be extracted from available obser-

vations using a particular information model as represented

in a particular objective or likelihood function. Secondly,

related to the first issue, we wish to determine what aspects

of a model can be identified using the information provided

by the observations.

A tool that has become increasingly feasible to address

these two issues, due to advances in computational power

and the increasing use of parallelized computing architec-

tures, is global sensitivity analysis. Sensitivity analysis

evaluates the impact of changes in selected factors

(including model parameters, inputs or initial states) on

the model output of interest, and can be a very valuable

tool for model evaluation and identification (Demaria

et al. 2007; Wagener & Kollat 2007). Global sensitivity

analysis means that we can perform an analysis by

exploring the full feasible space for all the factors

considered, rather than just around some initial point

(e.g. the optimum in the model parameter space). Tang et al.

(2006) recently compared several local and global sensi-

tivity analysis methods and found that Sobol’s method
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(Sobol 1993; Saltelli 2002)—a variance-based global sensi-

tivity analysis approach—provides robust and detailed

sensitivity rankings. Below we will provide two examples

of how this approach can be used to quantify the amount

and type of information that can be extracted for both a

lumped and a distributed watershed model.

Both studies utilize the Sacramento Soil Moisture

Accounting (SAC-SMA) widely used by the National

Weather Service (NWS) for river forecasting across the US

(Figure 2(b), Table 1). We use both a lumped version of

this conceptual watershed model as well as a grid-based

distributed version in which a lumped SAC-SMA model is

Figure 2 | (a) Map showing the locations of the 12 study basins within the US; (b) schematic figure of the Sacramento model structure; and (c) figures of the Sobol sensitivity indices

(shown for each model parameter for each month of the years 1963 or 1965) for the Sacramento model parameters derived for the different study basins (ordered wet to

dry from top to bottom).
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used to represent each grid element with additional hillslope

and channel routing through kinematic wave schemes.

In the first study, Sobol’s method is applied to quantify

how much information can be extracted from daily obser-

vations of streamflow for the identification of the lumped

SAC-SMA model for watersheds in different hydro-climatic

regions (Figure 2(b); Van Werkhoven et al. 2008a). The

results shown in Figure 2(c) demonstrate how parameter

sensitivities vary across hydro-climatic regimes and

throughout a year with respect to the Root Mean Squared

Error objective function (RMSE, a measure that emphasizes

high flow performance due to the use of squared residuals

in its calculation)—the chosen information model in this case.

Across watersheds (comparing across columns within

each of the grids), the sensitivity differences tell us some-

thing about which parameters control the streamflow

response at what time and, therefore, which parameters

could be identified in a calibration process. The approach

also reveals how the model reproduces the observed system

response. The modeller can use the sensitivity analysis

results to judge whether the model behaviour is consistent

with his/her perceptual and conceptual models. The three

watersheds shown range from wet (AMI), to medium

(MON) and dry (GUA). The analysis for example shows

that the fast flashy response of the dry watershed is largely

controlled by the percentage impervious area (PCTIM), a

parameter that allows the model to produce a quick runoff

contribution. The analysis also shows that flow predictions

for the two wetter watersheds are more strongly controlled

by lower zone model parameters (those starting with L)

than the wet watershed where baseflow is much smaller.

A third interesting result lies in the variability of the

sensitivity throughout the year. For example, the medium

watershed (MON) shows interesting behaviour during

August and September. The previous months have been

dry (depleting its storages) and its behaviour becomes very

similar to that of the dry watershed (GUA). Other objective

functions, focusing on different hydrologically relevant

aspects of the watershed response (e.g. low flows or water

balance) can be used to gain a more complete picture of the

model behaviour and the information content of the data

(Gupta et al. 2008; Van Werkhoven et al. 2008a).

The second study by Tang et al. (2007) extends the study

of the lumped model to that of the distributed version of the

SAC-SMA model at the event scale using hourly streamflow

observations. Figure 3 shows global sensitivity maps for this

model, which applies the above discussed Sacramento

model structure in a distributed manner as described

above. Tang et al. (2007) show, among other things, the

impact of spatially heterogeneous forcing in creating spatial

differences in sensitivity of the model parameters using this

spatially distributed model. Figure 3 reveals a close link

between rainfall amounts falling in a specific grid-cell and

parameter sensitivity, thus indicating that the information

available for model identification is a function of (or at least

strongly impacted by) the space-time distribution of the

model forcing. The plot shows the sensitivities for three

parameters representing upper zone storage (UZTWM),

percolation to the lower zone (PFREE) and lower zone

storage (LZTWM). The study by Tang et al. (2007), however,

was severely limited by computational constraints. Only

two selected rainfall–runoff events could be run while

Table 1 | Description of SAC-MCA parameters

Parameter Units Description

UZTWM mm Upper zone tension water maximum
storage

UZFWM mm Upper zone free water maximum
storage

UZK Day21 Upper zone free water withdrawal
rate

PCTIM %/100 Percent permanent impervious area

ADIMP %/100 Percent area contributing as impervious
when saturated

RIVA %/100 Percent area affected by riparian
vegetation

ZPERC None Maximum percolation rate under dry
conditions

REXP None Percolation equation exponent

PFREE %/100 % of percolation going directly
to lower zone free water

LZTWM mm Lower zone tension water maximum
storage

LZFPM mm Lower zone free water primary
maximum storage

LZFSM mm Lower zone free water supplementary
maximum storage

LZPK Day21 Lower zone primary withdrawal rate

LZSK Day21 Lower zone supplementary withdrawal rate
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Figure 3 | Spatial distribution of the total order sensitivity indices of the top three most sensitive parameters on each model grid cell. The spatial distributions of the May 2002 event

sensitivities (caused by spatially uniform precipitation) are plotted for the model’s (a) upper zone tension water storage (UZTWM); (b) fraction of percolating water (PFREE);

and (c) lower zone tension water storage (LZTWM). The spatial distributions of the September 2003 event sensitivities (caused by spatially heterogeneous precipitation) are

plotted for the model’s (d) upper zone tension water storage (UZTWM); (e) fraction of percolating water (PFREE); and (f) lower zone tension water storage (LZTWM). The

arrows in the cells designate surface flow directions.
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varying all model parameters across all grid cells, even

although the model was run in a parallelized version on a

computing cluster.

