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Abstract. This paper introduces a new social metaheuristic for the Max-Cut problem 
applied to a weighted undirected graph. This problem consists in finding a partition 
of the nodes into two subsets, such that the sum of the weights of the edges having 
endpoints in different subsets is maximized. This NP-hard problem for non planar 
graphs has several application areas such as VLSI and ASICs CAD. The hierarchical 
social (HS) metaheuristic here proposed for solving the referred problem is tested and 
compared with other two metaheuristics: a greedy randomized adaptive search proce-
dure (GRASP) and an hybrid memetic heuristic that combines a genetic algorithm 
(GA) and a local search. The computational results on a set of standard test problems 
show the suitability of the approach. 

1 Introduction 

An important graph bipartition problem is the Max-Cut problem defined for a 
weighted undirected graph S = (V, E, W), where V is the ordered set of vertices or 
nodes, E is the ordered set of undirected arcs or edges and W is the ordered set of 
weights associated with each edge of the graph. This Max-Cut optimization problem 
consists in finding a partition of the set V into two disjoint subsets (C, C’) such that 
the sum of the weights of edges with endpoints in different subsets is maximized. 
Every partition of vertices V into C and C´ is usually called a cut or cutset and the 
sum of the weights of the edges is called the weight of the cut.  

For the considered Max-Cut optimization problem, the cut value or weight of the 
cut given by 
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is maximized. In [9] is demonstrated that the decision version of Max-Cut is NP-
Complete. This way, we need to use approximate algorithms for finding the solution 
in a reasonable time. Notice that for planar graphs exacts algorithms exist which 
solve the Max-Cut problem in polynomial time [10]. 

In this paper we propose a new hierarchical social (HS) metaheuristic for finding 
an approximate solution to Max-Cut problem. Additionally, two standard meta-
heruristics: GRASP and memetic algorithms (MA) are analyzed and compared with 
the HS algorithm.  



The new introduced metaheuristic, hierarchical social algorithms [3,4], is inspired 
in the behaviour of some hierarchical societies. HS algorithms make use of local 
search heuristics with a group-population-based strategy. Their basic structure is a 
graph where a dynamical domain partition is performed. In each region of the consid-
ered partition a hierarchical group is settled. Each group consists of a core that de-
termines the value of the corresponding group objective function and a periphery that 
defines the local search region of the involved group.  Through a competitive group 
population strategy, the set of groups is optimized, the number of groups successively 
decreases and an approximate optimal solution is found.   

A second metaheuristic used to compare with HS algorithms is a Greedy Random-
ized Adaptive Search Procedure (GRASP) [5,15,16], based on a construction phase 
and a local optimization phase.  

A third metaheuristic also used to compare the experimental results, is based on a 
genetic algorithm [7,12,17] with an additional local search based on the problem 
domain knowledge (memetic algorithm [13,14]), which allows a remarkable im-
provement of the solution obtained. 

2 Review of Max-Cut Problem Solution 

The Max-Cut problem can be formulated as an integer quadratic program [18]. This 
program can not be efficiently solved because, in the general case, it is a NP-
complete problem [9]. For planar graphs exact polynomial time algorithms exist [10]. 
Several continuous and semidefinite relaxations have been proposed in order to 
achieve a good solution in a reasonable running time. In [11,18] is described the 
semidefinite relaxation of the Max-Cut problem. Goemans et al. showed in [6] a 
randomized algorithm that guarantees a 0.878-approximation to the optimum and in 
addition an upper bound on the optimum. Based on this work, other approximation 
algorithms have been proposed [2]. 

There are other approaches to the Max-Cut problem relaxation [2]. Maybe, one of 
the most interesting is the 2-rank relaxation proposed in [1] that in practice produces 
better solutions than the mentioned randomized algorithm [6]. 

3 Hierarchical Social Algorithms for the Max-Cut Problem 

This section presents the general features of a new metaheuristic called hierarchical 
social (HS) algorithms. In order to get a more general description of this metaheuris-
tic, the reader is referred to [3][4]. 

HS algorithms are inspired in the hierarchical social behaviour observed in a great 
diversity of human organizations and biological systems. 

