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Abstract
Machine learning offers a principled approach for developing sophisticated, auto-
matic, and objective algorithms for analysis of high-dimensional and multimodal
biomedical data. This review focuses on several advances in the state of the art that
have shown promise in improving detection, diagnosis, and therapeutic monitoring of
disease. Key in the advancement has been the development of a more in-depth under-
standing and theoretical analysis of critical issues related to algorithmic construction
and learning theory. These include trade-offs for maximizing generalization perfor-
mance, use of physically realistic constraints, and incorporation of prior knowledge
and uncertainty. The review describes recent developments in machine learning, fo-
cusing on supervised and unsupervised linear methods and Bayesian inference, which
have made significant impacts in the detection and diagnosis of disease in biomedicine.
We describe the different methodologies and, for each, provide examples of their ap-
plication to specific domains in biomedical diagnostics.
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INTRODUCTION

Machine learning, a subdiscipline in the field of artificial intelligence (AI), focuses on
algorithms capable of learning and/or adapting their structure (e.g., parameters) based
on a set of observed data, with adaptation done by optimizing over an objective or cost
function. Machine learning and statistical pattern recognition have been the subject
of tremendous interest in the biomedical community because they offer promise for
improving the sensitivity and/or specificity of detection and diagnosis of disease, while
at the same time increasing objectivity of the decision-making process. However, the
early promise of these methodologies has resulted in only limited clinical utility,
perhaps the most notable of which is the use of such methods for mammographic
screening (1, 2). The potential impact of, and need for, machine learning is perhaps
greater than ever given the dramatic increase in medical data being collected, new
detection, and diagnostic modalities being developed and the complexity of the data
types and importance of multimodal analysis. In all of these cases, machine learning
can provide new tools for interpreting the high-dimensional and complex datasets
with which the clinician is confronted.

Much of the original excitement for the application of machine learning to
biomedicine originated from the development of artificial neural networks (ANNs)
(e.g., see 3), which were often proclaimed to be “loosely” modeled after computation
in the brain. Although in most cases such claims for brain-like computation were
largely unjustified, one of the interesting properties of ANNs was that they were
shown to be capable of approximating any arbitrary function through the process of
learning (also called training) a set of parameters in a connected network of simple
nonlinear units. Such an approach mapped well to many problems in medical image
and signal analysis and was in contrast to medical expert systems such as Mycin (4)
and INTERNIST (5), which, in fact, were very difficult and time consuming to con-
struct and were based on a set of rules and prior knowledge. Problematic with ANNs,
however, is the difficulty in understanding how such networks construct the desired
function and thus how to interpret the results. Thus, often such methods are used as
a “black box,” with the ANN producing a mapping from input (e.g., medical data) to
output (e.g., diagnosis) but without a clear understanding of the underlying mapping
function. This can be particularly problematic in clinical medicine when one must
also consider merging the interpretation of the computer system with that of the
clinician because, in most cases, computer analysis systems are seen as adjunctive.

As the field of machine learning has matured, greater effort has gone into de-
veloping a deeper understanding of the theoretical basis of the various algorithmic
approaches. In fact, a major difference between machine learning and statistics is that
machine learning is concerned with theoretical issues such as computational complex-
ity, computability, and generalization and is in many respects a marriage of applied
mathematics and computer science.

An area in machine learning research receiving considerable attention is the fur-
ther development and analysis of linear methods for supervised and unsupervised
feature extraction and pattern classification. Linear methods are attractive in that
their decision strategies are easier to analyze and interpret relative to nonlinear
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Biomarkers: anatomic,
physiologic, biochemical, or
molecular parameters
associated with the presence
and severity of specific
disease states

classification and regression functions, for example, constructed by ANNs. In ad-
dition, a linear model can often be shown to be consistent, at least to first order, with
underlying physical processes, such as image formation or signal acquisition. Finally,
linear methods tend to be computationally efficient, and can be trained online and in
real time.

Particularly important for biomedical applications has been the development
of methods for explicitly incorporating prior knowledge and uncertainty into the
decision-making process. This has led to principled methods based on Bayesian infer-
ence, which are well suited for incorporating disparate sources of noisy measurements
and uncertain prior knowledge into the diagnostic process.

This review describes recent developments in machine learning, focusing on su-
pervised and unsupervised linear methods and Bayesian inference, which have made
significant impact in the detection and diagnosis of disease in biomedicine. We de-
scribe the different methodologies and, for each, provide examples of their application
to specific domains in biomedical diagnostics.

BLIND SOURCE SEPARATION

Two important roles for machine learning are (a) extraction of salient structure in the
data that is more informative than the raw data itself (the feature extraction problem)
and (b) inferring underlying organized class structure (the classification problem).
Although strictly speaking the two are not easily separable into distinct problems, we
consider the two as such and describe the state of the art of linear methods for both.
In this section we focus on unsupervised methods and application of such methods
for recovering clinically significant biomarkers.

Linear Mixing

There are many cases in which one is interested in separating, or factorizing, a set
of observed data into two or more matrices. Standard methods for such factorization
include singular value decomposition (SVD) and principal component analysis (PCA)
(6). These methods have been shown to satisfy specific optimality criteria, for example,
PCA being optimal in terms of minimum reconstruction error under constraints of
orthogonal basis vectors. However, in many cases these criteria are not consistent
with the underlying signal/image-formation process and the resultant matrices have
little physical relevance. More recently, several groups have developed methods for
decomposing a data matrix into two matrices in which the underlying optimality
criteria and constraints yield more physically meaningful results (7–14).

Assume a set of observations is the result of a linear combination of latent sources.
Such a linear mixing is quite common in signal and image acquisition/formation,
at least to a first approximation, and is consistent with underlying physical mixing
process, ranging from electroencephalography (15) to acoustics (16). Given X as a
matrix of observations (M rows by N columns) the linear mixing equation is

X = AS, (1)
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where A is the set of mixing coefficients and S is a matrix of sources. Depending
on the modality, the columns of X and S are the coordinate system in which the
data is represented (i.e., time, space, wavelength, frequency, etc.). The challenge is to
recover both A and S simultaneously given only the observations X. This problem
is often termed blind source separation (BSS) because the underlying sources are
not directly observed and the mixing matrix is not known. BSS methods have been
applied to many fundamental problems in signal recovery and deconvolution (17).
Most methods that have been developed attempt to learn an unmixing matrix W,
which when applied to the data X yields an estimate of the underlying sources (up to
a scaling and permutation),

Ŝ = WX. (2)

Consider the case when one assumes the rows of S (i.e., the source vectors) are random
variables that are statistically independent. This implies that the joint distribution of
the sources factors,

