
A Robocentric Motion Planner for Dynamic Environments
Using the Velocity Space

Eduardo Owen†‡
‡Escuela de Ingenierı́a Eléctrica y Electŕonica

Universidad del Valle
Calle 13 No. 100-00, Cali, Col

efowen@unizar.es

Luis Montano†
†Instituto de Investigación en Ingenieŕıa de Araǵon

Dep. Inforḿatica e Ingenieŕıa de Sistemas, Universidad de Zaragoza
Marı́a de Luna 3, E-50018 Zaragoza, Spain

montano@unizar.es

Abstract— This paper addresses a method to optimize the
robot motion planning in dynamic environments, avoiding the
moving and static obstacles while the robot drives towards
the goal. The method maps the dynamic environment into a
model in the velocity space, computing the times to potential
collision and potential escape and the associated robot velocities.
The problem of finding a trajectory to the goal is stated as a
constrained nonlinear optimization problem. The initial seed
trajectory for the optimization is directly generated in the
velocity space using the model built. The method is applied
to robots which are subject to both kinematic constraints
(i.e. involving the configuration parameters of the robot and
their derivatives), and dynamic constraints, (i.e. the constraints
imposed by the acceleration/deceleration capabilities). Some
experimental results are discussed.

I. I NTRODUCTION

This work addresses a method to plan robot motions in
dynamic environments. It concerns to find a trajectory from
start to goal that satisfies: i) avoids obstacles in the environ-
ment, ii) the trajectories are feasible (kinematic and dynamic
constraints of the robot), and iii) minimizes a criterium (i.e.,
motion time). The collision avoidance problem in motion
planning has been extensively treated in the robotics literature
and recent methods based on reactive avoidance already con-
sider some of these constraints. When the available velocity
information of the moving objects is taken into account, the
navigation system can compute more stable trajectories which
improve the motion performance regarding others classical
methods for motion planning. The information gathered by
the sensors of the robot which reflects the dynamism of the
environment it is necessary to plan optimal or near-optimal
trajectories.

This way we use a technique to plan robot motions which
transform the problem from the workspace or configuration
space to the velocity space in order to make decisions about
the ”best” strategy of motion directly in this space. The
method maps the positions of the obstacles and their known
or estimated trajectories into the velocity space of the robot
taking into account its kinematic and dynamic constraints.
It provides information about further collisions, providing a

map of all the collision-free velocities available. An initial
collision-free trajectory is computed on the model, which
is utilized as a seed in the optimization procedure to find
a trajectory which converges to the goal. This process is
resumed every sampling time.

This paper is organized as follows: in section II some
related works are presented. In section III the developed
approach is outlined. Section IV presents the method to map
the configuration space of a dynamic environment to the
velocity space. The robocentric motion planning algorithms
are addressed in V. The optimization of trajectories using the
velocity space built is presented in section VI. Simulation
results are discussed in section VII and in section VIII some
conclusions are presented.

II. RELATED WORKS

The classical reactive methods such as [21], [3], [11], [20]
are sufficient to keep the robot safe, but they are very sensitive
to local minima. The common approach is to incrementally
build a occupance grid, which assumes static obstacles and is
updated from sensor data. These approaches usually exploit
their reactivity to deal with moving obstacles. But they do
not use the kinematic information of the objects to cope with
the problem of the robot velocity planning.

The motion planning to reach a goal in a dynamic en-
vironment is resolved either using global planning methods
or using local planning with a reactive obstacle avoidance
method. This problem was originally addressed by adding
the time dimension to the space in which general motion
planning techniques were used ([15], [6], [4] are some
examples).

