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Glossary16

Activity-based approach A modeling method that ac-17

counts for the interdependent relationships among ac-18

tivities and persons to derive travel demand equations.19

Dynamic planning The incorporation of trends, cycles,20

and feedback mechanisms into a process of actively21

shaping our future. Desired futures are first defined in22

terms of performance measures and a combination of23

forecasting and backcasting methods are used to iden-24

tify the right paths to follow in achieving these futures.25

Microsimulation A method to represent the movement26

in space and time of the most elementary units of27

a phenomenon. When applied in traffic engineering28

the units are vehicles. When applied in travel behav-29

ior the units are persons and households. Multi-agent30

microsimulation allows to also represent human inter-31

action with each person modeled as an agent.32

Travel demand The amount of travel within a time inter-33

val such as number of trips in a day, total amount of34

distance and total amount of travel time, the locations35

(destinations) visited, themeans used to reach these lo-36

cations, departure time and arrival time of trips, routes37

followed in reaching these locations, the sequencing38

and assembly of trips in groups, and the purpose or39

activity engaged in at the end of each trip.40

Definition of the Subject 41

Transportation modeling and simulation aims at the de- 42

sign of an efficient infrastructure and service to meet our 43

needs for accessibility and mobility. At its heart is good 44

understanding of human behavior that includes the iden- 45

tification of the determinants of behavior and the change 46

in human behavior when circumstances change either due 47

to control (e. g., policy actions), trends (e. g., demographic 48

change), or unexpectedly (e. g., disasters). This is the key 49

ingredient that drives most decisions in transportation 50

planning and traffic operations. Since transportation sys- 51

tems are the backbone connecting the vital parts of a city 52

(a region, a state or an entire country), in-depth under- 53

standing of transportation-related human behavior is es- 54

sential to the planning, design, and operational analysis of 55

all the systems that make a city function. 56

Understanding human nature requires us to analyze 57

and develop synthetic models of human agency in its most 58

important dimensions and the most elemental constituent 59

parts. This includes, and it is not limited to, understand- 60

ing of individual evolution along a life cycle path (from 61

birth to entry in the labor force to retirement to death) and 62

the complex interaction between an individual and the an- 63

thropogenic environment, natural environment, and the 64

social environment. Travel behavior research is one as- 65

pect of analyzing human nature and aims at understand- 66

ing how traveler values, norms, attitudes, perception and 67

constraints lead to observed behavior. Traveler values and 68

attitudes refer to motivational, cognitive, situational, and 69

disposition factors determining human behavior. Travel 70

behavior refers primarily to the modeling and analysis of 71

travel demand, based on theories and analytical methods 72

from a variety of scientific fields. These include, but are not 73

limited to, the use of time and its allocation to travel and 74

activities, methods to study this in a variety of time con- 75

texts and stages in the life of people, and the arrangement 76

or artifacts and use of space at any level of social organi- 77

zation such as the individual, the household, the commu- 78

nity, and other formal or informal groups This includes 79

the movement of goods and the provision of services hav- 80

ing strong interfaces and relationships with the engage- 81

ment in activities and the movement of persons. 82

Travel behavior analysis and synthesis can be exam- 83

ined from both objective (observed by an analyst) and 84

subjective (perceived by the human) perspectives in an 85

integrated manner among four dimensions of time, geo- 86

graphic space, social space, and institutional context. In 87

a few occasions the models reviewed here include and in- 88

tegrate time and space as conceived in science with per- 89

ceptions of time and space by humans in their everyday 90
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2 Travel Behaviour and Demand Analysis and Prediction