P (s1, . . . , s L) = P (s1)P (s2) . . . P (s L), (3)

where L indicates the number of underlying sources (with each s i a row in S), and
P (.) is the probability density function. In most cases L is not known and represents
a hyperparameter that must be set or inferred. BSS methods that exploit statistical
independence in their optimality criteria are termed independent component analysis
(ICA) (see 18 for review). Several approaches have been developed to recover inde-
pendent sources, the methods distinguished largely by the objective function they
employ, e.g., maximum likelihood (19), maximum a posteriori (9), information max-
imization (20), entropy estimation (21), and mean-field methods (22). In the case of
time series, or other types of ordered data, one can also exploit other statistical criteria
such as the nonstationarity and utilize simultaneous decorrelation (16, 23–25). Parra
& Sajda (15) formulate the problem of BSS as one of solving a generalized eigenvalue
problem, where one of the matrices is the covariance matrix of the observations and
the other is chosen based on the underlying statistical assumptions on the sources.
This view unifies various approaches in simultaneous decorrelation and ICA, together
with PCA and supervised methods such as common spatial patterns (CSP) (26).

The attractive property of these decomposition methods is that the recovered
components often result in a natural basis for the data, in particular, if one considers
some general properties of natural signals. For example, the marginal statistics of
many natural signals (or filtered versions of the signals) are highly non-Gaussian (27,
28). Since, by the central limit theorem, linear mixtures of non-Gaussian random
variables will result in marginal statistics that are more closely Gaussian, recovering
the independent components captures the generative or natural axes of the mixing
process.

Nonnegative Matrix Factorization

One particularly useful method for factoring the data matrix X under very general
and physically realistic constraints is the nonnegative matrix factorization (NMF)
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algorithm (7). The basic idea of the NMF algorithm is to construct a gradient descent
over an objective function that optimizes A and S, and, by appropriately choosing
gradient stepsizes, to convert an additive update to a multiplicative one. For example,
assuming Gaussian noise, one can formulate the problem of recovering A and S in
Equation 1 as a maximum likelihood estimation,

AML, SML = argmax p(X | A, S)

A, S

= argmax
1√

2πσ
e− ‖X−AS‖2

2σ2

A, S

subject to: A ≥ 0, S ≥ 0, (4)

where σ is the deviation of the Gaussian noise and (AS) its mean.
Maximizing the likelihood is equivalent to minimizing the negative log-likelihood,

and Equation 4 can be written as,

AML, SML = argmin(− log p(X | A, S))

A, S

= argmin‖X − AS‖2

A, S

subject to: A ≥ 0, S ≥ 0. (5)

One can compute the gradients of the negative log-likelihood function and construct
the additive update rules for A and S,

Ai,m ← Ai,m + δi,m[(XST)i,m − (ASST)i,m]

Sm,λ ← Sm,λ + ηm,λ[(ATX)m,λ − (ATAS)m,λ]. (6)

Note that there are two free parameters, which are the step sizes of the updates. Lee
& Seung (29) have shown that by appropriately choosing the step sizes, δi,m = Ai,m

(ASST )i,m
,

ηm,λ = Sm,λ

(ATAS)m,λ
, the additive update rule can be formulated as a multiplicative update

rule, with X = AS being a fixed point. The multiplicative update rules for A and S
therefore become

Ai,m ← Ai,m
(XST)i,m

(ASST)i,m

Sm,λ ← Sm,λ

(ATX)m,λ

(ATAS)m,λ

, (7)

where convergence of these update rules is guaranteed (29). By formulating the up-
dates as multiplicative rules in Equation 7, we can ensure nonnegative A and S, given
that both are initialized to be nonnegative and the observations, X, are nonnegative.

An intuitive understanding of NMF via geometrical considerations can be de-
veloped. The manifold of possible solutions specified by the linear mixing equation
and nonnegativity constraints represent an M-dimensional polygonal cone spanned
by the M rows of S. Nonnegativity constraints require that the row vectors of S,
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Figure 1
Geometrical interpretation of NMF. The axes represent two dimensions of the
high-dimensional space of the observations. Spans of the recovered sources (s1 and s2) are
shown as dashed magenta vectors. The recovered sources are constrained to lie in the positive
hyper-quadrant and tightly envelope the observed data, forming a cone (pink region). Points
that fall outside of the cone contribute to the error. An analogous picture can be drawn for the
basis vectors A = {a1 . . . am}.

representing the edges of the cone, lie in the positive quadrant of the L-dimensional
points defined by the rows of the observations X, which must fall within that polyg-
onal cone. The aim of maximum likelihood is to find cone edge vectors that tightly
envelope the observed L-points. Figure 1 illustrates this interpretation, which is
sometime referred to as a conic encoder (30).

The basic NMF algorithm has been modified in several ways, including adding a
sparsity constraint on the sources (31), weighted NMF (32), and constrained NMF
(11) (see below). The utility of the NMF algorithm for recovering physically mean-
ingful sources has been demonstrated in a number of application domains, including
image classification (33), document classification (34), and separation of audio streams
(35), as well as biomedical applications such as analysis of positron emission tomog-
raphy (PET) (36) and microarray analysis of gene expression (37, 38). Below, we
describe two examples, both using nuclear magnetic resonance (NMR) data, where
such methods are able to recover signatures of disease and toxicity.

Recovering Spectral Signatures of Brain Cancer

In vivo magnetic resonance spectroscopy imaging (MRSI) allows noninvasive charac-
terization and quantification of molecular markers of potentially high clinical utility
for improving detection, identification, and treatment for a variety of diseases, most
notably brain cancers (39). MRSI acquires high-frequency resolution MR spectra
across a volume of tissue with common nuclei, including 1H (proton), 13C (carbon),
19F (fluorine), and 31P (phosphorus). Machine learning approaches for integrating
MRSI with structural MRI have been shown to have potential for improving the
assessment of brain tumors (40).
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In MRSI, each tissue type can be viewed as having a characteristic spectral pro-
file related to its biochemical composition. In brain tumors, for example, 1H MRSI
has shown that metabolites are heterogeneously distributed and, in a given voxel,
multiple metabolites and tissue types may be present (41). The observed spectra are
therefore a combination of different constituent spectra. Because the signal measured
in MRSI is the response to a coherent stimulation of the entire tissue, the ampli-
tudes of different coherent resonators are additive. The overall gain with which a
tissue type contributes is proportional to its abundance/concentration in each voxel.
As a result, we can explain observations using the linear mixing equation (Equa-
tion 1). Because we interpret A as abundance/concentration, we can assume the
matrix to be nonnegative. In addition, because the constituent spectra S represent
amplitudes of resonances, in theory, the smallest resonance amplitude is zero, cor-
responding to the absence of resonance at a given band (where we ignore cases of
negative peaks such as in J-modulation). Figure 2 illustrates the spectral unmixing
problem.

