
A Hierarchical Social Metaheuristic
for the Max-Cut Problem

Abraham Duarte1, Felipe Fernández2, Ángel Sánchez1 and Antonio Sanz1

1 ESCET-URJC, Campus de Móstoles, 28933, Madrid Spain
{a.duarte, an.sanchez, a.sanz}@escet.urjc.es

2 Dept. Tecnología Fotónica, FI-UPM, Campus de Montegancedo, 28860, Madrid, Spain
Felipe.Fernandez@es.bosch.com

Abstract. This paper introduces a new social metaheuristic for the Max-Cut problem
applied to a weighted undirected graph. This problem consists in finding a partition
of the nodes into two subsets, such that the sum of the weights of the edges having
endpoints in different subsets is maximized. This NP-hard problem for non planar
graphs has several application areas such as VLSI and ASICs CAD. The hierarchical
social (HS) metaheuristic here proposed for solving the referred problem is tested and
compared with other two metaheuristics: a greedy randomized adaptive search proce-
dure (GRASP) and an hybrid memetic heuristic that combines a genetic algorithm
(GA) and a local search. The computational results on a set of standard test problems
show the suitability of the approach.

1 Introduction

An important graph bipartition problem is the Max-Cut problem defined for a
weighted undirected graph S = (V, E, W), where V is the ordered set of vertices or
nodes, E is the ordered set of undirected arcs or edges and W is the ordered set of
weights associated with each edge of the graph. This Max-Cut optimization problem
consists in finding a partition of the set V into two disjoint subsets (C, C’) such that
the sum of the weights of edges with endpoints in different subsets is maximized.
Every partition of vertices V into C and C´ is usually called a cut or cutset and the
sum of the weights of the edges is called the weight of the cut.

For the considered Max-Cut optimization problem, the cut value or weight of the
cut given by

∑
∈∈

=
´,

)',(
CuCv

vuwCCw (1)

is maximized. In [9] is demonstrated that the decision version of Max-Cut is NP-
Complete. This way, we need to use approximate algorithms for finding the solution
in a reasonable time. Notice that for planar graphs exacts algorithms exist which
solve the Max-Cut problem in polynomial time [10].

In this paper we propose a new hierarchical social (HS) metaheuristic for finding
an approximate solution to Max-Cut problem. Additionally, two standard meta-
heruristics: GRASP and memetic algorithms (MA) are analyzed and compared with
the HS algorithm.

The new introduced metaheuristic, hierarchical social algorithms [3,4], is inspired
in the behaviour of some hierarchical societies. HS algorithms make use of local
search heuristics with a group-population-based strategy. Their basic structure is a
graph where a dynamical domain partition is performed. In each region of the consid-
ered partition a hierarchical group is settled. Each group consists of a core that de-
termines the value of the corresponding group objective function and a periphery that
defines the local search region of the involved group. Through a competitive group
population strategy, the set of groups is optimized, the number of groups successively
decreases and an approximate optimal solution is found.

A second metaheuristic used to compare with HS algorithms is a Greedy Random-
ized Adaptive Search Procedure (GRASP) [5,15,16], based on a construction phase
and a local optimization phase.

A third metaheuristic also used to compare the experimental results, is based on a
genetic algorithm [7,12,17] with an additional local search based on the problem
domain knowledge (memetic algorithm [13,14]), which allows a remarkable im-
provement of the solution obtained.

2 Review of Max-Cut Problem Solution

The Max-Cut problem can be formulated as an integer quadratic program [18]. This
program can not be efficiently solved because, in the general case, it is a NP-
complete problem [9]. For planar graphs exact polynomial time algorithms exist [10].
Several continuous and semidefinite relaxations have been proposed in order to
achieve a good solution in a reasonable running time. In [11,18] is described the
semidefinite relaxation of the Max-Cut problem. Goemans et al. showed in [6] a
randomized algorithm that guarantees a 0.878-approximation to the optimum and in
addition an upper bound on the optimum. Based on this work, other approximation
algorithms have been proposed [2].