Advances in ungauged systems

Current environmental models generally require calibration

against historical observations of the system response (e.g.

streamflow) in order to provide reliable predictions. As

discussed above, in many cases, observations of the real

world system response with respect to the variable of

interest and/or at the location of interest will not be

available. For example, the majority of river reaches (even

in data-rich countries such as the US or the UK) are

ungauged, while less-developed countries generally have

much poorer observational networks (Houghton-Carr &

Fry 2006). Additionally, environmental change is altering

the hydrological regime of many watersheds, thus rendering

historical observations less useful.

In these circumstances, alternative approaches need to

be found to estimate model parameters to provide reliable

predictions and to reduce model uncertainty. Past

approaches to modelling the continuous hydrologic

response of ungauged basins used observable physical

characteristics of watersheds to either directly infer values

for the parameters of hydrologic models, or to establish

regression relationships between static watershed charac-

teristics and model parameters (i.e. parameter regionaliza-

tion). Both approaches have widely discussed limitations,

like problems in measuring physical characteristics at the

model scale when trying to directly measure model

parameters for physically-based models. Model structural

uncertainty, an ill-defined calibration problem, and our lack

of understanding about how model parameters should

correlate with watershed characteristics also add large

amounts of uncertainty to the parameter regionalization

approach (Wagener & Wheater 2006).

Yadav et al. (2007) recently proposed an alternative

approach to the problem of modelling ungauged locations

that addresses several of the above-mentioned problems.

The main idea of this strategy is to formalize constraints

on the feasible or expected (in their case streamflow)

behaviour of ungauged environmental systems and use

these constraints to reduce the uncertainty in local model

predictions. If we know how system behaviour relates to the

structure and climatic conditions of a system, even if this

relationship is uncertain, then we can force the behaviour of

our models to be consistent with these relationships. In their

particular study, Yadav et al. (2007) developed a model-

independent approach based on empirically derived

relationships between watershed response behaviour

(streamflow indices), static watershed characteristics and

climate characteristics. Instead of attempting to directly infer

values for model parameters, different hydrologic response

behaviours of the watershed, quantified through streamflow

indices, are estimated and subsequently regionalized in a

regression framework (see also Sanborn & Bledsoe 2006).

By including uncertainty in the form of prediction limits

on the regression, we can predict ranges in which different

streamflow indices are expected to fall at ungauged

locations. Zhang et al. (2008) recently enhanced the size

and scope of modelling applications where this approach

can be applied. Larger, more complex models can be

considered by reformulating the identification of feasible

parameter sets that produce a model response within the

constraints as a multi-objective optimization problem that

can be solved using evolutionary algorithms. While the

studies by Yadav et al. (2007) and Zhang et al. (2008)

referred to the extrapolation in space, the same approach

might be applicable for the extrapolation in time e.g. to

address the implications of land cover change on environ-

mental system behaviour (Wagener 2007).

The approach described above therefore provides a

strategy to create an information model (formalized as one

or more constraints) at an ungauged location that exploits

commonly available data sources that provide basic

watershed properties (terrain, climatology, vegetation,

etc.). This strategy enables the modeller to assimilate

various types of regional information to constrain or

calibrate a local watershed model through this information

model. Statistical hydrology has been used historically in

many regions of the world to create (usually) regression-

based regional models of streamflow characteristics includ-

ing flood/low flow frequency analysis or flow duration

curve characteristics (e.g. Fennessy & Vogel 1990; Kroll &

Vogel 2002). This regional information should not conflict

with the continuous simulations provided by a watershed

model and can potentially reduce model uncertainty.
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DISCUSSION, CONCLUSIONS AND OUTLOOK

Advances in our ability to model complex environmental

systems are currently driven by at least four needs: (1) the

need for the inclusion of uncertainty in observation,

modelling and decision-making; (2) the need to provide

environmental predictions everywhere (at any location);

(3) the need to predict the impacts of environmental change

(mainly land use and climate change); and (4) the need for

model-guided adaptive observation network design. Satisfy-

ing these needs will require improved theory, translation of

this improved theory to produce improved environmental

models and enhanced observational capabilities. The latter

issue is particularly important in the face of increasing

budget cuts that have lead to declining observational

(on-the-ground) networks in many parts of the world.

In this paper, we discuss how global sensitivity analysis

can inform modellers about the information content of

observations in space and time for the modelling task at

hand. The study also demonstrated how widely model

behaviour can vary across watersheds and even within a

watershed if a spatially distributed model is used. The

second example discusses how regionalized streamflow

indices can be used to define constraints at ungauged

locations. Feasible parameter sets can subsequently be

identified using Monte Carlo sampling or, more powerfully,

using evolutionary multi-objective optimization.

The hydroinformatics community is challenged to

provide the scientific tools necessary to achieve water

security in the 21st century by supporting sound policy

making. We need to build more realistic and more

integrated environmental models to represent real-world

thresholds, nonlinearities and feedbacks, and which are

capable of representing the implications of environmental

change. Building these necessarily more complex models

must also be accompanied by a development in significantly

more powerful identification and evaluation algorithms.

Such algorithms, combining optimization and sensitivity

analysis methods while considering uncertainty, have to be

able to support our analysis about how our models

represent environmental systems and whether this presen-

tation is consistent with our perception of the actual system

and where (or when) models are incapable of doing so

(i.e. provide model diagnostics). The work on distributed

models presented here and in the references demonstrates

the need for (currently unavailable) model identification

procedures that account for the space-time dynamics in the

precipitation forcing. This task alone is a very significant

computational challenge, and presents just one of many

opportunities for the hydroinformatics community to make

important advancements.