Interpretation of MRSI data is challenging, specifically for traditional peak-
quantifying techniques (42, 43): A typical dataset consists of hundreds of highly cor-
related spectra, having low signal-to-noise ratio (SNR) with peaks that are numerous
and overlapping. This has created the need for approaches that can analyze the entire
dataset simultaneously, taking advantage of the relationships among the spectra to
improve the quality of the analysis. Such approaches are particularly useful for spectra

X = +A S N

+=

(M << N ) 
AN1 A N2 … A NM

M

A 21  A 22 … A 2M

A 11  A12 … A 1

+

+

Figure 2
The spectral unmixing problem. Spectra from multiple voxels, for example, from MRSI and
represented in the rows of X, are simultaneously analyzed and decomposed into constituent
spectra S and the corresponding intensity distributions A. The extracted constituent spectra
are identified by comparing them to known spectra of individual molecules. In most cases, the
number of rows in S, M, is much less than the number of rows, N, in X—i.e., there is a
dimensionality reduction in the decomposition. Unidentified spectral components are
considered residual noise N. Their corresponding magnitudes quantify the modeling error,
which can be directly compared to the modeling error of alternative parametric estimation
procedures.
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Figure 3
cNMF separation of 1H CSI human brain data into clinically significant biomarkers and their
corresponding spatial distributions. (a) Spectrum indicative of normal brain tissue: low choline
(CHO), high creatine (CR), and high N-acetyl-aspartate (NAA). (b) Spectrum indicating
high-grade malignant tumor tissue: highly elevated CHO, low CR, almost no NAA, and LAC
(lactic acid). (c) Spectrum indicating residual lipids.

with low SNR as they utilize the collective power of the data. Several BSS approaches
have been developed to simultaneously exploit the statistical structure of an MRSI
dataset, factorizing Equation 1. For example, ICA (44), second-order blind identifi-
cation (SOBI) (45), and bayesian spectral decomposition (8) have all been applied to
MRSI datasets to decompose observed spectra into interpretable components.

Constrained NMF (cNMF), is a very efficient version of NMF for recovering
biomarkers of brain cancer in MRSI (11, 12). The algorithm enables nonnegative
factorization even for noisy observations, which may result in observed spectra hav-
ing negative values. cNMF includes a positivity constraint, forcing negative values
in the recovered spectral sources and abundance/concentration distributions to be
approximately zero. Figure 3 illustrates an example of spectral sources and their cor-
responding concentrations recovered using cNMF for 1H MRSI data from human
brain. In this example, the method recovers biomarkers of high-grade malignant tu-
mor as well as the spatial distribution of their concentration. One of the advantages
over other decomposition approaches that have been used in NMR, for example,
those based on Monte Carlo sampling (8), is that cNMF is computationally efficient
and can be used in near real time, when a patient is in the MR scanner.
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Extraction of Metabolic Markers of Toxicity

Metabolomics [sometimes referred to as metabonomics (46)] quantitatively measures
the dynamic metabolic response of living systems to pathophysiological stimuli or
genetic modification. Metabolomic analysis of biofluids based on high-resolution
MRS and chemometric methods are valuable in characterizing the biochemical re-
sponse to toxicity (47). Interpretation of high-resolution 1H biofluid NMR spectra
dataset is challenging, specifically for traditional peak-quantifying techniques: A typ-
ical dataset consists of at least tens of highly correlated spectra, with thousands of
partially overlapping peaks arising from hundreds of endogenous molecules. This
has created the need for approaches that can analyze the entire dataset simultane-
ously for discriminating between different combinations of metabolites, including
their dynamic changes.

PCA is widely used for analyzing metabolomic NMR datasets (48, 49). Although
a reasonable approach for preprocessing NMR datasets (50), the PCA decomposition
does not lead to physically realizable spectral biomarkers. Physically realistic decom-
positions are not only useful in terms of visualization, but also in classification of
metabolic patterns using machine learning and domain knowledge (51).

Figure 4 illustrates NMF applied to 1H NMR spectra of urine from Han Wistar
rats in a hydrazine toxicity experiment. Samples were collected from control rats
and those treated with three different doses of hydrazine (75, 90, 120 mg/kg) over
a period of 150 h (52). Preprocessing, including normalization of the data, has been
described elsewhere (53). The NMF algorithm requires about 300 s (Intel Pentium4
1.2 GHz) to obtain the recovered spectral sources, orders of magnitude faster than
other decomposition methods yielding similar results (53). The magnitudes in each
dose-group, as a function of time, are shown in Figure 5a, with the identified spectral
patterns in Figure 4a. NMF was run 100 times (100 independent initializations), with
Figure 4a showing the mean results (solid lines) and variation across runs (dashed lines).
The small variance demonstrates the robustness and fidelity of the NMF in spectral
pattern recovery.

Clear is the association of the four spectral patterns with the hydrazine treatment.
In control rats, the first ( filled diamonds) and second ( filled upper-triangle) spectral
sources maintain almost a constant high level, while the third (inverted-triangle) and
fourth (open circle) are very low. Thus, the first spectral source (Krebs cycle interme-
diates: citrate and succinate) and second spectral source (2-oxoglutarate) are related
to the normal patterns, while the third and fourth (2-aminoadipic acid, taurine and
creatine) are related to hydrazine. Indeed, in the treated animals, the normal pat-
terns decrease in response to hydrazine and recover after 36 h, while the other two
exhibit reciprocal behaviors during the course of the experiment. The data from the
120 mg/kg dose indicates no sign of recovery at 56 h, at which point the animal was
sacrificed.