There are other approaches to the Max-Cut problem relaxation [2]. Maybe, one of
the most interesting is the 2-rank relaxation proposed in [1] that in practice produces
better solutions than the mentioned randomized algorithm [6].

3 Hierarchical Social Algorithms for the Max-Cut Problem

This section presents the general features of a new metaheuristic called hierarchical
social (HS) algorithms. In order to get a more general description of this metaheuris-
tic, the reader is referred to [3][4].

HS algorithms are inspired in the hierarchical social behaviour observed in a great
diversity of human organizations and biological systems.

This metaheuristic have been successfully applied to several problems such as
critical circuit computation [4] and DFG scheduling with unlimited resources [3].
The key idea of HS algorithms is a simultaneous optimization of a set of feasible
solutions. Each group of a society contains a feasible solution and these groups are
initially random distributed through the solution space. By means of an evolution

strategy, where each group tries to improve itself or competes with the neighbour
groups, better solutions are obtained through the corresponding social evolution.
In this social evolution, the groups with lower quality tend to disappear. As a result,
the rest of the group objective functions are optimized. The process usually ends with
only one group that contains the best solution found.

3.1 Metaheuristic structure

For the Max-Cut problem, the feasible society is modelled by the specified undirected
weighted graph S=(V,E,W) also called feasible society graph. The set of individuals
are modelled by nodes V of the specified graph, and the set of feasible relations are
modelled by arcs A of the specified graph. Figure 1.a shows an example of the feasi-
ble society graph for a particular Max-Cut problem.

The state of a society is modelled by a hierarchical policy graph. This hierarchical
policy graph also specifies a society partition composed by a disjoint set of groups
Π={g1, g2,…,gg}, where each individual or node is assigned to a group. Each group
gi⊂Π is composed by a set of individuals and active relations, which are constrained
by the feasible society. The individuals of all groups cover the individuals of the
whole society.

The specification of the hierarchical policy graph is problem dependent. The initial
society partition determines an arbitrary number of groups and assigns individuals to
groups. Figure 1.b shows a society partition example formed by two groups.

A society partition can be classified into single-group or monopoly partition, in
which there is only one group, and multiple-group or competition partition, in which
there are more than one group. Obviously in example shown in Figure 1.b, the parti-
tion shown is a competition partition.

Fig. 1. (a) Feasible society graph. (b) Society partition and groups partition

Each individual of a society has its individual objective function f1. Each group
has its group objective function f2 that is shared by all individuals of a group. Fur-
thermore each group gi is divided into two disjoint parts: core and periphery. The
core determines the value of the corresponding group objective function f2 and the
periphery defines the local search region of the involved group.

In the Max-Cut problem framework, the set of nodes Vi of each group gi is di-
vided into two disjoint parts: gi=(Ci,, Ci´) where Ci represents the core or subgroup of
nodes that belongs to the considered cutset and Ci´ is the complementary subgroup of

Group 1 Group 2 Core 1

Core 2

nodes or periphery. The core edges are the arcs that have their endpoints in Ci and
Ci´. Figure 1.b also shows an example of cores for the considered previous partition.
The core edges of each group are shown in this figure by thick lines.

For each group gi = (Ci, Ci´), the group objective function f2(i) is given by the
function cut(i):

)()(2),(2

)(where)()(2
´,

icutifivfgv

wicuticutif

i

CiuCiv
vu

==∈∀

== ∑
∈∈ (2)

where the weights wvu are supposed to be null if the corresponding edges do not be-
long to the specified graph. Obviously, this value is determined by the core edges,
because is the sum of the edges weights which have one endpoint in the core Ci, and
the other endpoint in the periphery Ci´ of the corresponding group gi.