[1] takes into account explicitly the velocities of the
obstacles. The idea is to represent the obstacles directly
in the velocity space of the robot, in order to compute
the set of velocities leading to collision. In this work the
robot and the obstacles have straight constant trajectories,
extended in [18] and [19] to arbitrary obstacle trajectories.
[12] defines a model to represent the dynamic environment
and the non-holonomic and dynamic constraints of the robot
in the velocity space(w, v), which allows to compute motion

1-4244-0259-X/06/$20.00 ©2006 IEEE

commands directly in this space, selecting them among the
velocities not leading to collision. In [5] the concept of
Inevitable Collision States is defined, corresponding to states
for which no trajectory exists for the system can avoid the
collision, and are used to plan trajectories ICS-free. But the
ICS computation is a complicated task. In [14] A Partial
Motion Planner for dynamic environments is proposed to be
executed in real-time. The ICS concept is also used, building
a tree using probabilistic techniques.

The problem of characterizing minimum-time trajectories
linking any par of configurations where the robot is at rest has
been studied by Jacobs in [7]. The authors have proven that
minimum-time trajectories correspond to trajectories obtained
by means bang-bang control, leading to pieces of clothoids
and involute of circles. The problem is treated in free-
space. [16] deals with time optimal control for mobile robots
computing extremal controls as the optimal ones. They stated
that it is an open problem. Fleury in [2] addresses the problem
of smoothing mobile robot motions, proposing several sub-
optimal strategies to smooth broken lines trajectories in a
cluttered, but no dynamic, environment. On the other hand
[13] presents a method for computing the time optimal
trajectories of a robot manipulator moving in a dynamic envi-
ronment by utilizing the concept of velocity obstacle, where
the trajectory is computed using a steepest descent algorithm.
It computes the switching times for an optimal bang-bang
control. In [10] a system composed by a local goal-oriented
obstacle avoidance method which uses the concept of non-
linear velocity obstacle and an incremental global planner
is developed. The local method optimizes a criterium which
weights the velocities, the orientation change, a risk function
and the time to collision. But the convergence to the goal is
difficult to obtain because of the weighting parameters.

In [17], smooth paths composed by curves which maintain
the curvature continuity (clothoids and arc of circles), obtain-
ing feasible trajectories are proposed. But no time considera-
tions are made. [9] computes near-optimal trajectories under
dynamic and kinematic robot constraints using piece-wise
trajectories which maintain curvature continuity, but no in a
dynamic environment context. These trajectories are based in
the work of [17], and the cost metric is based on the duration
of the control.

III. STATEMENT OF THE PROBLEM AND THE APPROACH

The approach presented in this paper focuses in motion
planning in dynamic environments. We assume that a global
planner provides to the system a sequence of locations
(subgoals) to reach the final goal (for instance aD∗ algorithm
can be used). We don’t deal here with the global planning
problem. The work is centered in computing trajectories to
reach the subgoals, minimizing a time criterium.

We state the problem to solve as a constrained optimization
one, in which the restrictions come form the robot itself

(kinodynamic constraints) but also from the kind of paths
selected to be followed by the robot and from the obstacles
moving around the vehicle. The system can profit the infor-
mation about the dynamism of the environment to compute
the best motion, in terms of paths and velocities (that is,
trajectories). The motion is computed by means a robocentric
motion planner in the velocity space, which allows to plan
the trajectories in every sampling period. This Planner is
described in Section V. It utilizes an optimization technique
to compute trajectories which converge to the goal, taking
into account all the constraints involved in the problem. The
method plans a trajectory which minimizes the time to reach
the goal, but constrained to some paths which assure the
continuity of the curvature. Only the optimal command for
the next sampling period is applied, and a new optimization
to the goal is made in every period. So the motion can comply
with the changing environment, and the system plans again
observing the new conditions.

We impose conditions to the trajectories to be followed by
the robot. Not any geometric path is permitted. The kind of
paths selected are: clothoid, anti-clothoid (involute), circular,
and straight lines. Note that clothoids and anti-clothoids at
maximum acceleration correspond to extremal controls. This
kind of sequences does not correspond to minimum time
trajectories (are not sequences of extremal controls), but
allows to always have a continuous curvature in the paths
followed by the robot, given as a result feasible trajectories,
compatible with the acceleration/deceleration constraints.

IV. M ODELLING THE ENVIRONMENT

In [12] a technique to map the dynamism of the environ-
ment was presented. This model is used in this work as the
basis to compute the trajectories. We outline briefly some
ideas of this model.