life. For this reason research includes theory formation,91

data collection, modeling, inference, and simulationmeth-92

ods to produce decision support systems for policy assess-93

ment and evaluation that combine different views of time94

and space. Another objective of understanding human95

behavior is conceptual integration. Explanation of facts96

from different perspectives can be considered jointly to97

form a comprehensive understanding of people and their98

groups and their interactions with the natural and built en-99

vironment. In this way, we may see explanations of human100

behavior fusing into the same universal principles. These101

principles eventually will lead to testable hypotheses from102

different perspectives offeringWilson’s, 1998, famous con-103

silience among, for example, psychology, anthropology,104

economics, the natural sciences, geography, and engineer-105

ing. Unavoidably this is a daunting task with many model106

propositions in the research domain and very few ideas107

finding fertile ground in applications. The analysis-syn-108

thesis path in travel behavior gave us methods that help109

us understand and predict human (travel) behavior only110

partially leaving many gaps [163]. However, policy ques-111

tions are becoming increasingly impossible to address with112

old tools, a large pool of researchers is actively working113

on new methods, and many public agencies commenced114

a variety of tool development projects to fill the travel be-115

havior analysis gaps. To capture these trends, we see mod-116

eling examples with ideas from a transdisciplinary view-117

point and contributors to modeling and simulation from118

a variety of merged backgrounds (e. g., see the evolution119

of ideas in a sequence of the International Association for120

Travel Behavior Research conferences – www.public.asu.121

edu/~rpendyal/iatbr/iatbr_index.htm).122

In the next sections the evolving paradigm ofmodeling123

and simulation is reviewed in detail and three of its fun-124

damental sources are presented. Through the lens of con-125

temporary planning practice the analytical requirements126

for modeling and simulation are discussed. Then, these127

same requirements are refined by examining contempo-128

rary visions about the world surrounding us and the the-129

ories and technologies we can use to build policy analy-130

sis models. This article ends with a section describing the131

emerging modeling and simulation paradigm, a brief sec-132

tion of mathematical models and closes with a summary.133

Introduction134

The impressive movement forward of transportation135

modeling and simulation emerges from three related but136

distinct sources. The first source is a fundamental change137

in planning practice that one could name dynamic plan-138

ning practice to indicate the existence of bi-directional139

time (from the past to the future and from the future to 140

today), as well as, assessment cycles and adjustments tak- 141

ing place within the short term, medium term, and long 142

term horizons. These cycles are also bidirectional in time. 143

This source contains three fundamental directions of prac- 144

tice that are inventory creation and maintenance, strategy 145

measurement and evaluation, forecasting and backcasting. 146

The second source is a vision that generates the substan- 147

tive problems that we need to solve and the specific policies 148

we need to examine. It is named sustainable and green vi- 149

sions. Problems and solutions in this general area motivate 150

and inspire contemporary substance and content of poli- 151

cies throughout the world. One can identify three com- 152

plementary and mutually strengthening directions in the 153

economy, environment, and society that are the three fun- 154

damental pillars of sustainability. The third source is the 155

never ending research for improved understanding of the 156

world surrounding us. This source is named new research 157

and technology to capture the most important elements of 158

new discovery and new techniques enabling new discov- 159

ery but also modeling and simulation. Key directions of 160

inquiry within research and technology are theory build- 161

ing,modeling and simulation, and enabling technologies. 162

Dynamic Planning Practice 163

Dynamic thinking means that time and change are intrin- 164

sic in the thought processes underlying planning activities. 165

In the past, assumptions about the existence of a tenable 166

and general equilibrium and our ability to build the in- 167

frastructure needed to meet demand did not require care- 168

ful orchestration of actions. This was radically changed in 169

the industrialized world to meet specific goals using avail- 170

able finite resources to maximize benefits. Together with 171

our inability to build at will and a tendency to the preser- 172

vation of non-renewable resources (e. g., land and open 173

space, fossil fuels, time) we are much more motivated to 174

think strategically and to consider in a more careful way 175

the performance of the overall anthropogenic system as we 176

plan, design, operate, and manage transportation systems. 177

Any action of this type, however, requires that we have 178

a detailed and accurate picture of our facilities, their inter- 179

connectedness, their status within the hierarchy of move- 180

ments, their conditions, and their evolving role. An accu- 181

rate and more complete picture like this is called an inven- 182

tory herein. 183

Many planning activities at all geographical levels are 184

preceded by data gathering steps of identifying all the 185

sources of data and information about the specific study 186

area’s transportation system and its relationship with the 187

rest of the world. These inventories include the typical in- 188

http://www.public.asu.edu/~rpendyal/iatbr/iatbr_index.htm
http://www.public.asu.edu/~rpendyal/iatbr/iatbr_index.htm
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Travel Behaviour and Demand Analysis and Prediction 3