Our final thought is given to the need for advancing

communication and exchange within the research commu-

nity and beyond. The speed in which new information and

new tools are produced is accelerating continuously and

better ways to share them have to be found. With respect to

the free exchange of software, the Hydroarchive (www.

sahra.arizona.edu/software) provides a web-based database

where developers can deposit their software tools (or link

their specific web-sites) while users can download them free

of charge (Wagener et al. 2003).
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Drécourt, J., Madsen, H. & Rosbjery, D. 2006 Bias aware Kalman

filters: comparison and improvements. Adv. Water Resour. 29,

707–718.

Dunn, S. M. & Mackay, R. 1996 Modeling the hydrological impacts

of open ditch drainage. J. Hydrol. 179, 37–66.

Dunn, S. M. & Ferrier, R. C. 1999 Natural flow in managed

catchments: a case study of a modeling approach. Water Res.

33, 621–630.

Evensen, G. 1994 Sequential data assimilation with a non-linear

quasi-geostrophic model using Monte Carlo methods to

forecast error statistics. J. Geophys. Res. 99 (C5),

10143–101624.

Ewen, J. & Parkin, G. 1996 Validation of catchment models for

predicting land-use and climate change impacts.1. Method.

J. Hydrol. 175, 583–594.

Falkenmark, M. 2001 The greatest water problem: the inability to

link environmental security, water security and food security.

Water Resour. Dev. 17 (4), 539–554.

Fennessey, N. & Vogel, R. M. 1990 Regional flow duration curves

for ungauged sites in Massachusetts. ASCE J. Water Resour.

Plann. Manage. 116 (4), 530–549.

Franks, S. W., Gineste, P., Beven, K. J. & Merot, P. 1998 On

constraining the predictions of a distributed model: the

incorporation of fuzzy estimates of saturated areas in the

calibration process. Water Resour. Res. 34, 787–797.

Freeman, M. C., Pringle, C. M. & Jackson, C. R. 2007 Hydrologic

connectivity and the contribution of stream headwaters to

ecological integrity at regional scales. J. Am. Water Resour.

Assoc. 43 (1), 5–14.

Freer, J. E., McMillan, H., McDonnell, J. J. & Beven, K. J. 2004

Constraining dynamic TOPMODEL responses for imprecise

water table information using fuzzy rule based performance

measures. J. Hydrol. 291 (3–4), 254–277.

Gleick, P. H. 2002 Soft water paths. Nature 418, 373.

Global Runoff Data Centre (GRDC) 2004 Long term mean annual

freshwater surface water fluxes into the world oceans.

Comparison of GRDC freshwater flux estimate with the literature.

http://grdc.bafg.de/servlet/is/7083/, Accessed June 2007.

Gupta, H. V., Wagener, T. & Liu, Y. 2008 Reconciling theory with

observations: elements of a diagnostic approach to model

evaluation. Hydrol. Proc. 22 (18), 3802–3813.

278 T. Wagener et al. | Identification and evaluation of complex environmental systems models Journal of Hydroinformatics | 11.3–4 | 2009

http://dx.doi.org/10.1029/2005WR004745
http://dx.doi.org/10.1029/2005WR004745
http://dx.doi.org/10.1029/2005WR004745
http://dx.doi.org/10.1029/2005WR004745
http://dx.doi.org/10.1038/nature01092
http://dx.doi.org/10.1038/nature01092
http://dx.doi.org/10.1126/science.1089802
http://dx.doi.org/10.1126/science.1089802
http://dx.doi.org/10.1016/0022-1694(89)90101-7
http://dx.doi.org/10.1016/0022-1694(89)90101-7
http://dx.doi.org/10.1002/hyp.3360060305
http://dx.doi.org/10.1002/hyp.3360060305
http://dx.doi.org/10.1016/j.jhydrol.2008.02.007
http://dx.doi.org/10.1016/j.jhydrol.2008.02.007
http://dx.doi.org/10.1002/hyp.7049
http://dx.doi.org/10.1002/hyp.7049
http://dx.doi.org/10.1139/cjfas-57-S2-5
http://dx.doi.org/10.1139/cjfas-57-S2-5
http://dx.doi.org/10.1002/(SICI)1099-1085(19980615)12:7<1031::AID-HYP636>3.0.CO;2-V
http://dx.doi.org/10.1002/(SICI)1099-1085(19980615)12:7<1031::AID-HYP636>3.0.CO;2-V
http://dx.doi.org/10.1126/science.293.5530.657
http://dx.doi.org/10.1126/science.293.5530.657
http://dx.doi.org/10.1029/2007WR006735
http://dx.doi.org/10.1029/2007WR006735
http://dx.doi.org/10.1029/2007WR006735
http://dx.doi.org/10.1029/2006JD007534
http://dx.doi.org/10.1029/2006JD007534
http://dx.doi.org/10.1029/2006JD007534
http://dx.doi.org/10.1029/2000WR900134
http://dx.doi.org/10.1029/2000WR900134
http://dx.doi.org/10.1029/JZ064i002p00241
http://dx.doi.org/10.1029/WR022i09Sp0046S
http://dx.doi.org/10.1016/j.advwatres.2005.07.006
http://dx.doi.org/10.1016/j.advwatres.2005.07.006
http://dx.doi.org/10.1016/0022-1694(95)02871-4
http://dx.doi.org/10.1016/0022-1694(95)02871-4
http://dx.doi.org/10.1016/S0043-1354(98)00268-1
http://dx.doi.org/10.1016/S0043-1354(98)00268-1
http://dx.doi.org/10.1029/94JC00572
http://dx.doi.org/10.1029/94JC00572
http://dx.doi.org/10.1029/94JC00572
http://dx.doi.org/10.1016/S0022-1694(96)80026-6
http://dx.doi.org/10.1016/S0022-1694(96)80026-6
http://dx.doi.org/10.1080/07900620120094073
http://dx.doi.org/10.1080/07900620120094073
http://dx.doi.org/10.1061/(ASCE)0733-9496(1990)116:4(530)
http://dx.doi.org/10.1061/(ASCE)0733-9496(1990)116:4(530)
http://dx.doi.org/10.1029/97WR03041
http://dx.doi.org/10.1029/97WR03041
http://dx.doi.org/10.1029/97WR03041
http://dx.doi.org/10.1029/97WR03041
http://dx.doi.org/10.1016/j.jhydrol.2003.12.037
http://dx.doi.org/10.1016/j.jhydrol.2003.12.037
http://dx.doi.org/10.1016/j.jhydrol.2003.12.037
http://dx.doi.org/10.1038/418373a
http://grdc.bafg.de/servlet/is/7083/
http://dx.doi.org/10.1002/hyp.6989
http://dx.doi.org/10.1002/hyp.6989
http://dx.doi.org/10.1002/hyp.6989