The mapping of the dynamic environment is based on com-
puting the robot paths and velocities (trajectories) that would
provoke further collisions with the objects. The collision time
is also a relevant information implicit in the mapped space.
We consider here the case of non holonomic robots. Besides,
some constraints are imposed in this paper in order to present
the method:

• The model is composed bystraight or circular paths
of the robot. This is a common constraint imposed to
non holonomic robot motions. In this way, we take into
account the kinematic constraints.

• In this paper the objects move with a constant velocity
following straight paths. Anyway, the method can be
easily extended to other kind of paths, thus there is not
loss of generality.

• The moving objects are represented as polygons and the
robot is considered as circular, reducing the complexity
of computations in the Configuration Space.

0 2 4 6

0

1

2

3

4

5

6

7

Obj

 × goal

X(m)

Y
(m

)

R

Vob

x goal

−2 −1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

4

 r
j

 P
c2j

 P
c1j

 ←

 →
 C

ollis
ion Band

X(m)

Y
(m

)

θ
ij

R

X
0
1

X
0
2

(a) (b) (c)

Fig. 1. (a) Workspace, (b) collision band, pathrj and collision pointsPc1j andPc2j in the Configuration Space (c) projection ofDOV S, VDOV S , on
the plane(w, v)

The model is based on the idea of mapping the motion
of the static and moving objects of the environment from
the workspace to the velocity space of the robot. For this
all the computations are made on the local reference of
the robot (robocentric representation). Figure 1a represents
the workspace (WS) with a robot and a moving obstacle
at constant velocity following a straight path. Figure 1b
depicts the configuration space (CS) at instant k. It shows
the Collision Band (zone swept by the object moving along
a straight line) and an obstacle in two locations (xo

1 and
xo

2) representing the locations in which the robot, following
a circular trajectoryrj , arrives when the object has just
passed at timet1j (point Pc1j) or escapes from collision
crossing just before the object arrives at timet2j (pointPc2j).
The computation of this pair of points and their associated
times for the set of trajectories that can lead to collision is
the basis of the proposed model. Then the robot velocities
(w1, v1) and (w2, v2) and their corresponding timest1 and
t2 are computed and mapped in the velocity space of the
robot (Figure 1b). These calculations are extended to the
whole space, considering a range of curvature radii forming a
surface in the velocity-time space (Dynamic Object Velocity,
DOV). The union of all the zones of velocitiesDOV
for all the objects provides the Dynamic Objects Velocity
Set (DOV S) and represents the velocities for which could
have collision if they were maintained for some time. In
Figure 1c, the projection ofDOV S, VDOV S on the plane
(w, v) is shown. The lower limits involve the maxima robot
velocities to allow the object pass before the robot (i.e.V1)
and the upper limits represent the minima robot velocities
to escape before the objet pass (i.e.V2). As a consequence,
choosing a velocity outsideVDOV S implies that the robot
won’t collide during the whole time horizon considered by
the computation. Notice that the circular paths inWS are
represented as straight lines inV S, whose origin lies the
origin of the plane(w, v). This property makes easier to plan
velocities and trajectories in this space.

V. THE ROBOCENTRICMOTION PLANNER

In this section we describe the Robocentric Planner(RP).
The method developed follows the steps:

1) it computes the environment model, mapping the robot
and moving objects trajectories into the velocity space
(VS) (Section IV)

2) it computes a circular trajectory from the current robot
location to the next subgoal, to select a feasible tra-
jectory used as a heuristic for setting a seed for the
optimization problem

3) it computes a trajectory towards the subgoal by solving
a constrained optimization problem, in which all the
restrictions are taken into account (Section VI)

4) it applies the next motion command to follow the
trajectory solution and repeats cyclicly the process
every sampling time, until convergence to the goal.

The reason to compute a circular trajectory in the second
step is that the model reflects the free velocities the robot can
choose without collision, when it follows that kind of paths
(the straight line is a particular case). But this trajectory is
only a seed for the next step, in which it will be optimized.