formation about the resident population – demograph-189

ics and employment, land available and land uses, eco-190

nomic development and growth, and so forth. It is worth191

pointing out the inventory contains data and relationships192

within the geographic area of interest (region) but also193

the region’s relationship with other areas with which sub-194

stantial flow of people, goods, and communication takes195

place. Inventories may also include data and informa-196

tion about cultural and historical factors. For example,197

statewide plans identify a variety of corridors as buffers of198

land and communities around major routes of the move-199

ment of people and goods. Some of these routes were cre-200

ated centuries ago when pioneers were still exploring un-201

charted lands. These routes experienced a major change202

when waterways were the main links among economic203

and military centers, and they are still evolving. Today204

these same routes contain as backbones railways, freeways,205

rivers, and often they surround major distribution loca-206

tions such as ports and airports. Their nature is heavily in-207

fluenced by their historical and cultural context.208

Travel behavior analysts are familiar with inventories209

created for the regional long range plans, which subdivide210

the study area in traffic analysis zones with data from the211

Decennial Census suitably reformatted and packaged for212

use in a specific application (i. e., the long range regional213

plan). Then, additional data are assigned to these same214

subdivisions to build a richer context for modeling and215

simulation. Thus, the inventory for a typical long range216

plan is an electronic map of where people live and work,217

the network(s) that connect different locations, availabil-218

ity of different modes on each segment of the network,219

as well as information about travel network performance220

(e. g., link capacities, speeds on links, congestion, and con-221

nectivity). Today the tool of choice for data storage and222

visualization is a Geographic Information System (GIS).223

One of the thorniest problems within this context is224

maintaining an up to date inventory (e. g., characteristics225

of the population in each zone, presence of certain types of226

businesses, location and characteristics of intermodal fa-227

cilities). This is a particularly important issue for periods228

in between decennial censuses. Year to year updates are229

very often required to provide “fresh” data. Many of these230

updates are becoming widely available and much less ex-231

pensive than in the past. For example, the inventory of the232

highway network, with suitable additions and improve-233

ments, is available from the same private providers of in-234

vehicle navigation systems. In a similar way, inventories235

of businesses and residences can also be purchased from236

vendors. Census data, however, are required even when237

one uses data from private providers because they con-238

tain complementary data (e. g., the age distribution of the239

resident population) and they tend to provide wider cov- 240

erage of a country. Although the need for inventories is 241

undoubtedly extremely important many important issues 242

are yet to be resolved. This is the core issue of two Trans- 243

portation Research Board (TRB) conference proceedings 244

on the National Household Travel Survey http://www.trb. 245

org/Conferences/NHTS/Program.pdf and the US Census 246

and the CensusAmerican Community Survey http://www. 247

trb.org/conferences/censusdata/). Examples of unresolved 248

issues include levels of detail we should use in updating the 249

data we have, treatment of errors in the data and model 250

sensitivity to these errors, frequency of data updates and 251

treatment of missing data, and questions about merging 252

different databases. Obviously, the answers to these ques- 253

tions are in the form of “it depends”. It depends on the 254

budget (time and money) available, consequences of er- 255

rors in the data, and the use of models in decision mak- 256

ing. In fact, one particular type of data collection is strategy 257

measurement where some of these questions become even 258

more important. We turn now to the second dimension in 259

the dynamic planning practice which is about strategy and 260

performance. 261

Strategic planning and performance-based planning 262

changed the way we plan for the future. This has been a 20 263

year long process in the United States as its transporta- 264

tion policy at the Federal, State, and Metropolitan levels 265

is shaped by three consecutive legislative initiatives (IS- 266

TEA, TEA-21, and SAFETEA-LU). Under all three legisla- 267

tive frameworks and independently of role, location and 268

perceived need for investment, the overall goal of fund- 269

ing allocation has been to maximize the performance of 270

the transportation system in its entirety and avoid major 271

new infrastructure building initiatives. As a result, plan- 272

ning practice at the Federal, State, and local levels is be- 273

coming heavily performance based and designed in a way 274

that motivates the measurement of policy and program 275

outcomes and judging these outcomes for funding allo- 276

cation. Two examples of performance-based planning are 277

the Program Assessment Rating Tool (PART) at the fed- 278

eral level and performance-based transportation planning 279

at the state level. PART is used to assess the management 280

and performance of individual programs from homeland 281

security to education, employment, and training. This is 282

a tool that offers assessments about programs based on 25 283

questions divided into sections. For each program a tai- 284

lored analysis yields summaries that receive a rating from 285

0 to 100 ranging from ineffective to effective [172]). In 286

a different way but in the same spirit many states have cre- 287

ated long range plans that are strategic and they measure 288

transportation performance. Yearly evaluative updates are 289

also used for a state’s strategic transportation plan. Af- 290

http://www.trb.org/Conferences/NHTS/Program.pdf
http://www.trb.org/Conferences/NHTS/Program.pdf
http://www.trb.org/conferences/censusdata/
http://www.trb.org/conferences/censusdata/
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4 Travel Behaviour and Demand Analysis and Prediction