A visual comparison of the spectral sources recovered using NMF with the first
principal components recovered using PCA is shown in Figure 4a,b. The PCA
components do not represent physically realizable spectra and do not appear to
be biomarkers of the metabolic status of the animals. This is further illustrated by
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Figure 4
(a) Spectral sources, recovered using NMF, indicative of biomarkers for normal metabolic
function (blue) and hydrazine toxicity (red). Solid lines are the mean results and the dash lines
are the mean ±2σ . (b) Components recovered using PCA. Note that the patterns are not
physically realizable spectra because they have negative peaks.
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Figure 5
(a) Time-dependent concentration of the spectral biomarkers recovered using NMF. The
filled diamonds and filled upright triangles are associated with split normal patterns (blue), and
the inverted triangles and open circles are associated with aberrant patterns (red)—symbols
correspond to biomarkers in Figure 4a. Analysis of the time-dependent concentrations shows
the effect, and in most cases (except the 100 mg/kg dose) recovery from the hydrazine. (b)
K-means cluster analysis applied to the amplitudes of the NMF patterns and the first four
principal components. (Top) Concentration profiles recovered via NMF enables correct
clustering into normal and abnormal classes. The samples corresponding to the control rats
and the ones collected before hydrazine administration, as well as more than 104 h after
hydrazine administration for the treated rats, are assigned into the normal cluster, and the
other samples collected in the experiment are correctly assigned into the abnormal cluster.
(Bottom) K-means clustering on the first four principal components. Classification is less
accurate compared to when using NMF recovered biomarkers—e.g., as evident by the
misclassification of some of the time points for controls.

applying K-means clustering (54) to the amplitudes in the matrix A to classify the
metabolic status (normal versus abnormal) of the rats as a function of time. The re-
sults for clustering the samples into two clusters, normal and abnormal, using cNMF
components are shown in Figure 5b (top), from which we can see that the control
rats are clearly separated from those that are treated. Both the initial measurements
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(0 h), taken prior to hydrazine administration, and the later data points (after 104 h)
for the treated rats are correctly assigned to the normal cluster. These samples have
NMR spectra very similar to those from untreated animals, and in fact correspond
to time points when the manifested toxic effect of hydrazine is almost minimized
by biologic recovery. Figure 5b (bottom) shows the classification results using the
coefficients of the first four PCs. Clearly, these results are less realistic compared with
Figure 5b (top) because some of the time points for the control rats are classified
into the abnormal group. We see that a source recovery method that imposes phys-
ically realistic constraints improves classification because it connects the recovered
sources, quantitatively, with the biological end-point measurements. The approach
shows promise for understanding complex metabolic responses of disease, pharma-
ceuticals, and toxins.

SUPPORT VECTOR MACHINES

The unsupervised learning decompositions discussed in the previous section can be
considered methods for constructing descriptive representations of the observed data.
An alternative is to construct discriminative representations using supervised learn-
ing, namely representations that are constructed to maximize the difference between
underlying classes in the data. The most common is linear discrimination. The linear
discriminant function can be defined as

f (x) = wTx + w0, (8)

and can be seen as defining a hyperplane that maps from the space of the data D
n

to a space of classes C
m, where in most cases m � n. In binary classification, m =

1, and classification is typically done by taking the sign of f (x). An observation x
is mapped into the space of (binary) classes via the weight vector w and bias w0.
The bias can be absorbed into the weight vector, and in this case it is termed an
augmented weight vector (54). The challenge is to learn the weight vector and bias,
using supervised methods, which result in minimum classification error, specifically
to maximize generalization performance. An illustration of a discriminant function is
given in Figure 6a. We can see that there are potentially many ways in which to place
a discrimination boundary—i.e., many values for the weights and bias will minimize
the classification error. The question thus becomes “Which boundary is the best?”
Support vector machines directly address this question.

Hyperplanes and Maximum Margin

A support vector machine (SVM) (see 55–57 for detailed tutorials) is a linear dis-
criminant that separates data into classes using a hyperplane with maximum-margin.
Specifically, the discriminant function can be defined using the inner product,

f (y) = wTy, (9)

where y is a result of applying a nonlinear transformation to the data—i.e., yi =
φ(xi ), and classification is done by taking the sign of f (y). The rationale behind the
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Figure 6
Hyperplanes and maximum margin. (a) Two-dimensional scatter plot for a two-class-labeled
dataset. The data can be separated by an infinite number of hyperplanes, three of which are
shown ( f1, f2, f3). (b) Illustration of the hyperplane that maximizes the margin (m). This
hyperplane is completely specified by the support vectors, those being the example data at the
margins.

Bias-variance dilemma: a
classic tradeoff encountered
in machine learning where
one must balance the bias
introduced by restricting
the complexity of the model
with the estimation accuracy
or variance of the
parameters. The expected
generalization error is a
combination of the bias and
variance and thus the best
model simultaneously
minimizes these two

nonlinear transform is to map the data into a high-dimensional space in which the
transformed data is linearly separable and thus divided by a hyperplane. In practice,
this transformation is accomplished using the “kernel trick” (58), which enables dot
products to be replaced by nonlinear kernel functions—i.e., integral transformation
of the function f of the form (T f )( y) = ∫ b

a k(x, y) f (x)d x, with the function k(x, y)
being the kernel. Much of the current research in the field is focused on developing
kernels useful for specific applications and problem domains, where the choice of
kernel function embeds some prior knowledge about the problem (e.g., 59–61). The
kernel framework is attractive, particularly for applications such as in computational
biology, because it can deal with a variety of data types and provide a means for
incorporating prior knowledge and unlabeled data into supervised classification.

For an SVM we learn the hyperplane w that maximizes the margin between the
transformed classes. We can define zi as an indicator variable which specifies whether
a data vector xi is in class 1 or 2 (e.g., zi = −1 if xi is in class 1 and zi = 1 if xi is in class
2). The distance of a hyperplane w to a (transformed) data vector y is | f (y)|/||w||.
Together with the fact that the separating hyperplane ensures zi f (yi ) ≥ 1 for all n
data vectors i, we can express the condition on the margin m as

zi f (y)
||w|| ≥ m, i = 1 . . . n. (10)

The goal of SVM training is to find the weight vector w that maximizes the margin
m. Typically, this involves solving a quadratic programming problem. Figure 6b

shows a two-dimensional projection of a separating hyperplane and the corresponding
support vectors. Theoretical motivation for SVMs comes from Vapnik Chervonenkis
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Occam’s (or Ockham’s)
Razor: principle attributed
to the fourteenth-century
English logician and
Franciscan friar, William of
Ockham, which states that
the simplest solution that
accounts for the data is the
best. The principle is
important in machine
learning because it states
that a balance must be
maintained between model
complexity and error.
Closely related to the
bias-variance dilemma

Curse of dimensionality:
describes the rapid increase
in volume of a feature space
when the dimensionality of
the data is augmented. This
is a significant challenge for
machine learning because
such an increase in volume
requires exponentially more
examples to adequately
sample the space

theory (VC Theory) (62), which provides a test error bound being minimized when
the margin is maximized. VC theory can be seen as implementing Occam’s Razor.

Closer inspection of Figure 6b clarifies where SVMs get their name. The training
examples nearest to the decision boundary completely determine the boundary and
margin. These examples (filled points in Figure 6b) are termed support vectors. They
are also sometimes termed proto-types and it is often useful to analyze those examples
that are support vectors because one can gain insight into the features of the data that
drive the formation of the decision boundary.