This metaheuristic have been successfully applied to several problems such as 
critical circuit computation [4] and DFG scheduling with unlimited resources [3]. 
The key idea of HS algorithms is a simultaneous optimization of a set of feasible 
solutions. Each group of a society contains a feasible solution and these groups are 
initially random distributed through the solution space. By means of an evolution 



strategy, where each group tries to improve itself or competes with the neighbour 
groups, better solutions are obtained through the corresponding social evolution. 
In this social evolution, the groups with lower quality tend to disappear. As a result, 
the rest of the group objective functions are optimized. The process usually ends with 
only one group that contains the best solution found. 

3.1 Metaheuristic structure 

For the Max-Cut problem, the feasible society is modelled by the specified undirected 
weighted graph S=(V,E,W) also called feasible society graph. The set of individuals 
are modelled by nodes V of the specified graph, and the set of feasible relations are 
modelled by arcs A of the specified graph. Figure 1.a shows an example of the feasi-
ble society graph for a particular Max-Cut problem. 

The state of a society is modelled by a hierarchical policy graph. This hierarchical 
policy graph also specifies a society partition composed by a disjoint set of groups 
Π={g1, g2,…,gg}, where each individual or node is assigned to a group. Each group 
gi⊂Π  is composed by a set of individuals and active relations, which are constrained 
by the feasible society. The individuals of all groups cover the individuals of the 
whole society. 

The specification of the hierarchical policy graph is problem dependent. The initial 
society partition determines an arbitrary number of groups and assigns individuals to 
groups. Figure 1.b shows a society partition example formed by two groups. 

A society partition can be classified into single-group or monopoly partition, in 
which there is only one group, and multiple-group or competition partition, in which 
there are more than one group. Obviously in example shown in Figure 1.b, the parti-
tion shown is a competition partition. 

 
 
 
 
 
 
 

 

Fig. 1. (a) Feasible society graph.  (b) Society partition and groups partition  

Each individual of a society has its individual objective function f1. Each group 
has its group objective function f2 that is shared by all individuals of a group. Fur-
thermore each group gi is divided into two disjoint parts: core and periphery. The 
core determines the value of the corresponding group objective function f2 and the 
periphery defines the local search region of the involved group.  

In the Max-Cut problem framework, the set of nodes Vi of each group gi is di-
vided into two disjoint parts: gi=(Ci,, Ci´) where Ci represents the core or subgroup of 
nodes that belongs to the considered cutset and Ci´ is the complementary subgroup of 

Group 1 Group 2 Core 1 

Core 2 



nodes or periphery. The core edges are the arcs that have their endpoints in Ci and 
Ci´. Figure 1.b also shows an example of cores for the considered previous partition. 
The core edges of each group are shown in this figure by thick lines. 

For each group gi = (Ci, Ci´), the group objective function f2(i) is given by the  
function cut(i): 
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where the weights wvu are supposed to be null if the corresponding edges do not be-
long to the specified graph. Obviously, this value is determined by the core edges, 
because is the sum of the edges weights which have one endpoint in the core Ci, and 
the other endpoint in the periphery Ci´ of the corresponding group gi. 

For each individual or node v, the individual objective function f1(v,i) relative to 
each group gi = (Ci, Ci’) is given by the function: 
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The HS algorithms here considered, try to optimize one of their objective func-
tions (f1 or f2) depending on the operation phase. During an autonomous or winner 
phase, each group i tries to improve independently the group objective function f2. 
During a loser phase, each individual tries to improve the individual objective func-
tion f1, the original groups cohesion disappeared and the graph partition is modified 
in order to optimize the corresponding individual objective function. The strategy 
followed in a loser phase could be considered inspired in Adams Smith’s “invisible 
hand” economic society mechanism described in his book “An Inquiry into the Na-
ture and Causes of the Wealth of Nations". 

3.2 Metaheuristic process 

The algorithm starts from a random set of feasible solutions i.e. it obtains an initial 
partition that determines the corresponding groups structure. Additionally for each 
group, an initial random cutset is derived.  

The groups are successively transformed through a set of competition phases based 
on local search strategies. For each group, there are two main strategies: winner or 
autonomous strategy and loser strategy. The groups named winner groups, which 
apply the winner strategy, are that which have the higher group objective function f2. 
The rest of groups apply loser strategy and are named loser groups. During optional 
autonomous phases in between competition phases, all groups behave like winner 
groups. These optional autonomous phases improve the capability of the search pro-
cedure. 