ter a comprehensive public involvement campaign a few291

themes capturing the desires of the resident population292

are first identified. To these themes technical requirements293

based on planners and agency inputs are added, a large294

number of objectives are created and then a variety of mea-295

sures of performance are developed. These measures are296

given target levels that evolve over time to a desired fu-297

ture performance for the entire state and for a finite num-298

ber of corridors of statewide significance. Yearly evalu-299

ations contain measures of target achievement and they300

should be used to guide an agency in its investments.301

The interface with regions is also included in this perfor-302

mance-based framework. Many infrastructure improve-303

ment projects in the US are selected from lists of projects304

that regions (calledMetropolitan Planning Organizations)305

submit to their state to be included in a list of projects306

in the Transportation Improvement Program (TIP) and307

become candidates for funding. Under statewide perfor-308

mance-based planning, these projects are evaluated with309

respect to their contribution in meeting the statewide per-310

formance measures and in some states the performance311

measures of the relevant corridor [122]. Although these312

examples are far ranging in time and space, they contain313

operations components and yearly evaluations that: a) re-314

quire data collection, modeling, and simulation at finer315

spatial and temporal scales than their counterpart plan-316

ning feedbacks used in the long range transportation plan-317

ning practice, and b) need a method that is able to coordi-318

nate the short, medium, and long term impacts. Emerging319

from these considerations are questions about the types320

of consistency we need among geographic scales for plan-321

ning and operations actions to perform evaluations, policy322

requirements for coordination among planning activities323

to ensure consistency, need for suitable methods to coor-324

dinate smaller projects in broader contexts (either of pol-325

icy assessment or geographical area), development of tools326

required to perform measurement of impacts and pro-327

gram evaluation at the newly defined assessment cycles,328

and optimal planning activity with evaluation methods.329

Only a few solutions to the issues above are offered by con-330

temporary projects such as the TRANSLAND project [70].331

Within the context of integration between land use and332

transportation planning and the context of the European333

Union some of the conclusions include a call to strengthen334

regional plans, a stronger emphasis on public transport,335

strategic planning involving all actors, and the packaging336

of policies aiming at the same objectives. These themes are337

very similar to statewide and US Federal and European338

Union levels of planning. Very little, however, is said about339

the assessment methods and the choices we make in im-340

pact estimation. Performance assessment and evaluation341

of program effectiveness require the use of the inventory 342

discussed before and a battery of models to forecast future 343

expectations as well as to identify the actions required to- 344

day to achieve desired futures. 345

As illustrated later in this article a new approach 346

emerges in which models of discrete choice are applied 347

to individual decision makers that are then used to (mi- 348

cro)simulate most of the possible combinations of choices 349

in a day. The result is in essence a synthetic generation of 350

traveling for the entire population. When the microsimu- 351

lation also includes activities and duration at activity loca- 352

tions it becomes a synthetic schedule. In parallel, for fore- 353

casting purposes a synthetic population is first created for 354

each land subdivision with all the relevant characteristics 355

and then models are applied to the residents of each sub- 356

division to represent areawide behavior. Changes are then 357

imposed on each individual as a response to policies and 358

predictive scenarios of policy impacts are thus developed. 359

The evolution of individuals, their groups, and the entire 360

study area can be used for trend analysis that includes 361

details at the level of decision makers (either for passen- 362

ger travel and/or for freight). In addition, progression in 363

time happens from the present to the future and one could 364

identify paths of change by individuals and groups if the 365

application has been designed in the proper way (e. g., 366

keeping detailed accounting of individuals as they move in 367

time, using models that are designed for transitions over 368

time and so forth). In a forecasting setting progression in 369

time follows calendar time, temporal resolution is most of- 370

ten a year, and the treatment of dynamics is an one-way 371

causal stream to the future. 372

Within the broader study of futures, forecasting is the 373

method we use to develop projective scenarios. Perfor- 374

mance-based planning, however, requires tools that can 375

extrapolate from future performance targets the actions 376

required today to reach them. In essence we also need 377

prospective studies that start from a desirable future and 378

move backwards to identify specific actions that will lead 379

us to that prospect. Backcasting was invented in a study of 380

future energy options by [141], to do exactly this through 381

a participatory process. Scenarios in backcasting are the 382

“images” of the future and the possible paths that will 383

take us to that future. A typical application includes the 384

stages shown in Table 1. An open question, however, re- 385

mains with respect to scenario construction and assess- 386

ment. This is particularly important when one considers 387

the serious issues we face with inadequate design of ex- 388

periments/trials in the forecasting setting. Forecasting and 389

backcasting have some important differences in their ob- 390

jectives. On one hand forecasting is employed to identify 391

likely futures and to develop methods to help us iden- 392
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Travel Behaviour and Demand Analysis and Prediction 5