As described thus far, the SVM assumes linearly separable data, although perhaps
in a transformed space. Cortes & Vapnik (63) considered the case that allowed some
of the data to be misclassified and thus did not require linear separability. Such “soft
margin” classification finds a hyperplane that splits the training data as best as possible
while maximizing the distance to the nearest cleanly split examples.

The support vector method can be extended in several ways. For example, mul-
ticlass methods have been developed (64–68) as well as methods for applying the
maximum margin approach to regression (62, 69). Support vector regression finds a
linear model between the (transformed) input and output, where the output is real val-
ued. This linear model incorporates the idea of a maximum margin by constructing a
tube around the linear model that specifies the range at which points can deviate from
the model without contributing error—i.e., points lying outside the tube contribute
to the error.

SVMs have been applied to a range of biomedical disease detection and diagnosis
problems, including detection of oral cancers in optical images (70), polyps in CT
colonography (71), and detection of microcalcifications in mammograms (72). A more
recent study of several machine learning approaches for microcalcification detection
has shown that SVMs yield superior classification performance to a number of other
approaches, including ANNs (73).

Analysis of Genetic Microarray Data for Cancer Detection
and Diagnosis

Although many machine learning methods have been applied in computational biol-
ogy and bioinformatics (74), SVMs have received considerable attention (75), specif-
ically for the analysis of gene expression measured via microarrays. Microarrays
measure messenger RNA (mRNA) in a sample through the use of probes, which
are known affixed strands of DNA. mRNA is fluorescently labeled and those that
match the probes will bind. Concentration is measured via the fluorescence. The
signals can thus be seen as a set of intensities within a known probe matrix.

One of the challenges using microarray data for classifying tissue types and di-
agnosing disease is the “curse of dimensionality.” The data space is typically high
dimensional, with only limited number of examples for training—i.e., the data may
have hundreds of dimensions but only tens of examples. For example, Mukherjee
et al. (76) used SVMs to classify two types of acute leukemia from microarray sam-
ples. Original classification results using self-organizing maps on this data (77) relied
on selecting a subset of features (50 of the 7129 genes), based on the training data, to
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Cross-validation: a
method typically used in
supervised learning where a
sample of data is divided
into multiple subsets with
one subset used to train the
algorithm, including
selecting features and
setting hyperparameters,
and the remaining subset(s)
used as unbiased testing
data to evaluate
generalization performance

reduce the dimensionality of the problem. Mukherjee et al. were able to demonstrate
better classification performance without the need for feature selection. They used all
7129 genes (the dimensionality of their data) given only 38 training samples and 34
test samples. They also defined confidence intervals for their SVM predictions using
a cross-validation technique. These confidence bounds enable them to achieve 100%
correct classification of the acute leukemias with 0–4 rejected samples (i.e., samples
not classified owing to low confidence).

SVM applications to the classification of colon (78–80) and ovarian (79) cancers
in microarray data have also shown promising results. In particular, Furey et al.
(79) apply SVMs to multiple types of microarray cancer data (ovarian, colon, and
leukemia) and show the approach works well on different datasets and classification
problems. Segal et al. (81, 82) use the SVM to classify clear cell carcinoma, which
display characteristics of both soft-tissue sarcoma and melanoma. Their classification
results, in addition to being highly accurate, provide evidence that clear cell carcinoma
is a distinct genomic subtype of melanoma. In addition, SVM analysis, together with
hierarchical clustering, uncovers a separate subset of malignant fibrous hystiocytoma.
Thus, SVMs can be used to discover new classes and mine the data. A recent study
has evaluated various types of classifiers for cancer diagnostics, including SVMs, for
classification accuracy using a wide array of gene expression microarray data (83).
Table 1 summarizes these results, which demonstrate the superior performance of
SVMs.

Table 1 A comparison of multiclass SVM (MC-SVM) and non-SVM
approaches for classification results for eight different microarray datasets

Multicategory classification (%)
Binary
classification (%)

Methods BT1 BT2 L1 L2 LC PT DLBCL
MC-SVM

OVR 91.67 77.00 97.50 97.32 96.05 92.00 97.50
OVO 90.56 77.83 97.32 95.89 95.59 92.00 97.50
DAGSVM 90.56 77.83 96.07 95.89 95.59 92.00 97.50
WW 90.56 73.33 97.50 95.89 95.55 92.00 97.50
CS 90.56 72.83 97.50 95.89 96.55 92.00 97.50

Non-SVM
KNN 87.94 68.67 83.57 87.14 89.64 85.09 86.96
NN 84.72 60.33 76.61 91.03 87.80 79.18 89.64
PNN 79.61 62.83 85.00 83.21 85.66 79.18 80.89

Bold indicates the classifier with highest accuracy on the given dataset. BT1, brain tumor dataset
1; BT2, brain tumor dataset 2; L1, leukemia datatset 1; LC, lung cancer; PT, prostate tumor;
DLBCL, diffuse large B-cell lymphomas. Multiclass SVMs: OVR, one-versus-rest; OVO,
one-versus-one; DAGSVM, directed acyclic graph SVM; WW, method by Weston and Watkins;
CS, method by Crammer & Singer. Non-SVMs: KNN, K-nearest neighbor; NN, multi-layer
perceptron neural network; PNN, probabilistic neural network. Adapted from Reference 83.
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BAYESIAN NETWORKS AND GENERATIVE MODELS

Analysis and classification of biomedical data is challenging because it must be done
in the face of uncertainty; datasets are often noisy, incomplete, and prior knowledge
may be inconsistent with the measurements. Bayesian decision theory (e.g., see 54) is
a principled approach for inferring underlying properties of data in the face of such
uncertainty. The Bayesian approach became popular in AI as a method for building
expert systems because it explicitly represents the uncertainty in the data and decision-
making process. More recently, Bayesian methods have become a cornerstone in
machine learning, and in learning theory in general, and have been able to account
for a range of inference problems relevant to biological learning (84).

In addition to explicitly dealing with uncertainty, Bayesian approaches can be
differentiated from other pattern classification methods by considering the difference
between discriminative versus generative models (85, 86). For example, recognition
or discriminative probabilistic models estimate P (C |D), the conditional probability of
class C given data D. An alternative approach is to construct a generative probabilistic
model of the data, which using the aforementioned formulation, would be a model
that estimates the class conditional distribution, P (D|C). Such a model has several
attractive features for biomedical data analysis. For example, classification is possible
by training a distribution for each class and using Bayes’rule to obtain P (C |D) =
P (D|C)P (C)/P (D). In addition, novel examples, relative to the training data used to
build the model, can be detected by computing the likelihood over each model. The
ability to identify novel examples is useful for establishing confidence measures on the
output (e.g., should the output of the classifier be “trusted” given that the current data
is very different from the training data). In addition, novelty detection can be used to
identify new data that might be used to retrain/refine the system. Because essentially
any type of data analysis can be formulated given knowledge of the distribution of the
data, the generative probabilistic model also can be used to compress (87), suppress
noise (88), interpolate, increase resolution, etc. Below, we briefly review Bayesian
models that are structured as graphs and consider their application to radiographic
image analysis.