The final trajectory will be composed by a sequence of
paths as the presented in section III (for instance Clothoid-
Circular-Clothoid-Straight, Cl-C-Cl-S). These kind of paths
have been used in previous works (i.e. [9], [17]) but in our
case they are parameterized in time, because of we need it
for time optimization.

Two situations can arise: 1) upper velocities are free (S1);
2) upper velocities are not free (S2). Using the representation
in V S we can provide an intuitive explanation for these cases
and the motion strategies selected for each.

A. Upper velocities free

Figure 2a represents the situationS1. It corresponds to
the case in which high velocities (in the upper part of
V S) can be chosen, that is the robot can pass before the
moving objects arrive. The robot is at the current velocity
V 1. RP chooses one of upper free velocities,V 3, using the

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

Angular Velocity (rad/s)

Li
ne

ar
 V

el
oc

ity
 (

m
/s

)

V1
V2

V3

R
goal

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

Angular Velocity (m/s)

Li
ne

ar
 V

el
oc

ity
 (

ra
d/

s)

V1

V2 V3

V4

R
goal

R
new−goal

(a) (b)

Fig. 2. (a) trajectories andVDOV in the V S in situationS1, (b) trajectories andVDOV in the V S in situationS2. The square represents the maximum
linear and angular velocities reachables

0 2 4 6 8

0

2

4

6

8

X(m)

Y
(m

)

OBJ

0 2 4 6 8 10
0

2

4

6

8

10

OBJ

 × goal × goal

X(m)

Y
(m

)

(a) (b)

Fig. 3. (a) corresponding trajectory inWS is S1 ; the robot speed up to
pass before the object, (b) corresponding trajectory inWS in S2; the robot
decelerates to wait the object passes

criterium of proximity to the goal mapped (Rgoal, in this
case it match the lineV 2−V 3) within the no-collision zone.
As the vehicle has dynamic constraints, it is possible that
it cannot reach instantaneously the new circular trajectory
(line (V 2 − V 3)). To do that, the system computes from
the current velocityV 1 a Clothoid trajectory (V 1 − V 2),
joining the initial and the final circular paths maintaining a
continuous curvature. Notice that this circular trajectory has
two pieces: the first one is followed with acceleration (linear
and angular) reachingV 3, and the second one is followed
at maximum constant linear and angular velocities,V 3. The
times associate to each stretch are also computed to be further
used in the optimization process. Every timeRP verifies that
the composed trajectory is collision free. Figure 3a shows the
corresponding trajectory in the workspace.

B. Upper velocities not free

Figure 2b represents the situationS2. This is the case in
which the current velocity leads to collision if it is maintained
and the upper velocities are prohibited. Thus, a safe solution
is taken, selecting a circular trajectory outside the zone of
dangerous velocities (Rnew−goal). Several solutions can be

considered, for instance, to reduce the velocity toV 2. This
path is an anti-clothoid, a vertical straight line inV S. To link
the new circular trajectory, a clothoidV 2−V 3, then a circular
stretch on theRnew−goal (V 3− V 4), and finally a constant
velocity circular trajectory are computed. This allows to avoid
the moving obstacles, reducing the velocity until the objects
pass. After the object passes, the situationS1 is resumed.
Figure 3b shows the corresponding trajectory inWS.

Table I shows the main algorithm forRP . The inputs
are the Goal, the number of objects, the objects, the current
robot velocity, and the output is a feasible trajectory. Function
mapobj maps the obstacles inV S, mergeobj orders the
objects as a function of the time to collision,detectobj selects
situationsS1 or S2, goalmap maps the trajectory to the
Goal intoV S, newgoal computes a newRnew−goal for S2,
generatetraj generates the seed trajectory for the further
optimization andoptimize computes an optimal trajectory
to the goal. In the next Section we present how this optimal
trajectory is computed.

C. Kind of Trajectories

The trajectory computed in the previous section is used as
a seed for the optimization algorithm assuring convergence
to the goal. We present next the kind of trajectories used, the
function to be optimized and the constraints imposed to the
optimization.