tify small changes in our policies. It is also a method to393

extrapolate past trends into the future and possibly iden-394

tify paths of changes that are heavily influenced by habit395

and inertia. Backcasting, on the other hand is designed to396

discover new ways to build desirable futures. It is perfectly397

aligned with strategic planning and it is a better suited398

method for developing a program of conditions to meet399

targets.Many of themodels developed to date are designed400

for forecasting applications (either to inform the design401

of forecasting model systems or to create necessary com-402

ponents in the model systems). Yet, planning practice is403

moving towards strategy development and therefore needs404

model components that fit within a backcasting scenario405

building (see the reversed four-step model in Miller and406

Demetsky [120], and its neural network implementation407

in Sadek et al. [143] and the participatory tools in Califor-408

nia (http://www.sacregionblueprint.org/ – accessed May409

2007).410

Sustainable and Green Visions411

Policy actions also view the world surrounding us as an412

integral ecosystem placing more emphasis on its overall413

survival by examining direct and indirect effects of indi-414

vidual policy actions and entire policy packages or pro-415

grams (see the examples in [116]). This trend is not lim-416

ited to transportation. Lomborg [104], shows that a sus-417

tainable and green vision encompasses the entire range418

of human activity and the entirety of the ecosystem we419

live in. Although these are good news, because the ap-420

proach enables analyzes and policies that are consistent in421

their vision about futures, comprehensive views also re-422

veal that the pace of economic growth and development is423

in clear conflict with the biological pace of evolution with424

unknown consequences [162] strengthening the view that425

more comprehensive analytical frameworks are required.426

In fact, one of the most recent studies on research427

needs, which addresses the transportation and environ-428

ment relationship by the Transportation Research Board429

of the National Academies [167,168], expands the enve-430

lope to incorporate ecology and natural systems and ad-431

dresses human health in a more comprehensive way than432

in the past reiterating the urgency to address unresolved433

issues about environmental damage. As a result, we also434

experience a clear shift to policy analysis approaches that435

have an expanded scope and domain and they are char-436

acterized by explicit recognition of transportation system437

complexity and uncertainty.438

Reflecting all this, sustainable transportation is now of-439

ten used to indicate a shift in the mentality of the com-440

munity of transportation analysts to represent a vision441

of a transportation system that attempts to provide ser- 442

vices that minimize harm to the environment. In fact, 443

in one of the most comprehensive reviews of policies in 444

North America, Meyer andMiller [116], contrast the non- 445

sustainable to the sustainable approaches. They provide 446

a compelling argument about the change in these policies 447

and pathways toward a more sustainable path. In the US 448

during the past twenty years, the need, to examine these 449

new and more complex policy initiatives, has also become 450

increasingly pressing due to the passage of a series of leg- 451

islative initiatives (Acts) and associated Federal and State 452

regulations on transportation policy, planning, and pro- 453

gramming. The multi-modal character of the new legisla- 454

tion, its congestion management systems and the taxing 455

air quality requirements for selected US regions have mo- 456

tivated many new forecasting applications that in the early 457

years were predominantly based on theUrban Transporta- 458

tion Planning System and related processes but during the 459

last five years motivated a shift to richer conceptual frame- 460

works. In point of fact, air quality mandatesmotivated im- 461

pact assessments of the so called transportation control 462

measures and the creation of statewide mobile source air 463

pollution inventories [65,107,154] that require different 464

analytical forecasting tools than in any pre-1990 legislative 465

initiatives [124]. An added motivation is also lack of sub- 466

stantial funding for transportation improvement projects 467

and a shift to charge the firms that benefit the most from 468

transportation system improvements creating a need for 469

impact fee-assessment for individual private developers. 470

These assessments create the need for higher resolution in 471

the three dimensions of geography (space), time (time of 472

day), and social space (groups of people with common in- 473

terests and missions, households, individuals) used in typ- 474

ical regional forecasting models but also the domain of 475

jurisdictions where major decisions are made. They also 476

create a pressing need for interfaces with traffic engineer- 477

ing simulation tools that are approved and/or endorsed 478

in legislation (for examples see Paaswell et al. [126]). An- 479

other push for new tools is the assessment of technologies 480

under the general name of Intelligent Transportation Sys- 481

tems (i. e., bundles of technological solutions in the form 482

of user services attempting to solve chronic problems such 483

as congestion, safety, and air pollution). Natural and an- 484

thropogenic tragic recent events are adding requirements 485

for modeling and simulation and urgency in their devel- 486

opment and implementation as well as more detail in time 487

and space [75]. 488

As Garrett and Wachs [46], discuss in the context 489

of a lawsuit against a regional planning agency in the 490

Bay Area, traditional four-step regional simulation mod- 491

els [30,80,125] are outpaced by the same legislative stream 492

http://www.sacregionblueprint.org/


Unc
or

re
cte

d 
Pro

of

20
08

-1
0-

16

��

Meyers: Encyclopedia of Complexity and Systems Science — Entry 252 — 2008/10/16 — 10:12 — page 6 — le-tex
��

�� ��

6 Travel Behaviour and Demand Analysis and Prediction

Travel Behaviour and Demand Analysis and Prediction, Table 1
Backcasting schema

Content Method
Determine objectives, purpose of the analysis, temporal, spatial and substantive scope of
the analysis, decide the number and type of scenarios. Identify endogenous and
exogenous variables

Problem orientation with technical
representatives and stakeholders

 

 

 

!

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

Specify goals, constraints and targets for each scenario analysis and exogenous variables Stakeholder creativity workshop and
brainstorming sessions

Describe present system (building and updating of inventories), patterns and trends.
Define processes, their actors, and determinants of outcomes. Identify exogenous
variables and inputs to scenario analysis.

Scenario development by technical
experts

Scenario analysis. Select suitable approach, analyze system evolution at end time points
and intermediate time points, develop scenarios, iterate to make sure all components are
consistent/coherent

Scenario assessment by technical
experts and stakeholders

Undertake impact analysis. Consolidate scenario results. Analyze social, economic and
environmental impacts. Compare results of the last with targets, iterate analysis with any
other step as required to ensure consistency between goals and results

Backcasting workshops and
stakeholder consultation (repeat to
follow the iterations)

Implement Policy Actions

of the past 20 years that defined many of the policies de-493

scribed above. Unlike the “energy crisis” of the 1970s,494

the urgency and timeliness of modeling and simulation495

is becoming more urgent, more complex, and requires496

an “integrated” approach. Under these initiatives, fore-497

casting models, in addition to long-term land use trends498

and air quality impacts, need to also address issues re-499

lated to technology use and information provision to500

travelers in the short and medium terms. Similarly, the501

European Union focuses on issues such as: increasing cit-502

izen participation, intra-European integration, decentral-503

ization, deregulation, privatization, environmental con-504

cerns, mobility costs, congestion management by popula-505

tion segments, and private infrastructure finance (see van506

der Hoorn [174]). Table 2 provide an overview of policy507

tools that are loosely ordered from the longer term of land508

use and governance to medium and shorter term opera-509

tional improvements depending on the lag time required510

for their impacts to be realized.511

These policy initiatives place more complex issues in512

the domain of regional policy analysis and forecasting and513

amplify the need for methods that produce forecasts at514

the individual traveler and her/his household levels in-515

stead of the traffic analysis zone level. In addition to the516

long range planning activities and the typical traffic op-517

erations management activities, analysts and researchers518

in planning need to also evaluate the following: a) trav-519

eler and transportation system manager information pro-520

vision and use (e. g., location based services, smart envi-521

ronments providing real time information to travelers, ve-522

hicles, and operators); b) combinations of transportation523

management actions and their impacts (e. g., parking fee524

structures and city center restrictions, congestion pricing), 525

and c) assessment of combinations of environmental pol- 526

icy actions (e. g., carbon taxes and information campaigns 527

about health effects of ozone). 528

Toperform all this we need tool that also have forecast- 529

ing and backcasting capabilities that aremore accurate and 530

detailed in space and time. In fact, planning initiatives are 531

moving toward parcel by parcel analysis and yearly assess- 532

ments. It is also conceivable that we need separate analyzes 533

for different seasons of a year and days of the week to cap- 534

ture seasonal and within a week variations of travel. Echo- 535

ing all this and in the context of the Dutch reality Borgers, 536

Hofman, and Timmermans [21] have identified five infor- 537

mation need domains that the new envisioned policy anal- 538

ysis models will need to address and they are (in amodified 539

format from the original list): 540

1. social and demographic trends that may produce 541

a structural shift in the relationship between places 542

and time allocation by individuals invalidating existing 543

travel behavior model systems; 544

2. increasing scheduling and location flexibility and de- 545

grees of freedom for individuals in conducting their ev- 546

ery day business leading to the need to consider addi- 547

tional choices (e. g., departure time from home, work 548

at home, shopping by the internet, shifting activities to 549

the weekend) in modeling travel behavior; 550

3. changing quality and price of transport modes based on 551

market dynamics and not on external to the travel be- 552

havior policies (e. g., the effect of deregulation in public 553

transport); 554
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Travel Behaviour and Demand Analysis and Prediction 7

Travel Behaviour and Demand Analysis and Prediction, Table 2
Examples of Policy Tools