For each individual or node v, the individual objective function f1(v,i) relative to
each group gi = (Ci, Ci’) is given by the function:

∑∑
∈∈

==
=

'
),(σ'and),(σ
where)),(σ´),,(σ(),(

Ciu
vu

Ciu
vu wivwiv

ivivmaxivf1 (3)

The HS algorithms here considered, try to optimize one of their objective func-
tions (f1 or f2) depending on the operation phase. During an autonomous or winner
phase, each group i tries to improve independently the group objective function f2.
During a loser phase, each individual tries to improve the individual objective func-
tion f1, the original groups cohesion disappeared and the graph partition is modified
in order to optimize the corresponding individual objective function. The strategy
followed in a loser phase could be considered inspired in Adams Smith’s “invisible
hand” economic society mechanism described in his book “An Inquiry into the Na-
ture and Causes of the Wealth of Nations".

3.2 Metaheuristic process

The algorithm starts from a random set of feasible solutions i.e. it obtains an initial
partition that determines the corresponding groups structure. Additionally for each
group, an initial random cutset is derived.

The groups are successively transformed through a set of competition phases based
on local search strategies. For each group, there are two main strategies: winner or
autonomous strategy and loser strategy. The groups named winner groups, which
apply the winner strategy, are that which have the higher group objective function f2.
The rest of groups apply loser strategy and are named loser groups. During optional
autonomous phases in between competition phases, all groups behave like winner
groups. These optional autonomous phases improve the capability of the search pro-
cedure.

The winner strategy can be considered as a local search procedure in which the
quality of the solution contained in each group is improved by autonomously working
with the individuals that belong to each group and the relations among these indi-
viduals.

The loser strategy is oriented to let the exchange of individuals among groups. In
this way the groups with inferior quality (lower group objective function f2) tend to
disappear, because their individuals move from these groups to another groups that
grant their maximum individual promotion (highest individual objective function f1).

Winner and loser strategies are the basic search tools of HS algorithms. Individu-
als of loser groups, which have lower group objective functions, change of group
during a loser strategy, in order to improve their individual objective function f1. This
way, the loser groups tend to disappear in the corresponding evolution process. Indi-
viduals of winner groups, which have highest group objective functions, can move
from the core to periphery or inversely, in order to improve the group objective func-
tion f2. These strategies produce dynamical groups populations, where group annexa-
tions and extinctions are possible.

3.3 High-level pseudo-code

A general high-level description of an HS metaheuristic is shown in Figure 2, where
the main search procedures are: Winner Strategy and Loser Strategy.

In the Max-Cut problem, the Winner Strategy (Figure 3) is oriented to improve the
cut value of a group. For a given group gi, a nodes exchange, between core and pe-
riphery, allows to optimize the group objective function. The exchange is accom-
plished if there is an improvement of the cut weight or objective function f2(i) of the
corresponding group gi. This procedure is based on the local search procedure pre-
sented in [15,16]. In our implementation, we also allow to move the nodes between Ci
and Ci’ in parallel and simultaneous way on a single iteration. The only restriction is
the following: if one node u is gone out from Ci (or Ci’), none of its adjacent nodes
can change their position in the same iteration. This restriction avoids cycling in the
corresponding procedure.
Procedure Hierarchical_Social_Algorithm(S)
Var
 S=(V,E,W)=({v}{e}{w}):Initial_Society_graph;
 G={gi}:Groups_structure;
 F1={f1}:Individuals_objective_function_structure;
 F2={f2}:Groups_objective_function_structure;
 i,k:1..Number_of_groups /*Group indices*/
Begin /* Begin social evolution */
 G=Get_initial_random_partition_and_groups_structure();
 Repeat /* group evolution*/
 Compute_F1()_and_F2(); /*Objective functions*/
 For each gi in G
 If f2(i)=max{f2(k)∀ k} Or Autonomous_phase Then
 Winner_Strategy(i)
 Else
 Loser_Strategy(i);
 End For
 Update_groups_structure(G);
 Until termination_condition_met; /*End of social evolution*/
 Return(G); /* Approximate optimal solution */
End Hierarchical_Social_Algorithm

Fig. 2. High-level pseudo-code for Hierarchical Social Algorithms

For each vertex v and each group gi = (Ci,Ci´) the following function σ and σ´are
considered:

∑
∈

=
Ciu

vuwiv),(σ ∑
∈

=
'

),('
Ciu

vuwivσ (4)

These evaluation functions are used in the pseudo-code of Figure 3.
The Loser Strategy allows an individual to move to another group. The individuals

belonging to groups with lower cut value f2(i) can change their group in order to
increase the individual objective function f1(v,i). Each node searches for the group j
that gives the maximum improvement in its individual objective function. Figure 4
shows the pseudo-code of Loser Strategy considering the functions σ and σ´ defined
in (4).