Harbor, J. M. 1994 A practical method for estimating the impact of

land use change on surface runoff, groundwater recharge and

wetland hydrology. J. Am. Plan. Assoc. 60 (1), 95–108.

Heinz Center 2008 Environmental Information: A Road Map to the

Future. Heinz Center Report, Washington, DC.

Hong, Y., Hsu, K. L., Moradkhani, H. & Sorooshian, S. 2006

Uncertainty quantification of satellite precipitation estimation

and Monte Carlo assessment of the error propagation into

hydrologic response. Water Resour. Res. 42, W08421.

Houghton-Carr, H. & Fry, M. 2006 The decline of hydrological data

collection for development of integrated water resource

management tools in Southern Africa climate variability and

change—hydrological impacts. IAHS Publ. 308, 51–55.

Kavetski, D., Kuczera, G. & Franks, S. W. 2006 Bayesian analysis

of input uncertainty in hydrological modeling: 1. Theory.

Water Resour. Res. 42, W03407.

Kavetski, D., Kuczera, G. & Franks, S. W. 2006 Bayesian analysis

of input uncertainty in hydrological modeling: 2. Application.

Water Resour. Res. 42, W03408.

Kennedy, M. C. & O’Hagan, A. 2001 Bayesian calibration of

mathematical models. J. R. Stat. Soc. D63 (3), 425–450.

Kirchner, J. W. 2006 Getting the right answers for the right

reasons: linking measurements, analyses, and models

to advance the science of hydrology. Water Resour. Res.

42, W03S04.

Kollat, J. B. & Reed, P. M. 2008 Addressing bias and uncertainty

in groundwater transport forecasts for a three-dimensional

physical aquifer experiment. Geophys. Res. Lett. 35, L17402.

Kollet, S. & Maxwell, R. 2006 Integrated surface-groundwater flow

modeling: a free-surface overland flow boundary condition in

a parallel groundwater flow model. Adv. Water Resour. 29,

945–958.

Kollet, S. & Maxwell, R. 2008 Demonstrating fractal scaling of

baseflow residence time distributions using a fully–coupled

groundwater and land surface model. Geophys. Res. Lett. 35,

L07402.

Kroll, C. N. & Vogel, R. M. 2002 The probability distribution of low

streamflow series in the United States. J. Hydrol. Eng. ASCE 7

(2), 137–146.

Lakshmi, V. 2004 The role of satellite remote sensing in the

prediction of Ungauged Basins. Hydrol. Proc. 18 (5),

1029–1034.

Langbein, W. B. 1979 Overview of conference on hydrologic data

networks. Water Resour. Res. 15 (6), 1867–1871.

Likens, G. E., Bormann, F. H., Pierce, R. S., Eaton, J. S. & Johnson,

N. M. 1977 Biogeochemistry of a Forested Ecosystem. Springer-

Verlag, New York.

Lowe, W. H. & Likens, G. E. 2005 Moving headwater streams to

the head of the class. BioScience 5593, 196–197.

Marshall, L., Nott, D. & Sharma, A. 2004 A comparative study of

Markov chain Monte Carlo methods for conceptual rainfall–

runoff modeling. Water Resour. Res. 40, W02501.

McIntyre, N., Wheater, H. S. & Lees, M. 2002 Estimation and

propagation of parametric uncertainty in environmental

models. J. Hydroinform. 4, 177–198.

McIntyre, N., Wagener, T., Wheater, H. S. & Siyu, Z. 2003

Uncertainty and risk in water quality modelling and

management. J. Hydroinform. 5 (4), 259–274.

Millennium Ecosystem Assessment 2005 Ecosystems and Human

Well-being: Synthesis. Island Press, Washington, DC.

Miller, R. N., Carter, E. F. & Blue, S. T. 1999 Data assimilation into

nonlinear stochastic models. Tellus. Ser. A Dyn. Meteorol.

Oceanogr. 51, 167–194.

Milly, P. C. D., Wetherald, R. T., Dunne, K. A. & Delworth, T. L.

2002 Increasing risk of great floods in a changing climate.

Nature 415, 514–517.

Milly, P. C. D., Dunne, K. A. & Vecchia, A. V. 2005 Global pattern

of trends in streamflow and water availability in a changing

climate. Nature 438, 347–350.

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M.,

Kundzewicz, Z. W., Lettenmaier, D. P. & Stouffer, R. J. 2008

Stationarity is dead: whither water management? Science 319

(5863), 573–574.

Moradkhani, H., Sooroshian, S., Gupta, H. A. & Hauser, P. R.

2005 Dual state-parameter estimation of hydrological models

using ensemble Kalman filter. Adv. Water Resour. 28,

135–147.