The winner strategy can be considered as a local search procedure in which the 
quality of the solution contained in each group is improved by autonomously working 
with the individuals that belong to each group and the relations among these indi-
viduals. 



The loser strategy is oriented to let the exchange of individuals among groups. In 
this way the groups with inferior quality (lower group objective function f2) tend to 
disappear, because their individuals move from these groups to another groups that 
grant their maximum individual promotion (highest individual objective function f1). 

Winner and loser strategies are the basic search tools of HS algorithms. Individu-
als of loser groups, which have lower group objective functions, change of group 
during a loser strategy, in order to improve their individual objective function f1. This 
way, the loser groups tend to disappear in the corresponding evolution process. Indi-
viduals of winner groups, which have highest group objective functions, can move 
from the core to periphery or inversely, in order to improve the group objective func-
tion f2. These strategies produce dynamical groups populations, where group annexa-
tions and extinctions are possible.  

3.3 High-level pseudo-code 

A general high-level description of an HS metaheuristic is shown in Figure 2, where 
the main search procedures are: Winner Strategy and Loser Strategy.  

In the Max-Cut problem, the Winner Strategy (Figure 3) is oriented to improve the 
cut value of a group. For a given group gi, a nodes exchange, between core and pe-
riphery, allows to optimize the group objective function. The exchange is accom-
plished if there is an improvement of the cut weight or objective function f2(i) of the 
corresponding group gi. This procedure is based on the local search procedure pre-
sented in [15,16]. In our implementation, we also allow to move the nodes between Ci 
and Ci’ in parallel and simultaneous way on a single iteration. The only restriction is 
the following: if one node u is gone out from Ci (or Ci’), none of its adjacent nodes 
can change their position in the same iteration. This restriction avoids cycling in the 
corresponding procedure. 
Procedure Hierarchical_Social_Algorithm(S) 
Var 
 S=(V,E,W)=({v}{e}{w}):Initial_Society_graph;  
 G={gi}:Groups_structure; 
 F1={f1}:Individuals_objective_function_structure; 
 F2={f2}:Groups_objective_function_structure; 
 i,k:1..Number_of_groups /*Group indices*/ 
Begin /* Begin social evolution */ 
 G=Get_initial_random_partition_and_groups_structure(); 
 Repeat  /* group evolution*/ 
  Compute_F1()_and_F2(); /*Objective functions*/ 
  For each gi in G  
   If f2(i)=max{f2(k)∀ k} Or Autonomous_phase Then 
    Winner_Strategy(i) 
   Else 
    Loser_Strategy(i); 
  End For 
  Update_groups_structure(G); 
 Until termination_condition_met;   /*End of social evolution*/ 
 Return(G); /* Approximate optimal solution */ 
End Hierarchical_Social_Algorithm 

Fig. 2. High-level pseudo-code for Hierarchical Social Algorithms 

For each vertex v and each group gi = (Ci,Ci´) the following function σ and σ´are 
considered: 
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These evaluation functions are used in the pseudo-code of Figure 3. 
The Loser Strategy allows an individual to move to another group. The individuals 

belonging to groups with lower cut value f2(i) can change their group in order to 
increase the individual objective function f1(v,i). Each node searches for the group j 
that gives the maximum improvement in its individual objective function. Figure 4 
shows the pseudo-code of Loser Strategy considering the functions σ and σ´ defined 
in (4). 

4 GRASP for MAX-CUT Problem 

This section briefly summarizes the use of a Greedy Randomized Adaptive Search 
Procedure (GRASP) for solving the Max-Cut problem. For a more detailed descrip-
tion the reader is referred to references [5,15,16]. GRASP is a multi-start iterative 
method where in each iteration there are two phases, construction phase and local 
search phase. In the first phase, a greedy feasible solution is constructed and in the 
second phase, starting from this solution, a local optimal solution is derived. Figure 5 
shows a high level pseudo-code of this metaheuristic, assuming that the objective 
function f is the same that the group objective function (f2) introduced in (2). 