4 GRASP for MAX-CUT Problem

This section briefly summarizes the use of a Greedy Randomized Adaptive Search
Procedure (GRASP) for solving the Max-Cut problem. For a more detailed descrip-
tion the reader is referred to references [5,15,16]. GRASP is a multi-start iterative
method where in each iteration there are two phases, construction phase and local
search phase. In the first phase, a greedy feasible solution is constructed and in the
second phase, starting from this solution, a local optimal solution is derived. Figure 5
shows a high level pseudo-code of this metaheuristic, assuming that the objective
function f is the same that the group objective function (f2) introduced in (2).

The construction phase makes of an adaptive greedy function that uses a restricted
candidates list (RCL) and a probabilistic selection criterion [15,16]. In the Max-Cut
problem, for each node v ∉ C ∪ C’, the following greedy function f(v) is considered:

Procedure Winner_Strategy(i)/* for Max_Cut problem*/
Var gi=(Ci,Ci´):Cutset_structure_of_considered_group
Begin
For v = 1 to Unmber_of_nodes_of_considered_group
 If v∈ Ci and σ(v,i)>σ’(v,i) Then Ci´=Ci’∪ {v}; Ci=Ci\{v}; /*v→Ci´*/
 If v∈ Ci´and σ(v,i)<σ’(v,i) Then Ci’= Ci’\{v}; Ci=Ci∪ {v};/*v→Ci */
End For
End Winner_Strategy

Fig. 3. Pseudo-code of Winner Strategy

Procedure Loser_Strategy(i)/* for Max_Cut problem*/
Var
 gi=(Ci,Ci´):Cutset_structure_of_considered_group
 G={gi}={(Ci,Ci´)}:Cutset_structure_of_groups
 i,j,k:1..Number_of_groups /*Group indices*/
Begin
For v = 1 to Number_of_nodes_of_considered_group
 j= arg max {max(σ(v,k),σ’(v,k)),∀ k} /*j=host group*/
 If (v∈ Ci) Then Ci=Ci\{v} Else Ci´=Ci´\{v}; /*Remove v from gi*/
 If σ(v,j)>σ´(v,j) Then Cj’=Cj’∪ {v} Else Cj=Cj ∪ {v}; /*Add v to gj*/
End For
End Loser_Strategy

Fig. 4. Pseudo-code of Loser Strategy.

∑
∈

=
Cu

vuwv)(σ ∑
∈

=
'

)('
Cu

vuwvσ (5)

´)}(σ'),(σ{)(CCvvvmaxvf ∪∉∀= (6)

This greedy function is used to create an RCL based on the specified cut-off value
α. Later on, a random procedure successively selects vertices from this RCL in order
to obtain an initial feasible solution.
Procedure GRASP(S,Max_number_of_iterations)
Var g:Solution_structure;
Begin
 For i=1 to Max_number_of_iterations /*Multi-start*/
 g= Build_a_greedy_randomized_solution(S);
 g= Local_Search(g);
 If i = 1 Then g* = g; /*Initial solution*/
 Else f(g)>f(g*) Then g* = g; /*Update solution*/
 End For
 Return(g*); /* Approximate optimal solution */
End GRASP;

Fig. 5. Pseudo-code of a generic GRASP

The local search phase is later applied, which is also based on the previous defini-
tions of σ and σ’, taking into account that all nodes have already been assigned to C
or C’. If a node v ∈ C and σ(v) > σ´(v) then it should be changed from C to C’:
C’=C’∪ {v} and C= C\{v}, and conversely. This second phase stops when all possi-
ble movements have been computed and no improvement was found.