Moradkhani, H., Hsu, K. L., Gupta, H. V. & Sorooshian, S. 2005

Uncertainty assessment of hydrologic model states and

parameters: sequential data assimilation using the particle

filter. Water Resour. Res. 41, W05012.

Moss, M. E. 1979a Some basic considerations in the design of

hydrologic data networks. Water Resour. Res. 15 (6),

1673–1676.

Moss, M. E. 1979b Space, time, and the third dimension (model

error). Water Resour. Res. 15 (6), 1797–1800.

Nadeau, T.-L. & Rains, M. C. 2007 Hydrological connectivity

between headwater streams and downstream waters: how

science can inform policy. J. Am. Water Resour. Assoc. 43 (1),

118–133.

National Research Council 2008 Integrating Multiscale

Observations of US Waters. The National Academies Press,

Washington, DC.

Neuman, S. P. 2002 Accounting for conceptual model uncertainty

via maximum likelihood Bayesian model averaging. Acta Univ.

Carol.-Geol. 46 (2/3), 529–534.

Nohara, D., Kitoh, A., Hosaka, M. & Oki, T. 2006 Impact of

climate change on river discharge projected by multimodel

ensemble. J. Hydromet. 7, 1076–1089.

NRC (National Research Council) 2004 Assessing the National

Streamflow Information Program. National Academy Press,

Washington, DC.

Oki, T. & Kanae, S. 2006 Global hydrological cycles and world

water resources. Science 313, 1068–1072.

Palmer, M., Bernhardt, E., Chornesky, E., Collins, S., Dobson, A.,

Duke, C., Gold, B., Jacobson, R., Kingsland, S., Kranz, R.,

Mappin, M., Martinez, M. L., Micheli, F., Morse, J., Pace, M.,

Pascual, M., Palumbi, S., Reichman, O. J., Simons, A.,

Townsend, A. & Turner, M. 2004 Ecology for a crowded

planet. Science 304, 1251–1252.

279 T. Wagener et al. | Identification and evaluation of complex environmental systems models Journal of Hydroinformatics | 11.3–4 | 2009

http://dx.doi.org/10.1080/01944369408975555
http://dx.doi.org/10.1080/01944369408975555
http://dx.doi.org/10.1080/01944369408975555
http://dx.doi.org/10.1029/2005WR004398
http://dx.doi.org/10.1029/2005WR004398
http://dx.doi.org/10.1029/2005WR004398
http://dx.doi.org/10.1029/2005WR004368
http://dx.doi.org/10.1029/2005WR004368
http://dx.doi.org/10.1029/2005WR004376
http://dx.doi.org/10.1029/2005WR004376
http://dx.doi.org/10.1111/1467-9868.00294
http://dx.doi.org/10.1111/1467-9868.00294
http://dx.doi.org/10.1029/2005WR004362
http://dx.doi.org/10.1029/2005WR004362
http://dx.doi.org/10.1029/2005WR004362
http://dx.doi.org/10.1029/2008GL035021
http://dx.doi.org/10.1029/2008GL035021
http://dx.doi.org/10.1029/2008GL035021
http://dx.doi.org/10.1016/j.advwatres.2005.08.006
http://dx.doi.org/10.1016/j.advwatres.2005.08.006
http://dx.doi.org/10.1016/j.advwatres.2005.08.006
http://dx.doi.org/10.1029/2008GL033215
http://dx.doi.org/10.1029/2008GL033215
http://dx.doi.org/10.1029/2008GL033215
http://dx.doi.org/10.1029/2008GL033215
http://dx.doi.org/10.1029/2008GL033215
http://dx.doi.org/10.1061/(ASCE)1084-0699(2002)7:2(137)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2002)7:2(137)
http://dx.doi.org/10.1002/hyp.5520
http://dx.doi.org/10.1002/hyp.5520
http://dx.doi.org/10.1029/WR015i006p01867
http://dx.doi.org/10.1029/WR015i006p01867
http://dx.doi.org/10.1641/0006-3568(2005)055[0196:MHSTTH]2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2005)055[0196:MHSTTH]2.0.CO;2
http://dx.doi.org/10.1029/2003WR002378
http://dx.doi.org/10.1029/2003WR002378
http://dx.doi.org/10.1029/2003WR002378
http://dx.doi.org/10.1029/2003WR002378
http://dx.doi.org/10.1029/2003WR002378
http://dx.doi.org/10.1034/j.1600-0870.1999.t01-2-00002.x
http://dx.doi.org/10.1034/j.1600-0870.1999.t01-2-00002.x
http://dx.doi.org/10.1038/415514a
http://dx.doi.org/10.1038/nature04312
http://dx.doi.org/10.1038/nature04312
http://dx.doi.org/10.1038/nature04312
http://dx.doi.org/10.1126/science.1151915
http://dx.doi.org/10.1016/j.advwatres.2004.09.002
http://dx.doi.org/10.1016/j.advwatres.2004.09.002
http://dx.doi.org/10.1029/2004WR003604
http://dx.doi.org/10.1029/2004WR003604
http://dx.doi.org/10.1029/2004WR003604
http://dx.doi.org/10.1029/WR015i006p01673
http://dx.doi.org/10.1029/WR015i006p01673
http://dx.doi.org/10.1029/WR015i006p01797
http://dx.doi.org/10.1029/WR015i006p01797
http://dx.doi.org/10.1175/JHM531.1
http://dx.doi.org/10.1175/JHM531.1
http://dx.doi.org/10.1175/JHM531.1
http://dx.doi.org/10.1126/science.1128845
http://dx.doi.org/10.1126/science.1128845
http://dx.doi.org/10.1126/science.1095780
http://dx.doi.org/10.1126/science.1095780


Panday, S. & Huyakorn, P. S. 2004 A fully coupled physically-based

spatially-distributed model for evaluating surface/subsurface

flow. Adv. Water Resour. 27, 361–382.