The construction phase makes of an adaptive greedy function that uses a restricted 
candidates list (RCL) and a probabilistic selection criterion [15,16]. In the Max-Cut 
problem, for each node v ∉  C ∪  C’, the following greedy function f(v) is considered: 

Procedure Winner_Strategy(i)/* for Max_Cut problem*/ 
Var gi=(Ci,Ci´):Cutset_structure_of_considered_group  
Begin 
For v = 1 to Unmber_of_nodes_of_considered_group 
  If v∈ Ci and σ(v,i)>σ’(v,i) Then Ci´=Ci’∪ {v}; Ci=Ci\{v}; /*v→Ci´*/ 
  If v∈ Ci´and σ(v,i)<σ’(v,i) Then Ci’= Ci’\{v}; Ci=Ci∪ {v};/*v→Ci */ 
End For 
End Winner_Strategy  

Fig. 3. Pseudo-code of Winner Strategy  

Procedure Loser_Strategy(i)/* for Max_Cut problem*/ 
Var 
 gi=(Ci,Ci´):Cutset_structure_of_considered_group  
 G={gi}={(Ci,Ci´)}:Cutset_structure_of_groups 
 i,j,k:1..Number_of_groups /*Group indices*/ 
Begin 
For v = 1 to Number_of_nodes_of_considered_group 
  j= arg max {max(σ(v,k),σ’(v,k)),∀ k} /*j=host group*/ 
  If (v∈ Ci) Then Ci=Ci\{v} Else Ci´=Ci´\{v}; /*Remove v from gi*/ 
  If σ(v,j)>σ´(v,j) Then Cj’=Cj’∪ {v} Else Cj=Cj ∪ {v}; /*Add v to gj*/ 
End For 
End Loser_Strategy 

Fig. 4. Pseudo-code of Loser Strategy.  
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This greedy function is used to create an RCL based on the specified cut-off value 
α. Later on, a random procedure successively selects vertices from this RCL in order 
to obtain an initial feasible solution. 
Procedure GRASP(S,Max_number_of_iterations) 
Var g:Solution_structure; 
Begin    
 For i=1 to Max_number_of_iterations   /*Multi-start*/ 
  g= Build_a_greedy_randomized_solution(S); 
  g= Local_Search(g); 
  If i = 1 Then g* = g; /*Initial solution*/ 
  Else f(g)>f(g*) Then g* = g; /*Update solution*/ 
 End For 
 Return(g*); /* Approximate optimal solution */ 
End GRASP; 

Fig. 5. Pseudo-code of a generic GRASP 

The local search phase is later applied, which is also based on the previous defini-
tions of σ and σ’, taking into account that all nodes have already been assigned to C 
or C’. If a node v ∈  C and σ(v) > σ´(v) then it should be changed from C to C’: 
C’=C’∪ {v} and C= C\{v}, and conversely. This second phase stops when all possi-
ble movements have been computed and no improvement was found. 

5 Memetic Algorithms for the MAX-CUT Problem 

This section briefly summarizes the use of genetic algorithms for solving the Max-
Cut problem. For a more detailed description the reader is referred to references 
[7,12,14,17]. 
The introduction of an additional local search phase on a genetic algorithm produces 
a memetic algorithm. This improves the quality of the solutions obtained. In Figure 6 
is shown the high level pseudocode of a memetic algorithm. 
Procedure_Memetic_Algorithm(S, Number_generations) 
 Initialize_random_population(S); 
 Local_Search(); /*Local search used in GRASP */ 
 For gen =1 to Number_generations 
 Select_parents(gen); 
 Produce_offspring_by_fixed_crossover_of_parents(gen); 
 Local_Search(gen); /*Local search used in GRASP */ 
   Produce_mutation(gen); 
 Evaluate_the_offspring(gen); 
 Replacement_process(gen); 
 End For 
End Memetic_Algorithm 

Fig. 6. High-level general pseudo-code of used memetic algorithm. 

In order to use memetic algorithms for solving the Max-Cut problem, we need to 
code each feasible solution. Let V = {1,…,n} the nodes set of a given graph. The cuts 



of this graph can be coded by a Boolean n-vector I = (i1,…,in) such that the value of 
each iu∈ {0,1} is given by the characteristic function: iu={(u∈ C)→1; (u∈ C´)→0}:  

In the evaluation step, the selection method used is the fitness roulette-wheel selec-
tion [12], which favours individuals with high fitness without suppressing the chance 
of selection of individuals with low fitness, avoiding premature convergence of the 
population. 