5 Memetic Algorithms for the MAX-CUT Problem

This section briefly summarizes the use of genetic algorithms for solving the Max-
Cut problem. For a more detailed description the reader is referred to references
[7,12,14,17].
The introduction of an additional local search phase on a genetic algorithm produces
a memetic algorithm. This improves the quality of the solutions obtained. In Figure 6
is shown the high level pseudocode of a memetic algorithm.
Procedure_Memetic_Algorithm(S, Number_generations)
 Initialize_random_population(S);
 Local_Search(); /*Local search used in GRASP */
 For gen =1 to Number_generations
 Select_parents(gen);
 Produce_offspring_by_fixed_crossover_of_parents(gen);
 Local_Search(gen); /*Local search used in GRASP */
 Produce_mutation(gen);
 Evaluate_the_offspring(gen);
 Replacement_process(gen);
 End For
End Memetic_Algorithm

Fig. 6. High-level general pseudo-code of used memetic algorithm.

In order to use memetic algorithms for solving the Max-Cut problem, we need to
code each feasible solution. Let V = {1,…,n} the nodes set of a given graph. The cuts

of this graph can be coded by a Boolean n-vector I = (i1,…,in) such that the value of
each iu∈ {0,1} is given by the characteristic function: iu={(u∈ C)→1; (u∈ C´)→0}:

In the evaluation step, the selection method used is the fitness roulette-wheel selec-
tion [12], which favours individuals with high fitness without suppressing the chance
of selection of individuals with low fitness, avoiding premature convergence of the
population.

This way, a subset on individuals is selected, introduced in the new population and
recombined with a probability pr. In this paper we consider the crossover method,
called fixed crossover [2], which is dependent on the structure of the crossed indi-
viduals. In general, the use of structural information is an advantage providing more
quality descendants.

The fixed crossover function considered f: {1,0}×{1,0}→{1,0}is specified by the
following random Boolean function:

f((α,β))={(0,0) → 0; (0,1) → rand01; (1,0) → rand01; (1,1) →1 } (7)

where rand01 is a random Boolean value. In this way, if both parents are in the same
subset, the offspring node lies in this subset. Otherwise, the node is randomly as-
signed to one of the subsets. With this crossover function, each bit iu of new offspring
is given by:

Vuimotherifatherfi uuu ∈∀=))(),(((8)

To ends up with the evolution cycle, new individuals are subject to mutation (a
random change of a node from C to C’ or inversely) with probability pm.

6 Experimental Results

In this section, we describe the experimental results for the three considered metaheu-
ristics. The computational experiments were evaluated in an Intel Pentium 4 proces-
sor at 1.7 GHz, with 256 MB of RAM. All algorithms were coded in C++, without
optimization and for the same programmer in order to have more comparable results.

The main objective of this section consists in comparing different types of evolu-
tionary approaches. In some sense, the memetic algorithms are in one extreme (popu-
lation based metaheuristic) and GRASP algorithms are in the other extreme (single
constructive metaheuristic). HS metaheuristics can be considered in the middle of
these two alternatives, because they start with a population of solutions but usually
end with a single solution. Some main details of the metaheuristics implementation
are the following:
1. HS Algorithms: we ran 100 independent iterations of HS Algorithms. The number

of groups and autonomous iterations were randomly selected, with a uniform dis-
tribution, in the intervals [|V|/80, |V|/2] and [1, 11] respectively.

2. GRASP: we ran 100 independents iterations of GRASP. The cut-off value α used
to construct the RCL is selected randomly, with a uniform distribution in [0,1].

3. Memetic Algorithms: we ran 100 independent iterations. Each iteration had a
population of 8 individuals, the maximum number of generations was 20, the
probability of crossover was 0.8 and finally the probability of mutation was 1/|V|.

All the metaheuristic were tested on the graphs Gxx shown in Table 1. These test
problems were generated by Helmberg and Rendl using the graph generator described
in [6]. They are planar, toroidal and randomly generated graphs of varying sparsity
and size. The last two graphs types are in general non-planar. In these experiments,
the graph sizes vary from 800 nodes to 3000 and their density from 0.17% to 6.12%.