As said above we impose compound trajectories to be
followed by the robot, maintaining a continuous curvature.
Depending on the system is inS1 or S2, the trajectories are
different:

• S1: Cl-Cac-Cun-Cl-S
• S2: ACl-Cl-Cac-Cun

whereCl means Clothoid,ACl Anticlothoid, Cac circular
trajectory with acceleration,Cun circular trajectory with
uniform (maximum velocity), andS straight line.

−5 0 5 10 15 20 25
−5

0

5

10

15

20

Obj 2

Obj 3

Obj 4 Obj 5

 × goal

X (m)

Y
 (

m
)

 × goal × goal × goal

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

Time Steps (s)

V
 (

m
/s

)

0 10 20 30 40 50 60 70
−0.2

0

0.2

0.4

0.6

0.8

Time Steps (s)

W
 (

ra
d/

s)

(a) (b)

Fig. 4. (a) trajectory when the plan is re-computed every sampling time, (b) Linear and angular velocity profiles in the first experiment

TABLE I

ALGORITHM: ROBOCENTRICMOTION PLANNER

Input : goal, numobj , obj, Vo

Output : trajopt

begin
repeat

[DOV s] = mapobj(obj);

[k, DOV k] = mergeobj(numobj , DOV s);

[situation] = detectobj(k, DOV k);

if situation= 1

[Rgoal] = goalmap(goal);

[traj] = generatetraj(Rgoal, k, DOV k, Vo);

else
[Rnew−goal] = newgoal(goal, k, DOV k);

[traj] = generatetraj(Rnew−goal, k, DOV k, Vo);

[trajopt] = optimize(traj, Vo);

end
until reached(goal)

end

VI. OPTIMIZATION OF TRAJECTORIES

The optimization problem can be formulated as follows:

t∗ = argmin(t)F (x(t))

wheret = [
∑k

j=1 tj] is a time vector whose components
are the times of each stretch of the whole trajectory,
and F (x(t)) is a function representing the sequence of
sub-trajectories parameterized in time (see Appendix).
This function depends on several parameters: maxima
accelerations, number of sub-trajectories, initial location and
velocity, and geometric parameters of the robot.

The constraints are:

• nonlinear equality constraints:

xk − xgoal = 0 (1)
yk − ygoal = 0 (2)
∑k

j=1 Lk(wo) = 0 (3)
∑k

j=1 Lk(vo) = 0 (4)

where k is number of stretches, (1) and (2) lead the
search towards the goal, (3) and (4) considers the
continuities in curves.

• nonlinear inequality constraints:
∑k

j=1 f(wj , vj) ≥ 0 (5)

Vk ≥ 0 (6)
∑k

j=1 tj ≥ 0 (7)
∑num

q=1 (x− fxq)2 + (y − fyq)2 − r2
q ≥ 0 (8)

wherenum is the number of moving obstacles, (5) con-
siders the constraints for the linear and angular velocities
in V S (in our case for a differential-drive robot), (6)
imposes positive linear velocities, (7) enforces solutions
in positive times, and (8) reflects the constraints coming
from the moving objects in theCS modelled as circles.
fxq andfxq are functions of time, andrq is the object
radius enlarged with the robot radius.

VII. E XPERIMENTAL RESULTS

The objectives of the experiments in this section is to show
how the planner works in different conditions. It has to adapt
the decision to the dynamic of the objects and the robot
dynamics. In the first experiment (Figure 4a), the planner re-
computes the optimal trajectory every sampling time, yielding
a smooth trajectory to the goal. It can be note that the
planner makes a decision of waiting the objectO4 passes
and speeding up to pass before the objectsO2, O3, O5 arrive.
Figure 4b shows the velocity profiles. The robot reduces

the linear velocity when the objectO4 moves towards it,
permitting the object passes. The robot moves at maximum
linear velocity to pass beforeO2, O3 andO5 arrive. Notice
that to do it the robot has to manoeuver, avoiding collision.