Type of policy tool Brief description Source of information*
Land use growth and management
programs

Legislation that controls for the growth of
cities in sustainable paths

www.smartgrowth.org, www.awcnet.org
www.fhwa.dot.gov/planning/ppasg.htm
www.compassblueprint.org

Land use design and attention to
neighborhood design for non-
motorized travel

Similar to the previous but with attention
paid to individual neighborhoods

www.sustainable.doe.gov/landuse/
luothtoc.shtml
www.planning.dot.gov/Documents/
DomesticScan/domscan2.htm

City annexations and spheres of
influence

City boundaries are divided into
incorporated, within the sphree of influence,
and external to manage growth

http://countypolicy.co.la.ca.us/BOSPolicyFrame.
htm
www.ite.org/activeliving/files/Jeff_Summary.pdf

Accelerated retirement of vehicles
programs

Programs to eliminate high emitting and
older technology vehicles

ntl.bts.gov/DOCS/SCRAP.html

Public involvement and education
programs

Programs aiming at defining goals based on
the public’s desires

www.fhwa.dot.gov/reports/pittd/contents.htm

Health promoting programs Programs that promote physical activity in
travel to benefit health

www.activelivingbydesign.org

Safety measures A process to incorporate safety
considerations in transportation planning

tmip.fhwa.dot.gov/clearinghouse/docs/safety/
www.fhwa.dot.gov/planning/scp/
www.safetyanalyst.org/

Emission control, vehicle miles
traveled, and other fee programs
(including carbon taxes and trading)

Programs that shift taxation from traditional
sources towards pollutant emissions and
natural- resource depletion agents

www.fresh-energy.org/
www.fhwa.dot.gov/environment/
www.fightglobalwarming.com/

Congestion pricing and toll
collection programs

A premium is charged to travelers that wish
to travel during the most congested periods

www.vtpi.org/london.pdf

Parking fee management Parking pricing used as a tool to restrict
access by space and time

www.gmu.edu/depts/spp/programs/
parkingTaxes.pdf

Non-motorized systems Programs to support walking and biking www.vtpi.org/tdm/tdm25.htm
www.psrc.org/projects/nonmotorized

Telecommuting and Teleshopping The employment of telecommunications to
substitute-complement-enhance travel

www.telework-mirti.org
www.vtpi.org/tdm/tdm43.htm

Flexible and staggered work
programs

Programs that change the workweek of
individuals and firms

www.its.dot.gov/JPODOCS/REPTS_PR/13669/
section05.htm

Goods movements (freight)
programs to improve operations

A variety of programs to facilitate and
minimize the damage for freight movement

ntl.bts.gov/DOCS/harvey.html

Highway system improvements in
traffic operations and flow

Improved data collection, monitoring, and
traffic management

www.transportation.org
ite.org/mega/default.asp

Intelligent Transportation Systems
(ITS)

Use of telecommunications and information
technology to manage and control travel

www.itsa.org/
www.ertico.com/
www.its.dot.gov/index.htm/

Special event planning and
associated traffic management

Enhanced procedures to handle the
demands of a special event

tmcpfs.ops.fhwa.dot.gov/cfprojects/new_detail.
cfm?id=32xxxnew=0

Security preparedness through
metropolitan planning processes

A process to incorporate safety
considerations in transportation planning

www.planning.dot.gov/Documents/
Securitypaper.htm

Individualized marketing techniques
with improved information and
communication with the “customer”

Public programs to provide personal help in
changing travel behavior in favor of
environmentally friendly modes

www.local-transport.dft.gov.uk/travelplans/
index.htm
http://www.travelsmart.gov.au/