The first three columns of Table 1 show respectively the name of the graph, the
number of nodes n and the number of arcs m. The following three columns are the
experiments for the three tested metaheuristic (Memetic algorithms, GRASP and HS
algorithms). These columns are divided into three sub-columns: the maximum Max-
Cut value found in the 100 independent iterations cut, the time spent in running these
100 independent iterations T(s), and the mean and the standard deviation sd, respec-
tively in these 100 independent iterations, shown in the third sub-column.

Right column shows the SDP value [6] that can be considered as an upper bound.
The experimental comparison of these metaheuristics shows a superior behavior of

HS algorithms in relation with the computational complexity and quality of the ap-
proximate solutions obtained. Moreover, the quality of the obtained solutions using
the memetic approach is also remarkable.

Table 1. Results for Helmberg´s instances [8]: solutions found with 100 independent iterations
for Memetic, GRASP and HS metaheuristics. In bold is the maximum value for each instance.

Problem Memetic Algorith GRASP HS Algorithm
Name n m Cut T(s) Mean (sd) Cut T(s) Mean (sd) Cut T(s) Mean (sd) SDP
G1
G2
G3

800 19176 11546
11546
11545

1356
1340
1336

11466.4 (34.0)
11464.9(39.9)
11461.6(36.6)

11475
11506
11467

248
246
317

11369.8(39.6)
11376.2(37.2)
11374.3(34.2)

11549
11501
11550

221
215
226

11444.8(33.7)
11446.2(29.4)
11442.8(35.1)

12078
12084
12077

G11
G12
G13

800 1600 380
380
398

770
285
284

353.2(13.1)
340.2(15.5)
364.0(15.6)

506
500
530

371
362
335

482.0(10.0)
481.2(8.01)
500.0(9.38)

546
540
568

256
241
268

532.5(6.78)
525.6(6.82)
551.7(6.33)

627
621
645

G14
G15
G16

800 4694 2990
2970
2971

768
760
762

2961.9(14.1)
2941.4(13.1)
2947.5(12.2)

2983
2964
2967

418
412
411

2962.9(9.13)
2941.6(10.5)
2946.9(10.4)

3014
2993
2996

205
208
199

2986.6(9.05)
2969.4(9.38)
2973.5(8.63)

3187
3169
3172

G22
G23
G24

2000 19990 13089
13110
13125

5709
7232
7295

12987.7(55.5)
12988.9(54.9)
12996.7(51.9)

12971
12998
12978

7578
7598
7606

12884.4(33.6)
12887.5(40.5)
12890.1(39.2)

13061
13098
13089

1975
2035
1996

12993.7(34.9)
12997.0(36.9)
12990.3(37.8)

14123
14129
14131

G32
G33
G34

2000 4000 916
900
888

3262
3223
3266

846.0(26.3)
835.1(31.5)
812.3(28.8)

1220
1212
1228

4777
4761
4765

1193.6(12.7)
1179.8(12.5)
1188.5(17.5)

1360
1324
1334

3275
3289
3269

1330.9(10.9)
1299.9(13.0)
1308.8(12.1)

1560
1537
1541

G35
G36
G37

2000 11778 7478
7450
7465

3819
3965
3947

7408.1(31.5)
7399.0(28.0)
7411.8(30.9)

7456
7445
7456

6270
6290
6295

7422.0(14.1)
7417.7(14.0)
7426.7(13.7)

7548
7524
7548

2350
2389
2415

7487.7(18.2)
7482.2(18.2)
7488.7(19.7)

8000
7996
8009

G43
G44
G45

1000 9990 6553
6532
6545

1239
1220
1200

6494.3(28.7)
6490.0(24.5)
6485.4(31.0)

6500
6497
6499

981
922
952

6438.0(27.1)
6432.7(24.5)
6435.7(26.6)

6561
6540
6564

655
721
683

6490.9(22.8)
6488.5(22.9)
6484.9(24.4)

7027
7022
7020

G48
G49
G50

3000 6000 5008
5024
4988

7007
6906
9276

4869.6(84.6)
4859.5(81.0)
4848.3(81.3)