This way, a subset on individuals is selected, introduced in the new population and 
recombined with a probability pr. In this paper we consider the crossover method, 
called fixed crossover [2], which is dependent on the structure of the crossed indi-
viduals. In general, the use of structural information is an advantage providing more 
quality descendants. 

The fixed crossover function considered  f: {1,0}×{1,0}→{1,0}is specified by the 
following  random Boolean function: 

f((α,β))={(0,0) → 0; (0,1) → rand01; (1,0) → rand01; (1,1) →1 } (7) 

where rand01 is a random Boolean value. In this way, if both parents are in the same 
subset, the offspring node lies in this subset. Otherwise, the node is randomly as-
signed to one of the subsets. With this crossover function, each bit iu of new offspring 
is given by: 

Vuimotherifatherfi uuu ∈∀= ))(),((  (8) 

To ends up with the evolution cycle, new individuals are subject to mutation (a 
random change of a node from C to C’ or inversely) with probability pm. 

6 Experimental Results 

In this section, we describe the experimental results for the three considered metaheu-
ristics. The computational experiments were evaluated in an Intel Pentium 4 proces-
sor at 1.7 GHz, with 256 MB of RAM. All algorithms were coded in C++, without 
optimization and for the same programmer in order to have more comparable results. 

The main objective of this section consists in comparing different types of evolu-
tionary approaches. In some sense, the memetic algorithms are in one extreme (popu-
lation based metaheuristic) and GRASP algorithms are in the other extreme (single 
constructive metaheuristic). HS metaheuristics can be considered in the middle of 
these two alternatives, because they start with a population of solutions but usually 
end with a single solution. Some main details of the metaheuristics implementation 
are the following: 
1. HS Algorithms: we ran 100 independent iterations of HS Algorithms. The number 

of groups and autonomous iterations were randomly selected, with a uniform dis-
tribution, in the intervals [|V|/80, |V|/2] and [1, 11] respectively. 

2. GRASP: we ran 100 independents iterations of GRASP. The cut-off value α used 
to construct the RCL is selected randomly, with a uniform distribution in  [0,1]. 

3. Memetic Algorithms: we ran 100 independent iterations. Each iteration had a 
population of 8 individuals, the maximum number of generations was 20, the 
probability of crossover was 0.8 and finally the probability of mutation was 1/|V|. 



All the metaheuristic were tested on the graphs Gxx shown in Table 1. These test 
problems were generated by Helmberg and Rendl using the graph generator described 
in [6]. They are planar, toroidal and randomly generated graphs of varying sparsity 
and size. The last two graphs types are in general non-planar. In these experiments, 
the graph sizes vary from 800 nodes to 3000 and their density from 0.17% to 6.12%. 

The first three columns of Table 1 show respectively the name of the graph, the 
number of nodes n and the number of arcs m. The following three columns are the 
experiments for the three tested metaheuristic (Memetic algorithms, GRASP and HS 
algorithms). These columns are divided into three sub-columns: the maximum Max-
Cut value found in the 100 independent iterations cut, the time spent in running these 
100 independent iterations T(s), and the mean and the standard deviation sd, respec-
tively in these 100 independent iterations, shown in the third sub-column. 

Right column shows the SDP value [6] that can be considered as an upper bound. 
The experimental comparison of these metaheuristics shows a superior behavior of 

HS algorithms in relation with the computational complexity and quality of the ap-
proximate solutions obtained. Moreover, the quality of the obtained solutions using 
the memetic approach is also remarkable. 

Table 1. Results for Helmberg´s instances [8]: solutions found with 100 independent iterations 
for Memetic, GRASP and HS metaheuristics. In bold is the maximum value for each instance. 