In the second experiment the direction and the velocity
of the objects were lightly changed, thus the plan differs
from that of the previous experiment. The robot pass before
all the objects arrive (Figure 5a), adapting the plan to the
new situation. In Figure 5b the velocity profiles are depicted.
It can be seen that during the initial acceleration period,
stretches of circular and clothoid (linear velocity constant)
trajectories are alternated, due to the planning every sampling
time. It can be appreciated that the robot goes towards the
goal at maximum linear velocity, rotating when needed to
avoid the coming objects.

As conclusion, the robocentric local planner works well
with different dynamics in changing environments. In a such
scenario, classical obstacle avoidance methods would lead
to oscillatory motions. The method drives the robot to the
subgoals or goal, trying to generate motions at maximum ve-
locity to improve the travelling time. The kind of trajectories
selected assure that the motions are feasible and maintaining
the continuity in the curvature.

VIII. C ONCLUSION

A robocentric robot motion planner for dynamic environ-
ments has been reported. The planner minimizes a time to the
goal criterium, constrained to some kind of trajectories which
assure the curvature continuity, to the robot kinematic and
acceleration restrictions, and to the velocities which avoids
collisions with the objects.

The method computes trajectories from the current robot
state (location and velocities) to the goal, which are re-
computed every sampling time to comply with the changing
environment and the new robot location and velocities. A
model representing the moving objects around the robot in
the Velocity Space allows to select collision-free velocities
to initialize the local optimization procedure, computing the
next velocity command.

As further work, we propose a global planner which
exploits the time-velocity information included in the model
built, to be used jointly to the robocentric planner herein
presented. Also, other sequences of trajectories have to be
analyzed, in order to compute time optimal or near-optimal
motions.

ACKNOWLEDGMENTS

The work has been partially funded by the Spanish MCYT-
FEDER DPI2003-07986 project.

APPENDIX

In this appendix we present the equations of curves for the general case
from a initial configurationC0 = (x0, y0, θ0) and initial velocitiesv0 and
w0 .

−5 0 5 10 15 20 25
−5

0

5

10

15

20

Obj 2

Obj 3

Obj 4 Obj 5

 × goal

X (m)

Y
 (

m
)

 × goal × goal

(a)

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

Time Steps (s)

V
 (

m
/s

)

0 10 20 30 40 50 60 70
−0.2

0

0.2

0.4

0.6

Time Steps (s)

W
 (

ra
d/

s)

(b)

Fig. 5. (a) Trajectory planned in another scenario, with different object
direction and velocities, (b) Linear and angular velocity profiles in the second
experiment

A. Robot motion equations
The equations for a differential-drive robot (our case) are:

x(t) = x0 +
∫ t

0
v(u) cos θ(u)du (1)

y(t) = y0 +
∫ t

0
v(u) sin θ(u)du (2)

θ(t) = θ0 +
∫ t

0
w(u)du (3)

B. Equations of a Clothoid
We consider casear = −al. ar andal represent the accelerations of the

wheels. Now,ar = ±a, while ar = ∓a. In this casėv(t) = 1
2
(ar +al) =

0. Thenv(t) = v0. By integrationvr(t) = ±at + vro, vl(t) = ∓at + vlo

and w(t) = θ̇(t) = ± 2a
d

t + w0. The expressions forv(t) and w(t) are
replaced in (1), (2) and (3). The coordinates for the robot are given by the
Fresnel Integrals (SF and CF stand for Sinus and Cosinus of Fresnel),
respectively (See [8] for instance):

x(t) = x0 − 1
2
v0

√
2
√

π{−CF (∗4)(∗1) cos θ0

−CF (∗4)(∗3) sin θ0 − SF (∗4)(∗3) cos θ0

+SF (∗4)(∗1) sin θ0 + CF (∗2)(∗1) sin θ0

+CF (∗2)(∗3) sin θ0 + SF (∗2)(∗3) cos θ0

−SF (∗2)(∗3) sin θ0 + SF (∗2)(∗3) cos θ0

−SF (∗2)(∗1) sin θ0 }/
√

a
d

y(t) = y0 − 1
2
v0

√
2
√

π{SF (∗4)(∗1) cos θ0

+SF (∗4)(∗3) sin θ0 − CF (∗4)(∗3) cos θ0

+CF (∗4)(∗1) sin θ0 − SF (∗2)(∗1) cos θ0

−SF (∗2)(∗3) sin θ0 + CF (∗2)(∗3) cos θ0

−SF (∗2)(∗3) sin θ0 }/
√

a
d

θ(t) = θ0 + (at2

d
+ w0t)