5996
5996
5880

12653
12521
12607

5991.2(13.3)
5988.3(22.0)
5877.2(7.40)

6000
6000
5880

7420
7525
7389

5931.2(74.5)
5930.7(65.6)
5840.8(41.6)

6000
6000
5988

7 Conclusions

This paper has introduced a hierarchical social algorithm to efficiently solve the Max-
Cut problem. We have converted the search process into a social evolution one. This
social paradigm exploits the power of competition and cooperation among different

groups to explore the solution space. We have experimentally shown that the pro-
posed HS algorithm significantly reduces the number of iterations of the search pro-
cedure. The memetic approach described has also given high quality solutions.

We propose as a future work a deeper study about the correlation between the per-
formance of the algorithms and the main characteristics of the graph (type, density,
etc.).

8 References

1. Burer, S., Monteiro, R.D.C., Zhang X.: Rank-two Relaxation heuristic for the Max-Cut
and other Binary Quadratic Programs. SIAM Journal of Optimization, 12:503-521, 2001.

2. Dolezal O., Hofmeister, T., Lefmann, H: A comparison of approximation algorithms for
the MAXCUT-problem. Reihe CI 57/99, SFB 531, Universität Dortmund, 1999.

3. Fernández F., Duarte A., Sánchez A.: A Software Pipelining Method Based on Hierarchi-
cal Social Algorithms, Proceedings of MISTA Conference, Vol. 1, pp 382-385, Notting-
ham, UK, 2003.

4. Fernández F., Duarte A., Sánchez A.: Hierarchical Social Algorithms: A New Metaheuris-
tic for Solving Discrete Bilevel Optimization Problems, Technical Report ESCET/URF -
DTF/ UPM. HSA1 Universidad Politécnica de Madrid, 2003.

5. Festa P., P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro: Randomized heuristics for the
MAX-CUT problem, Optimization Methods and Software, vol. 7, pp. 1033-1058, 2002.

6. Goemans, M. X., Williams, D.P.: Improved Approximation Algorithms for Max-Cut and
Satisfiability Problems Using Semidefinite Programming. Journal of the ACM.42:1115-
1142 , 1995.

7. Goldberg. D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addi-
son-Wesley, 1989.

8. Helmberg, C., Rendl, F.: A Spectral Bundle Method for Semidefinite Programming. SIAM
Journal of Computing, 10:673:696, 2000.

9. Karp, R.M.: Reducibility among Combinatorial Problems. In R. Miller J. Thatcher, edi-
tors, Complexity of Computers Computation, Prenum Press, New York, USA (1972).

10. Hadlock F. O: Finding a Maximum Cut of a Planar Graph in Polynomial Time. SIAM
Journal on Computing 4 (1975) 221-225.

11. Lovàsz, L.: On the Shannon Capacity of a Graph, IEEE Trans. of Information Theory, IT-
25:1-7, 1978.

12. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn.
Springer-Verlag, Berlin Heidelberg New York, 1996.

13. Michalewicz, Z., Fogel. D. B.: How to Solve it: Modern Heuristics, Springer-Verlag,
Berlin, 2000.

14. Moscato P., Cotta C.: A Gentle Introduction to Memetic Algorithms. In Handbook of
Metaheuristic. F. Glover and G. A. Kochenberger, editors, Kluwer, Norwell, Massachu-
setts, USA, 2003.

15. Resende M.G., Ribeiro C.: Greedy Adaptive Search Procedures. In Handbook of Metaheu-
ristic. F. Glover and G. A. Kochenberger, editors, Kluwer, Massachusetts, USA , 2003.

16. Resende M.G.: GRASP With Path Re-linking and VNS for MAXCUT, In Proceedings of
4th MIC, Porto, July 2001.

17. Spears, W. M.: Evolutionary Algorithms. The Role of Mutation and Recombination,
Springer-Verlag, Berlin Heidelberg New York, 1998.

18. Shor, N. Z.: Quadratic Optimization Problems, Soviet Journal of Computing and System
Science, 25:1-11, 1987.