Parkin, G., O’Donnell, G., Ewen, J., Bathurst, J. C., O’Connell,

P. E. & Lavabre, J. 1996 Validation of catchment models for

predicting land-use and climate change impacts. 1. Case

study for a Mediterranean catchment. J. Hydrol. 175,

595–613.

Poff, N. L., Bledsoe, B. P. & Cuhaciyan, C. O. 2006a Hydrologic

variation with land use across the contiguous United States:

geomorphic and ecological consequences for stream

ecosystems. Geomorphology 79, 264–285.

Poff, N. L., Olden, J. D., Pepin, D. M. & Bledsoe, D. P. 2006b

Placing global streamflow variability in geographic and

geomorphic contexts. River Res. Appl. 22, 149–166.

Porporato, A., Daly, E. & Rodriguez-Iturbe, I. 2004 Soil water

balance and ecosystem response to climate change. Am. Nat.

164 (5), 625–632.

Qu, Y. & Duffy, C. J. 2007 A semi-discrete finite-volume

formulation for multi-process watershed simulation. Water

Resour. Res. 43, W08419.

Reed, P., Brooks, R., Davis, K., DeWalle, D. R., Dressler, K. A.,

Duffy, C. J., Lin, H. S., Milller, D., Najjar, R., Salvage, K. M.,

Wagener, T. & Yarnal, B. 2006 Bridging river basin scales and

processes to assess human-climate impacts and the terrestrial

hydrologic system. Water Resour. Res. 42, W07418.

Refsgaard, J. C. & Knudsen, J. 1996 Operational validation and

intercomparison of different types of hydrological models.

Water Resour. Res. 32 (7), 2189–2202.

Reggiani, P., Sivapalan, M. & Hassanizadeh, S. M. 1998 A unifying

framework for watershed thermodynamics: balance equations

for mass, momentum, energy and entropy, and the second law

of thermodynamics. Adv. Water Resour. 22 (4), 367–398.

Reggiani, P., Hassanizadeh, E. M., Sivapalan, M. & Gray, W. G.

1999 A unifying framework for watershed thermodynamics:

constitutive relationships. Adv. Water Resour. 23 (1), 15–39.

Reggiani, P., Sivapalan, M. & Hassanizadeh, S. M. 2000

Conservation equations governing hillslope responses:

exploring the physical basis of water balance. Water Resour.

Res. 36 (7), 1845–1863.

Reggiani, P., Sivapalan, M., Hassanizadeh, M. & Gray, W. G. 2001

Coupled equations for mass and momentum balance in a

stream network: theoretical derivation and computational

experiments. Proc. R. Soc. Ser. A Math. Phys. Eng. Sci. 457,

157–189.

Reichert, P. & Borsuk, M. E. 2005 Does high forecast uncertainty

preclude effective decision support? Environ. Model. Softw.

20, 991–1101.

Robinson, M. 1986 Changes in catchment runoff following drainage

and afforestation. J. Hydrol. 86, 71–84.

Saltelli, A. 2002 Making best use of model evaluations to compute

sensitivity indices. Comput. Phys. Commun. 145, 280–297.

Sanborn, S. C. & Bledsoe, B. P. 2006 Predicting streamflow regime

metrics for ungauged streams in Colorado, Washington, and

Oregon. J. Hydrol. 325, 241–261.

Schoups, G. & Hopmans, J. W. 2006 Evaluation of model

complexity and input uncertainty of field-scale water flow and

salt transport. Vadose Zone J. 5, 951–962.

Shamseldin, A. Y., O’Connor, K. M. & Liang, G. C. 1997 Methods

for combining the outputs of different rainfall–runoff models.

J. Hydrol. 197 (1–4), 203–229.

Sivapalan, M. 2005 Pattern, process and function: elements of a

unified theory of hydrology at the catchment scale. In

Encyclopedia of Hydrological Sciences (ed. M. Anderson).

Wiley.

Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri,

H., Lakshmi, V., Liang, X., McDonnell, J. J., Mendiondo, E. M.,

O’Connell, P. E., Oki, T., Pomeroy, J. W., Schertzer, D.,

Uhlenbrook, S. & Zehe, E. 2003 IAHS decade on predictions

in ungauged basins (PUB), 2003–2012: shaping an exciting

future for the hydrological sciences. Hydrol. Sci. J. 48 (6),

857–880.

Smith, T. J. & Marshall, L. A. 2008 Bayesian methods in

hydrologic modeling: a study of recent advancements in

Markov chain Monte Carlo techniques. Water Resour. Res.

44, W00B05.

Sobol’, I. 1993 Sensitivity estimates for nonlinear mathematical

models. Math. Model. Comput. Exp. 1, 407–417.

Stockstad, E. 1999 Scarcity of rain, stream gages threatens

forecasts. Science 285, 1199–1200.

Swank W. T. & Crossley D. A. (eds.) 1988 Forest Hydrology and

ecology at Coweeta. Ecological Studies 66. Springer-Verlag,

New York.

Tang, Y., Reed, P. & Wagener, T. 2006 How effective and efficient

are multiobjective evolutionary algorithms at hydrologic model

calibration? Hydrol. Earth Syst. Sci. 10, 289–307.

Tang, Y., Reed, P., Van Werkhoven, K. & Wagener, T. 2007

Advancing the identification and evaluation of distributed

rainfall–runoff models using global sensitivity analysis. Water

Resour. Res. 43, W06415.

Tucker, G. E., Lancaster, S. T., Gasparini, N. M., Bras, R. L. &

Rybarzyk, S. 2001 An object-oriented framework for

distributed hydrologic and geomorphic modeling using

triangulated irregular networks. Comput. Geosci. 27 (8),

959–973.