Belief Propagation

Solving an inference problem often begins with representing the problem using some
form of graphical structure. Examples of such graphical models are Bayesian (or
belief) networks and undirected graphs, also known as markov networks (89). In a
graphical model, a node represents a random variable and links specify the dependency
relationships between these variables (90). The states of the random variables can be
hidden in the sense that they are not directly observable, but it is assumed that they
have observations related to the state values. Graphical models allow for a compact
representation of many classes of inference problems. Once the underlying graphical
structure has been constructed, the goal is to infer the states of hidden variables from
the available observations. Belief propagation (BP) (91) is an algorithm for solving
inference problems based on local message passing. In this section, we focus on
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undirected graphical models with pairwise potentials, where it has been shown that
most graphical models can be converted into this general form (92).

Let x be a set of hidden variables and y a set of observed Variables, and consider
the joint probability distribution of x given y given by

P (x1, . . . , xn|y) = c
∏
i, j

Ti j (xi , x j )
∏

i

Ei (xi , yi ),

where c is a normalizing constant, xi represents the state of node i, Ti j (xi , x j ) cap-
tures the compatibility between neighboring nodes xi and x j , and Ei (xi , yi ) is the
local interaction between the hidden and observed variables at location i. In the BP
algorithm, this joint probability is approximated by a full factorization in terms of
marginal probabilities over xi :

P (x|y) ≈ c
∏

i

b(xi ).

b(xi ) is called the local belief, which is an approximate marginal probability at node
xi .

The belief propagation algorithm iterates a local message computation and belief
updates (92). The message Mi j (x j ) passed from a hidden node xi to its neighboring
hidden node x j represents the probability distribution over the state of x j . In each
iteration, messages and beliefs are updated as follows:

Mi j (x j ) = c
∫

xi

d xi Ti j (xi , x j )Ei (xi , yi )
∏

xk∈Ni /x j

Mki (xi )

b(xi ) = c Ei (xi , yi )
∏

xk∈Ni

Mki (xi ),

where Ni/x j denotes a set of neighboring nodes of xi except x j . Mi j is computed by
combining all messages received by xi from all neighbors except x j in the previous
iteration and marginalizing over all possible states of xi (Figure 7). The current local
belief is estimated by combining all incoming messages and the local observations.

It has been shown that, for singly connected graphs, belief propagation converges
to exact marginal probabilities (92). Although how it works for general graphs is
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Figure 7
Illustration of local message passing from node xi to node x j . Open circles are hidden
variables, whereas shaded circles represent observed variables. The local belief at node x j is
computed by combining the incoming messages from all its neighbors and the local
interaction E j .
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not well understood, experimental results on some vision problems, such as motion
analysis, also show that belief propagation works well for graphs with loops (93).
Variants of Bayesian networks include dynamic Bayesian networks (94), useful for
constructing generative models of ordered sequential data (e.g., time series). The
most well-known type of dynamic Bayesian network is the hidden markov model
(95), which has been used, for instance, to model speech. Bayesian networks have been
broadly applied in biomedicine, particularly in probabilistic expert systems for clinical
diagnosis (96–98) and computational biology (99). They are attractive because they
are able to deal with biomedical data that is incomplete or partially correct (100). A
novel method for exploiting conditional dependencies in the structure of radiological
images to improve detection of breast cancer is described below.

Computer-Aided Diagnosis in Mammography

Systems for assisting a radiologist in assessing imagery have been termed computer-
aided diagnosis (CAD). CAD is traditionally defined as a diagnosis made by a radiolo-
gist who incorporates the results of computer analysis of the imagery (101). The goal
of CAD is to improve radiologists’ performance by indicating the sites of potential
abnormalities, to reduce the number of missed lesions, and/or provide quantitative
analysis of specific regions in an image to improve diagnosis.

The shear volume of images collected for screening mammography makes it a
prime candidate for CAD. In screening mammography, CAD systems typically oper-
ate as automated “second-opinion” or “double-reading” systems that indicate lesion
location and/or type. Because individual human observers overlook different findings,
it has been shown that double reading (the review of a study by more than one ob-
server) increases the detection rate of breast cancers by 5%–15% (102–104). Double
reading, if not done efficiently, can significantly increase the cost of screening, given
the need for a second radiologist/mammographer. Methods to provide improved
detection with little increase in cost will have significant impact on the benefits of
screening. Automated CAD systems are a promising approach for low-cost double
reading. Several CAD systems have been developed for mammographic screening
and several have been approved by the FDA.

CAD systems for mammography usually consist of two distinct subsystems, one
designed to detect microcalcifications and one to directly detect masses (105). A

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 8
Generative properties of HIP model for mammographic CAD. (a) Example of mammogram
regions of interest (ROIs) that the HIP model correctly (top row) and incorrectly (bottom row)
classifies. Note that the difference between the two classes of ROIs (mass versus nonmass) is
much more apparent in the top row than in the bottom row, consistent with model
performance. (b) Mammographic ROI images synthesized by the HIP model. Positive ROIs
(left) tend to have more focal structure, with more defined borders and higher spatial
frequency content. Negative ROI (right) tend to be more amorphous with lower spatial
frequency content. (c) Pixel error (root mean square error, RMSE) versus size of compressed
files for JPEG, HIP, and HMT. Clear is that the HIP model results in the best compression.
All results (a–c) shown for the same HIP model.
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Expectation-
maximization (EM)
algorithm: an algorithm
for finding maximum
likelihood estimates of
parameters in a probabilistic
model where the model
depends on both observed
and latent (hidden)
variables. The algorithm
alternates between an
expectation (E) step, which
computes the expected value
of the latent variables, and a
maximization step (M),
which computes the
maximum likelihood
estimates of the parameters
given the observed variables
and the latent variables set
to their expectation

common element in both subsystems is machine learning algorithms for improving
detection and reducing false positive rates introduced by earlier stages of processing.
ANNs are particularly popular in CAD because they are able to capture complicated,
often nonlinear, relationships in high-dimensional feature spaces not easily captured
by heuristic or rule-based algorithms. Several groups have developed neural networks
architectures for CAD. Many of these architectures exploit well-known features that
might also be used by radiologists (106–109), whereas others utilize more generic
feature sets (110–117). In general, these ANNs are discriminative models. Sajda et al.
(118) developed a class of generative models for probability distributions of images
that are termed hierarchical image probability (HIP) models for application to mam-
mographic CAD. The main elements of the model include the following:

• Capturing local dependencies in mammographic images via a coarse-to-fine
factoring of the image distribution over scale and position.