where(∗1) = cos(1
4

dw2
0

a
), (∗2) = 1

2

√
2w0√

π
√

a
d

,

(∗3) = sin(1
4

w2
0d

a
), and(∗4) = 1

2

√
2(2at+w0d)√
πd
√

(a/d)

C. Equations of a Anti-Clothoid
We consider the casear = al. Thenẇ(t) = 1

d
(ar − al) = 0 andw(t)

is a constant and equalw0. The accelerationa(t) equalssgn(ar)at. Thus
v(t) = sgn(ar)at + v0.

x(t) = x0 + {a cos(w0t + θ0) + a sin(w0t + θ0)w0t

+v0 sin(w0t + θ0)w0 − a cos θ0

−v0 sin(θ0)w0)}/w2
0 .

y(t) = y0 − {−a sin(w0t + θ0) + a cos(w0t + θ0)w0t

+cos(w0t + θ0)w0v0 + a sin θ0

− cos(θ0)v0w0)}/w2
0 .

θ(t) = θ0 + w0t;

D. Equations of an arc of circle with linear and angular
accelerations

The velocity v(t) depends on both the initial linear velocityv0 and
the linear acceleratioṅv. The orientationθ(t) is a function of the initial
orientationθ0, the initial angular velocityw0 and the angular acceleration
ẇ. Substitutingv(t) and θ(t) as a function of the initial kinematic and
dynamic configurationv0, θ0, w0 and the accelerationṡv andẇ yields the
expressions:

x(t) = x0 + {A[(∗4)(BD + CE) + (∗3)(CD −BE)]

+F [E(GH − IJ) + D(IH + GJ)]

+K[(∗3)(BE − CD)− (∗4)(BD + CE)]

+A[−(∗2)(BD + CE) + (∗1)(CD + BE)]− L

+K[(∗2)(BD + CE) + (∗1)(CD + BE)]}/M

y(t) = y0 + {A[(∗4)(BD + CE) + (∗3)(BE − CD)]

+F [E(IJ −GH) + D(IH + GJ)]

+K[(∗3)(CD −BE)− (∗4)(BD + CE)]

+A[−(∗2)(BD + CE) + (∗1)(CD −BE)]− L

+K[(∗2)(BD + CE) + (∗1)(BE − CD)]}/M
θ(t) = θ0 + w0t + (ẇt2

d
)

where (*1), (*2), (*3), (*4) are given by the Fresnel integrals as:(∗1) =
FS(tar+w0√

π
√

ar
), (∗2) = FC(tar+w0√

π
√

ar
), (∗3) = FS(wo√

π
√

ar
), (∗4) =

FC(wo√
π
√

ar
). A = v0πẇ, B = cos(

w2
0

2ẇ
), C = sin(

w2
0

2ẇ
), D = cosθ0,

E = sinθ0, F = v̇
√

ẇ3, G = cos(w0t), H = cos(ẇt2

2
), I = sin(w0t),

J = sin(ẇt2

2
), K = v̇w0π, L = v̇sinθ0

√
ẇ3, M =

√
ẇ5.

REFERENCES

[1] P. Fiorini and Z. Shiller. Robot motion planning in dynamic envi-
ronments. InInternational Symposium of Robotic Research, pages
237–248, 1995.

[2] S. Fleury, P. Soueres, J.-P. Laumond, and R. Chatila. Primitive for
smoothing mobile robot trajectories.IEEE Transactions on Robotics
and Automation, 11(3), 1995.

[3] D. Fox, W. Burgard, and S. Thrun. The Dynamic Window Approach to
Collision Avoidance.IEEE Robotics and Automation Magazine, 4(1),
1997.