Uhlenbrook, S., Seibert, J., Leibundgut, Ch. & Rodhe, A. 1999

Prediction uncertainty of conceptual rainfall–runoff models

caused by problems to identify model parameters and

structure. Hydrol. Sci. J. 44 (5), 779–798.

US Climate Change Science Program 2008 Scientific assessment of

the effects of global change on the United States. A Report of

the Committee on Environmental and Natural Resources

National Science and Technology Council, U.S. Climate

Change Science Program, Washington, DC.

Van Werkhoven, K., Wagener, T., Tang, Y. & Reed, P. 2008a

Understanding watershed model behavior across hydro-

climatic gradients using global sensitivity analysis. Water

Resour. Res. 44, W01429.

Van Werkhoven, K., Wagener, T., Reed, P. & Tang, Y. 2008b

Rainfall characteristics define the value of streamflow

280 T. Wagener et al. | Identification and evaluation of complex environmental systems models Journal of Hydroinformatics | 11.3–4 | 2009

http://dx.doi.org/10.1016/j.advwatres.2004.02.016
http://dx.doi.org/10.1016/j.advwatres.2004.02.016
http://dx.doi.org/10.1016/j.advwatres.2004.02.016
http://dx.doi.org/10.1016/S0022-1694(96)80027-8
http://dx.doi.org/10.1016/S0022-1694(96)80027-8
http://dx.doi.org/10.1016/S0022-1694(96)80027-8
http://dx.doi.org/10.1016/j.geomorph.2006.06.032
http://dx.doi.org/10.1016/j.geomorph.2006.06.032
http://dx.doi.org/10.1016/j.geomorph.2006.06.032
http://dx.doi.org/10.1016/j.geomorph.2006.06.032
http://dx.doi.org/10.1002/rra.902
http://dx.doi.org/10.1002/rra.902
http://dx.doi.org/10.1086/424970
http://dx.doi.org/10.1086/424970
http://dx.doi.org/10.1029/2006WR005752
http://dx.doi.org/10.1029/2006WR005752
http://dx.doi.org/10.1029/2005WR004153
http://dx.doi.org/10.1029/2005WR004153
http://dx.doi.org/10.1029/2005WR004153
http://dx.doi.org/10.1029/96WR00896
http://dx.doi.org/10.1029/96WR00896
http://dx.doi.org/10.1016/S0309-1708(98)00012-8
http://dx.doi.org/10.1016/S0309-1708(98)00012-8
http://dx.doi.org/10.1016/S0309-1708(98)00012-8
http://dx.doi.org/10.1016/S0309-1708(98)00012-8
http://dx.doi.org/10.1016/S0309-1708(99)00005-6
http://dx.doi.org/10.1016/S0309-1708(99)00005-6
http://dx.doi.org/10.1029/2000WR900066
http://dx.doi.org/10.1029/2000WR900066
http://dx.doi.org/10.1098/rspa.2000.0661
http://dx.doi.org/10.1098/rspa.2000.0661
http://dx.doi.org/10.1098/rspa.2000.0661
http://dx.doi.org/10.1016/j.envsoft.2004.10.005
http://dx.doi.org/10.1016/j.envsoft.2004.10.005
http://dx.doi.org/10.1016/0022-1694(86)90007-7
http://dx.doi.org/10.1016/0022-1694(86)90007-7
http://dx.doi.org/10.1016/S0010-4655(02)00280-1
http://dx.doi.org/10.1016/S0010-4655(02)00280-1
http://dx.doi.org/10.1016/j.jhydrol.2005.10.018
http://dx.doi.org/10.1016/j.jhydrol.2005.10.018
http://dx.doi.org/10.1016/j.jhydrol.2005.10.018
http://dx.doi.org/10.2136/vzj2005.0130
http://dx.doi.org/10.2136/vzj2005.0130
http://dx.doi.org/10.2136/vzj2005.0130
http://dx.doi.org/10.1016/S0022-1694(96)03259-3
http://dx.doi.org/10.1016/S0022-1694(96)03259-3
http://dx.doi.org/10.1016/S0022-1694(96)03259-3
http://dx.doi.org/10.1016/S0022-1694(96)03259-3
http://dx.doi.org/10.1623/hysj.48.6.857.51421
http://dx.doi.org/10.1623/hysj.48.6.857.51421
http://dx.doi.org/10.1623/hysj.48.6.857.51421
http://dx.doi.org/10.1623/hysj.48.6.857.51421
http://dx.doi.org/10.1623/hysj.48.6.857.51421
http://dx.doi.org/10.1029/2007WR006705
http://dx.doi.org/10.1029/2007WR006705
http://dx.doi.org/10.1029/2007WR006705
http://dx.doi.org/10.1126/science.285.5431.1199
http://dx.doi.org/10.1126/science.285.5431.1199
http://dx.doi.org/10.1029/2006WR005813
http://dx.doi.org/10.1029/2006WR005813
http://dx.doi.org/10.1029/2006WR005813
http://dx.doi.org/10.1029/2006WR005813
http://dx.doi.org/10.1016/S0098-3004(00)00134-5
http://dx.doi.org/10.1016/S0098-3004(00)00134-5
http://dx.doi.org/10.1016/S0098-3004(00)00134-5
http://dx.doi.org/10.1029/2007WR006271
http://dx.doi.org/10.1029/2007WR006271
http://dx.doi.org/10.1029/2008GL034162


observations for distributed watershed model identification.

Geophys. Res. Lett. 35, L11403.

Vogel, R. M. 2006 Regional calibration of watershed models.

In Watershed Models (ed. V. P. Singh & D. K. Frevert),

pp. 549–567. CRC Press.

Vrugt, J. A., Gupta, H. V., Bouten, W. & Sorooshian, S. 2003

A Shuffled complex evolution metropolis algorithm for

optimization and uncertainty assessment of hydrologic model

parameters. Water Resour. Res. 39 (8), 1201.