Problem Memetic Algorith GRASP HS Algorithm  
Name n m Cut T(s) Mean (sd) Cut T(s) Mean (sd) Cut T(s) Mean (sd) SDP 
G1 
G2 
G3 

800 19176 11546 
11546 
11545 

1356 
1340 
1336 

11466.4 (34.0) 
11464.9(39.9) 
11461.6(36.6) 

11475 
11506 
11467 

248 
246 
317 

11369.8(39.6) 
11376.2(37.2) 
11374.3(34.2) 

11549 
11501 
11550 

221 
215 
226 

11444.8(33.7) 
11446.2(29.4) 
11442.8(35.1) 

12078 
12084 
12077 

G11 
G12 
G13 

800 1600 380 
380 
398 

770 
285 
284 

353.2(13.1) 
340.2(15.5) 
364.0(15.6) 

506 
500 
530 

371 
362 
335 

482.0(10.0) 
481.2(8.01) 
500.0(9.38) 

546 
540 
568 

256 
241 
268 

532.5(6.78) 
525.6(6.82) 
551.7(6.33) 

627 
621 
645 

G14 
G15 
G16 

800 4694 2990 
2970 
2971 

768 
760 
762 

2961.9(14.1) 
2941.4(13.1) 
2947.5(12.2) 

2983 
2964 
2967 

418 
412 
411 

2962.9(9.13) 
2941.6(10.5) 
2946.9(10.4) 

3014 
2993 
2996 

205 
208 
199 

2986.6(9.05) 
2969.4(9.38) 
2973.5(8.63) 

3187 
3169 
3172 

G22 
G23 
G24 

2000 19990 13089 
13110 
13125 

5709 
7232 
7295 

12987.7(55.5) 
12988.9(54.9) 
12996.7(51.9) 

12971 
12998 
12978 

7578 
7598 
7606 

12884.4(33.6) 
12887.5(40.5) 
12890.1(39.2) 

13061 
13098 
13089 

1975 
2035 
1996 

12993.7(34.9) 
12997.0(36.9) 
12990.3(37.8) 

14123 
14129 
14131 

G32 
G33 
G34 

2000 4000 916 
900 
888 

3262 
3223 
3266 

846.0(26.3) 
835.1(31.5) 
812.3(28.8) 

1220 
1212 
1228 

4777 
4761 
4765 

1193.6(12.7) 
1179.8(12.5) 
1188.5(17.5) 

1360 
1324 
1334 

3275 
3289 
3269 

1330.9(10.9) 
1299.9(13.0) 
1308.8(12.1) 

1560 
1537 
1541 

G35 
G36 
G37 

2000 11778 7478 
7450 
7465 

3819 
3965 
3947 

7408.1(31.5) 
7399.0(28.0) 
7411.8(30.9) 

7456 
7445 
7456 

6270 
6290 
6295 

7422.0(14.1) 
7417.7(14.0) 
7426.7(13.7) 

7548 
7524 
7548 

2350 
2389 
2415 

7487.7(18.2) 
7482.2(18.2) 
7488.7(19.7) 

8000 
7996 
8009 

G43 
G44 
G45 

1000 9990 6553 
6532 
6545 

1239 
1220 
1200 

6494.3(28.7) 
6490.0(24.5) 
6485.4(31.0) 

6500 
6497 
6499 

981 
922 
952 

6438.0(27.1) 
6432.7(24.5) 
6435.7(26.6) 

6561 
6540 
6564 

655 
721 
683 

6490.9(22.8) 
6488.5(22.9) 
6484.9(24.4) 

7027 
7022 
7020 

G48 
G49 
G50 

3000 6000 5008 
5024 
4988 

7007 
6906 
9276 

4869.6(84.6) 
4859.5(81.0) 
4848.3(81.3) 

5996 
5996 
5880 

12653 
12521 
12607 

5991.2(13.3) 
5988.3(22.0) 
5877.2(7.40) 

6000 
6000 
5880 

7420 
7525 
7389 

5931.2(74.5) 
5930.7(65.6) 
5840.8(41.6) 

6000 
6000 
5988 

7 Conclusions 

This paper has introduced a hierarchical social algorithm to efficiently solve the Max-
Cut problem. We have converted the search process into a social evolution one. This 
social paradigm exploits the power of competition and cooperation among different 



groups to explore the solution space. We have experimentally shown that the pro-
posed HS algorithm significantly reduces the number of iterations of the search pro-
cedure. The memetic approach described has also given high quality solutions.  

We propose as a future work a deeper study about the correlation between the per-
formance of the algorithms and the main characteristics of the graph (type, density, 
etc.). 
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