[4] T. Fraichard. Trajectory planning in a dynamic workspace: a state-
time-space approach.Advanced Robotics, 13(1), 1999.

[5] T. Fraichard and A. H. Inevitable collsion states- a step towards safer
robots?Advanced Robotics, 18(10):1001–1024, 2004.

[6] K. Fujimura and H. Samet. A hierarchical strategy for path planning
among moving obstacles.IEEE Trans. on Robotics and Automation,
5(1):61–69, 1989.

[7] R. Jacobs and Laumond. Non-holonomic motion planning for hilare-
like mobile robots. InProceedings of the Intenational Symposium on
Intelligent Robots, 1991.

[8] James and James.Mathematics Dictionary. Van Nost. Reinhold, 1992.
[9] M. Kobilarov and G. Sukhatme. Near-optimal constrainned trajectory

planning on outdoor terrain. InInt. Conference on Robotics and
Automation, pages 1833–1840, 2005.

[10] F. Large, S. Sekhavat, Z. Shiller, and C. Laugier. Towards real-
time global motion planning in a dynamic environment using the nlvo
concept. InInt. Conf. on Intelligent Robots and Systems, 2002.

[11] J. Minguez and L. Montano. Nearness diagram (ND) navigation:
Collision avoidance in troublesome scenarios.IEEE Trans. on Robotics
and Automation, 20(1):45–59, 2004.

[12] E. Owen and L. Montano. Motion planning in dynamic environments
usin the velocity space. InIEEE-RSJ Int. Conf. on Intelligent Robots
and Systems, pages 997–1002, 2005.

[13] Z. S. P. Fiorini. Time optimal motion planning in dynamic environ-
ments. International Journal of Applied Mathematics and Computer
Science, 7(4):101–126, 1997.

[14] S. Petti and T. Fraichard. Safe motion planning in dynamic environ-
ments. In IEEE-RSJ Int. Conf. on Intelligent Robots and Systems,
pages 3726–3730, 2005.

[15] J. Reif and M. Sharir. Motion planning in the presence of moving
obstacles.J. ACM, 41(4):764–790, 1994.

[16] M. Renaud and J.-Y. Fourquet. Minimum time motion of a mobile
robot with two independent, acceleration-driven wheels. InIEEE Int.
Conference on Robotics and Automation, pages 2608–2612, Albur-
querque, New Mexico, 1997.

[17] A. Scheuer and T. Fraichard. Continuous-curvature path planning for
car-like vehicles. InIEEE-RSJ Int. Conf. on Intelligent Robots and
Systems, pages 997–1003, 1997.

[18] Z. Shiller, F. Large, and S. Sekhavat. Motion planning in dynamic
environments: Obstacles moving along arbitrary trajectories. InIEEE
Int. Conf. on Robotics and Automation, pages 3716–3721, Seoul,
Korea, 2001.

[19] Z. Shiller, F. Large, S. Sekhavat, and C. Laugier. Motion planning in
dynamic environment: Obstacles moving along artitrary trajectories. In
Workshop on Autonomous navigation in Dynamic Environments, Int.
Conference on Robotics and Automation, 2005.

[20] R. Simmons. The Curvature-Velocity Method for Local Obstacle
Avoidance. In IEEE Int. Conf. on Robotics and Automation, pages
3375–3382, Minneapolis, USA, 1996.

[21] I. Ulrich and J. Borenstein. VFH*: Local Obstacle Avoidance with
Look-Ahead Verification. InIEEE Int. Conf. on Robotics and Au-
tomation, pages 2505–2511, San Francisco, USA, 2000.

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

	IROS06PageNumber:
	0:
	4316806626018066: 4368
	6614583882733078: 4369
	612202993059545: 4370
	0874601207772715: 4371
	5404445184616141: 4372
	5620733706354444: 4373
	5819589040336242: 4374

	TL1:
	0:
	7911705077673736: Proceedings of the 2006 IEEE/RSJ

	TL2:
	0:
	7615708292914223: International Conference on Intelligent Robots and Systems

	TL3:
	0:
	7059198015604036: October 9 - 15, 2006, Beijing, China