Vrugt, J. A., Robinson, B. A. & Vesselinov, V. V. 2005 Improved

inverse modeling for flow and transport in subsurface media:

combined parameter and state estimation. Geophys. Res. Lett.

32, L18408.

Vrugt, J. A., Gupta, H. V., Dekker, S. C., Sorooshian, S., Wagener,

T. & Bouten, W. 2006 Confronting parameter uncertainty in

hydrologic modeling: application of the SCEM-UA algorithm

to the Sacramento soil moisture accounting model. J. Hydrol.

325, 288–307.

Wagener, T. 2003 Evaluation of catchment models. Hydrol. Proc.

17, 3375–3378.

Wagener, T. 2007 Can we model the hydrologic impacts of

environmental change? Hydrol. Proc. 21 (23), 3233–3236.

Wagener, T. & Gupta, H. V. 2005 Model identification for

hydrological forecasting under uncertainty. Stoch. Environ.

Res. Risk Assess. 19, 378–387.

Wagener, T. & Wheater, H. S. 2006 Parameter estimation and

regionalization for continuous rainfall–runoff models

including uncertainty. J. Hydrol. 320 (1–2), 132–154.

Wagener, T. & Kollat, J. 2007 Visual and numerical evaluation of

hydrologic and environmental models using the Monte Carlo

Analysis Toolbox (MCAT). Environ. Model. Softw. 22, 1021–1033.

Wagener, T., McIntyre, N., Lees, M. J., Wheater, H. S. &

Gupta, H. V. 2003 Towards reduced uncertainty in conceptual

rainfall–runoff modelling: dynamic identifiability analysis.

Hydrol. Proc. 17 (2), 455–476.

Wagener, T., Wheater, H. S. & Gupta, H. V. 2004 Rainfall–Runoff

Modelling in Gauged and Ungauged Catchments, p. 332.

Imperial College Press, London, UK.

Wagener, T., Sivapalan, M., Troch, P. & Woods, R. 2007 Catchment

classification and hydrologic similarity. Geogr. Compass 1 (4),

901–931.

Widen-Nilsson, E., Halldin, S. & Xu, C. -Y. 2007 Global water-

balance modelling with WASMOD-M: parameter estimation

and regionalization. J. Hydrol. 340, 105–118.

Yadav, M., Wagener, T. & Gupta, H. V. 2007 Regionalization of

constraints on expected watershed response behavior for

improved predictions in ungauged basins. Adv. Water Resour.

30, 1756–1774.

Yatheendradas, S., Wagener, T., Gupta, H. V., Unkrich, C.,

Goodrich, D., Schaeffer, M. & Stewart, A. 2008 Understanding

uncertainty in distributed flash-flood forecasting for semi-arid

regions. Water Resour. Res. 44, W05S19.

Zhang, Z., Wagener, T., Reed, P. & Bushan, R. 2008 Ensemble

streamflow predictions in ungauged basins combining

hydrologic indices regionalization and multiobjective

optimization. Water Resour. Res. 44, W00B04.

First received 30 April 2008; accepted in revised form 26 January 2009

281 T. Wagener et al. | Identification and evaluation of complex environmental systems models Journal of Hydroinformatics | 11.3–4 | 2009

http://dx.doi.org/10.1029/2008GL034162
http://dx.doi.org/10.1029/2002WR001642
http://dx.doi.org/10.1029/2002WR001642
http://dx.doi.org/10.1029/2002WR001642
http://dx.doi.org/10.1029/2005GL023940
http://dx.doi.org/10.1029/2005GL023940
http://dx.doi.org/10.1029/2005GL023940
http://dx.doi.org/10.1016/j.jhydrol.2005.10.041
http://dx.doi.org/10.1016/j.jhydrol.2005.10.041
http://dx.doi.org/10.1016/j.jhydrol.2005.10.041
http://dx.doi.org/10.1002/hyp.5158
http://dx.doi.org/10.1002/hyp.6873
http://dx.doi.org/10.1002/hyp.6873
http://dx.doi.org/10.1007/s00477-005-0006-5
http://dx.doi.org/10.1007/s00477-005-0006-5
http://dx.doi.org/10.1016/j.jhydrol.2005.07.015
http://dx.doi.org/10.1016/j.jhydrol.2005.07.015
http://dx.doi.org/10.1016/j.jhydrol.2005.07.015
http://dx.doi.org/10.1016/j.jhydrol.2005.07.015
http://dx.doi.org/10.1016/j.jhydrol.2005.07.015
http://dx.doi.org/10.1016/j.envsoft.2006.06.017
http://dx.doi.org/10.1016/j.envsoft.2006.06.017
http://dx.doi.org/10.1016/j.envsoft.2006.06.017
http://dx.doi.org/10.1002/hyp.1135
http://dx.doi.org/10.1002/hyp.1135
http://dx.doi.org/10.1002/hyp.1135
http://dx.doi.org/10.1002/hyp.1135
http://dx.doi.org/10.1111/j.1749-8198.2007.00039.x
http://dx.doi.org/10.1111/j.1749-8198.2007.00039.x
http://dx.doi.org/10.1016/j.jhydrol.2007.04.002
http://dx.doi.org/10.1016/j.jhydrol.2007.04.002
http://dx.doi.org/10.1016/j.jhydrol.2007.04.002
http://dx.doi.org/10.1016/j.advwatres.2007.01.005
http://dx.doi.org/10.1016/j.advwatres.2007.01.005
http://dx.doi.org/10.1016/j.advwatres.2007.01.005
http://dx.doi.org/10.1029/2007WR005940
http://dx.doi.org/10.1029/2007WR005940
http://dx.doi.org/10.1029/2007WR005940
http://dx.doi.org/10.1029/2008WR006833
http://dx.doi.org/10.1029/2008WR006833
http://dx.doi.org/10.1029/2008WR006833
http://dx.doi.org/10.1029/2008WR006833