• Capturing nonlocal and scale dependencies through a set of discrete hidden
variables whose dependency graph is a tree.

• Optimizing model parameters to match the natural image statistics using strict
maximum likelihood.

• Enabling both evaluation of the likelihood and sampling from the distribution.
• Modeling the joint distribution of the coefficients of the different subbands at

each node as arbitrarily complex distributions using mixtures of Gaussians.
• Separately adjusting the hidden states in each level to better fit the image dis-

tribution.
• Using hidden states to capture complex structure in the image through the use

of mixture, hierarchy and scale components.

The model exploits the multiscale signatures of disease that are seen in mammo-
graphic imagery (119–121) and is trained using the expectation-maximization (EM)
algorithm (122), implementing a form of belief propagation. Its structure is simi-
lar to other generative models of image distributions constructed on a wavelet tree
(123–126).

Figure 8 shows results when training the HIP model on mammographic data. Be-
cause the model is generative, a single model can be used for classification, synthesis,
and compression. Note, for example, that the synthesis results give some intuition in
how the model differentiates masses from nonmass regions of interest (ROIs), namely
via focal structure in the image. It is also important to note that with such model of the
image distribution we can use the HIP model to achieve better image compression
than JPEG or the hidden Markov tree (123).

There are obviously other modalities and medical application areas where gener-
ative probabilistic models would be useful. One in particular is multimodal fusion,
where the problem is to bring a set of images, acquired using different imaging
modalities, into alignment. One method that has demonstrated particularly good
performance uses mutual information as an objective criterion (127). The computa-
tion of mutual information requires an estimate of entropies, which in turn requires
an estimate of the underlying densities of the images. Generative models potentially
provide a framework for learning those densities.
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CONCLUSION

Machine learning has emerged as a field critical for providing tools and methodolo-
gies for analyzing the high volume, high dimensional and multi-modal data generated
by the biomedical sciences. This review has provided only a condensed snapshot of
applications of machine learning to detection and diagnosis of disease. Fusion of dis-
parate multimodal and multiscale biomedical data continues to be a challenge. For
example, current methods have difficulty integrating structural and functional im-
agery, with genomic, proteomic, and ancillary data to present a more comprehensive
picture of disease.

Ultimately, the most powerful and flexible learning machine we know of is the
human brain. For this very reason, the machine learning community has become
increasingly interested in neuroscience in an attempt to identify new theories and
architectures that might account for the remarkable abilities of brain-based learning
systems. In fact, Jeff Hawkins, a pioneer in the computer industry, has recently formed
a company, Numenta Inc., to begin to develop and productize his theory of how
the cortex represents and recognizes patterns and sequences(128). Perhaps, not so
coincidentally, early implementation of his theory has been based on hierarchical
Bayesian networks, much like those that have been discussed in this review. Thus, the
next generation of systems for analyzing biomedical data might ultimately be based
on hybrid algorithms that provide the speed and storage of machine systems with the
flexibility of human learning.

SUMMARY POINTS

1. Unsupervised matrix decomposition methods, such as nonnegative matrix
factorization, which impose general, although physically meaningful, con-
straints, are able to recover biomarkers of disease and toxicity, generating a
natural basis for data visualization and pattern classification.

2. Supervised discriminative models that explicitly address the bias-variance
trade-off, such as the support vector machine, have shown great promise for
disease diagnosis in computational biology, where data types are disparate
and high dimensional.

3. Generative models based on Bayesian networks offer a general approach
for biomedical image and signal analysis in that they enable one to directly
model the uncertainty and variability inherent to biomedical data as well
as provide a framework for an array of analysis, including classification,
segmentation, and compression.

ACKNOWLEDGMENTS

This work was supported in part by grants from the National Science Foundation,
National Institutes of Health, and the Office of Naval Research Multidisciplinary
University Research Initiative.

www.annualreviews.org • Machine Learning for Disease Diagnosis 8.21



ANRV281-BE08-08 ARI 7 April 2006 14:57

LITERATURE CITED

1. Nishikawa RM, Haldemann R, Giger M, Wolverton D, Schmidt R, Doi K.
1995. Performance of a computerized detection scheme for clustered microcalcifications
on a clinical mammography workstation for computer-aided diagnosis. Presented at
Radiol. Soc. North Am., p. 425. Chicago, IL (Abstr.)

2. Nishikawa RM, Schmidt RA, Osnis RB, Giger ML, Doi K, Wolverton DE.
1996. Two-year evaluation of a prototype clinical mammographic workstation
for computer-aided diagnosis. Radiology 201(P):256

3. Bishop CM. 1995. Neural Networks for Pattern Recognition. New York: Oxford
Univ. Press

4. Shortliffe EH, Buchanan B. 1975. A model of inexact reasoning in medicine.
Math. Biosci. 23:351–79

5. Miller RA, Pople HE, Myers JD. 1982. Internist-1: an experimental computer-
based diagnostic consultant for general internal medicine. N. Engl. J. Med.
307:468–76

6. Jolliffe IT. 1989. Principal Component Analysis. New York: Springer-Verlag

A much cited paper that
describes the nonnegative
matrix factorization
algorithm and
demonstrates its utility
for decomposing data into
a parts-based structure.

7. Lee DD, Seung HS. 1999. Learning the parts of objects by non-negative
matrix factorization. Nature 401:788–91

8. Ochs MF, Stoyanova RS, Arias-Mendoza F, Brown TR. 1999. A new method
for spectral decomposition using a bilinear Bayesian approach. J. Magn. Reson.
137:161–76

9. Parra L, Spence C, Ziehe A, Mueller KR, Sajda P. 2000. Unmixing hyperspectral
data. In Advances in Neural Information Processing Systems 12, ed. SA Solla, TK
Leen, K-R Muller, pp. 942–48. Cambrisge, MA: MIT Press

10. Plumbley M. 2002. Conditions for non-negative independent component anal-
ysis. IEEE Signal Proc. Lett. 9:177–80

11. Sajda P, Du S, Parra L, Stoyanova R, Brown T. 2003. Recovery of constituent
spectra in 3D chemical shift imaging using non-negative matrix factorization.
Proc. Int. Symp. Ind. Component Anal. Blind Signal Separation, 4th, Nara, Jpn,
pp. 71–76

12. Sajda P, Du S, Brown TR, Stoyanova R, Shungu DC, et al. 2004. Non-
negative matrix factorization for rapid recovery of constituent spectra in mag-
netic resonance chemical shift imaging of the brain. IEEE Trans. Med. Imaging
23(12):1453–653

13. Kao KC, Yang YL, Boscolo R, Sabatti C, Roychowdhury V, Liao JC. 2004.
Transcriptome-based determination of multiple transcription regulator activi-
ties in Escherichia coli by using network component analysis. Proc. Natl. Acad.
Sci. USA 101(2):641–46

14. Liao JC, Boscolo R, Yang YL, Tran LM, Sabatti C, Roychowdhury VP. 2003.
Network component analysis: reconstruction of regulatory signals in biological
systems. Proc. Natl. Acad. Sci. USA 100(26):15522–27

The first to show that
many of the common
algorithms in independent
component analysis could
be expressed, together
with principal component
analysis, as a generalized
eigenvalue problem.

15. Parra L, Sajda P. 2003. Blind source separation via generalized eigenvalue
decomposition. J. Machine Learn. Res. Spec. Iss. ICA 4:1261–69

16. Parra L, Spence C. 2000. Convolutive blind source separation of non-stationary
sources. IEEE Trans. Speech Audio Proc. May:320–27

8.22 Sajda



ANRV281-BE08-08 ARI 7 April 2006 14:57

17. Sajda P, Zeevi YY, eds. 2005. Blind Source Separation and Deconvolution in Imaging
and Image Processing, Vol. 15, Int. J. Imaging Syst. Technol. New York: Wiley
Intersci.

18. Hyvärinen A, Karhunen J, Oja E. 2001. Independent Component Analysis. New
York: Wiley Intersci.

19. Pearlmutter B, Parra LC. 1995. Maximum likelihood source separation: a
context-sensitive generalization of ICA. In Advances in Neural Information Pro-
cessing Systems, ed. MC Mozer, MI Jordan, T Petsche, Vol. 9. Cambridge, MA:
MIT Press

One of the most cited
papers in blind source
separation, it introduced
the information
maximization algorithm
(infomax) for recovering
sources in instantaneous
linear mixtures.

20. Bell AJ, Sejnowski TJ. 1995. An information-maximization approach to
blind separation and blind deconvolution. Neural Comp. 7:1129–59

21. Comon P. 1994. Independent component analysis, a new concept? Signal Proc.
36(3):287–314

22. Hojen-Sorensen P, Winther O, Hansen LK. 2002. Mean-field approaches to
independent component analysis. Neural Comp. 14:889–918

23. Molgedey L, Schuster HG. 1994. Separation of a mixture of independent signals
using time delayed correlations. Phys. Rev. Lett. 72(23):3634–37

24. Cardoso J-F, Souloumiac A. 1993. Blind beamforming for non Gaussian signals.
IEEE Proc. F 140(6):362–70

25. Belouchrani A, Abed-Meraim K, Cardoso J-F, Moulines E. 1997. A blind source
separation technique using second-order statistics. IEEE Trans. Signal Proc.
45:434–44

26. Ramoser H, Mueller-Gerking J, Pfurtscheller G. 2000. Optimal spatial filtering
of single-trial EEG during imagined hand movements. IEEE Trans. Rehab. Eng.
8(4):441–46

27. Wainwright MJ, Simoncelli EP. 1999. Scale mixtures of Gaussians and the
statistics of natural images. In Advances in Neural Information Processing Systems,
ed. SA Solla, TK Leen, K-R Müller, 12:855–61. Cambridge, MA: MIT Press

28. Parra LC, Spence CD, Sajda P. 2000. Higher-order statistical properties arising
from the non-stationarity of natural signals. In Advances in Neural Information
Processing Systems, pp. 786–92. Cambridge, MA: MIT Press

29. Lee DD, Seung HS. 2001. Algorithms for non-negative matrix factorization. In
Advances in Neural Information Processing Systems 13, pp. 556–562. Cambridge,
MA: MIT Press

30. Lee DD, Seung HS. 1997. Unsupervised learning by convex and conic coding.
In Advances in Neural Information Processing Systems, 9:515–21. Cambridge, MA:
MIT Press

31. Hoyer PO. 2002. Non-negative sparse coding. In Neural Networks for Signal
Processing XII (Proc. IEEE Workshop on Neural Networks for Signal Processing,
Martigny, Switzerland), pp. 557–65

32. Guillamet D, Bressan M, Vitria J. 2001. A weighted non-negative matrix factor-
ization for local representations. IEEE Comput. Soc. Conf. Vision Pattern Recog.,
pages 942–47

33. Guillamet D, Schiele, and J Vitria. Analyzing non-negative matrix factorization
for image classification. In Pattern Recognition, 2002. Proceedings. 16th Interna-
tional Conference on, volume˜2, pages 116–119, 2002.

www.annualreviews.org • Machine Learning for Disease Diagnosis 8.23



ANRV281-BE08-08 ARI 7 April 2006 14:57

34. W Xu, X Liu, and Y Gong. Document clustering based on non-negative matrix
factorization. In SIGIR ’03: Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in informaion retrieval, pages 267–
273, New York, NY, USA, 2003. ACM Press.

35. Wang B, Plumbley MD. 2005. Musical audio stream separation by non-negative
matrix factorization. Proc. DMRN Summer Conf., Glasgow, Scotland

36. Lee JS, Lee DD, Choi S, Lee DS. 2001. Application of non-negative matrix
factorization to dynamic positron emission tomography. Int. Conf. Ind. Compo-
nent Anal. Blind Signal Separation, 3rd, San Diego, ed. T-W Lee, T-P Jung, S
Makeig, TJ Sejnowski, pp. 629–32

37. Brunet JP, Tamayo P, Golub TR, Mesirov JP. 2004. Metagenes and molec-
ular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. USA
101(12):4164–69

38. Inamura K, Fujiwara T, Hoshida Y, Isagawa T, Jones MH, et al. 2005. Two
subclasses of lung squamous cell carcinoma with different gene expression pro-
files and prognosis identified by hierarchical clustering and non-negative matrix
factorization. Oncogene doi:10.1038/sj.onc.1208858

39. Negendank WG, Sauter R, Brown TR, Evelhoch JL, Falini A, et al. 1996. Pro-
ton magnetic resonance spectroscopy in patients with glial tumors: a multicenter
study. J. Neurosurg. 84:449–58
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