*accessed May 2007

4. shifting of attitudes and potential cycles in the popula-555

tion outlook about travel options; and556

5. changing scales/jurisdictions (scale is the original term 557

used to signify the different jurisdictions) – different 558

http://www.smartgrowth.org
http://www.awcnet.org/
http://www.fhwa.dot.gov/planning/ppasg.htm
http://www.compassblueprint.org
http://www.sustainable.doe.gov/landuse/
http://luothtoc.shtml
http://www.planning.dot.gov/Documents/DomesticScan/domscan2.htm
http://www.planning.dot.gov/Documents/DomesticScan/domscan2.htm
http://countypolicy.co.la.ca.us/BOSPolicyFrame.htm
http://countypolicy.co.la.ca.us/BOSPolicyFrame.htm
http://www.ite.org/activeliving/files/Jeff_Summary.pdf
http://ntl.bts.gov/DOCS/SCRAP.html
http://www.fhwa.dot.gov/reports/pittd/contents.htm
http://www.activelivingbydesign.org
http://tmip.fhwa.dot.gov/clearinghouse/docs/safety/
http://www.fhwa.dot.gov/planning/scp/ec041scp.htm
http://www.safetyanalyst.org/
http://www.fresh-energy.org/
http://www.fhwa.dot.gov/environment/epasg.htm
http://www.fightglobalwarming.com/
http://www.vtpi.org/london.pdf
http://www.gmu.edu/depts/spp/programs/parkingTaxes.pdf
http://www.gmu.edu/depts/spp/programs/parkingTaxes.pdf
http://www.vtpi.org/tdm/tdm25.htm
http://www.psrc.org/projects/nonmotorized
http://www.telework-mirti.org
http://www.vtpi.org/tdm/tdm43.htm
http://www.its.dot.gov/JPODOCS/REPTS_PR/13669/section05.htm
http://www.its.dot.gov/JPODOCS/REPTS_PR/13669/section05.htm
http://ntl.bts.gov/DOCS/harvey.html
http://www.transportation.org
http://ite.org/mega/default.asp
http://www.itsa.org/
http://www.ertico.com/
http://www.its.dot.gov/index.htm
http://tmcpfs.ops.fhwa.dot.gov/cfprojects/new_detail.cfm?id=32xxxnew=0
http://tmcpfs.ops.fhwa.dot.gov/cfprojects/new_detail.cfm?id=32xxxnew=0
http://www.planning.dot.gov/Documents/Securitypaper.htm
http://www.planning.dot.gov/Documents/Securitypaper.htm
http://www.local-transport.dft.gov.uk/travelplans/index.htm
http://www.local-transport.dft.gov.uk/travelplans/index.htm
http://www.travelsmart.gov.au/
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8 Travel Behaviour and Demand Analysis and Prediction

policy actions in different sectors have direct and in-559

direct effects on transportation and different policy ac-560

tions in transportation have direct and indirect effects561

in the other sectors (typical example in the US is the562

welfare to work program).563

The first substantive implication of all these considera-564

tions is an expanded envelope of modeling and simulation.565

Many processes that were left outside the realm of trans-566

portation modeling and simulation need to be included567

as stages of the travel model system. One notable exam-568

ple is the inclusion of residential location choice, work lo-569

cation choice, and school location choice to capture the spa-570

tial distribution and relative location of important anchor571

points on travel behavior and to also capture the impact572

of transportation system availability and level of service573

on these choices. In this way when implemented policies574

lead to improved level of service and the relative attrac-575

tiveness of locations change, shifts in residential location,576

work location, and possibly school location can be incor-577

porated as impacts of transportation. A similar treatment578

is needed for car ownership and car type choices of house-579

holds or fleet sizes and composition for firms. These car-580

related choices are expressed as functions of parking avail-581

ability, energy and other costs and level of service offered582

by the transportation system (highway and transit). To ac-583

count for other resources and facilities available for house-584

hold travel we also need to consider processes for driver’s585

licensing, acquiring of public transportation subscription586

(passes), and participation in car sharing programs. In this587

way, variables of car availability and public transportation588

availability in households can be used as determinants of589

travel behavior. Similar treatment is required for policies590

that change attitudes, perceptions and knowledge about591

travel options.592

To address some of the policies of Table 2, we need to593

transition to a domain that contains a variety of outputs594

that include shares of program participation, sensitivity to595

accessibility and prices, and the usual indicators of travel596

on networks using input variables from the processes and597

behaviors discussed up to this point. Although the number598

of vehicles per hour per lane is the typical input of traf-599

fic operations software, a variety of other variables such600

as speeds on network links and types of vehicles are also601

needed for other models such as emissions estimation.602

Ideally longer term social, economic, demographic, re-603

source/facilities, and circumstances of people should be604

converted into yearly schedules identifying periods of va-605

cation, workdays, special occasions, and so forth. These in606

turn should lead to weekly schedules separating days dur-607

ing which people stay at home from days during which608

people go to work and days during which they run errands 609

and/or engage in other non-work and non-school related 610

activities. In this way patterns of working days versus not 611

working days can be derived in a natural (con)sequence. 612

As we will see in a later section, a fundamental leap of faith 613

intervenes in practice and converts all this background in- 614

formation into a representative day that is used to create 615

a more or less complete sequence of activities and trips 616

with their destinations and modes used. 617

In this way decisions and choices people make are or- 618

ganized along the time scale in terms of the time it takes 619

for these events to occur and their implications. For ex- 620

ample, decisions about education, careers and occupation, 621

and residential and job location are considered first and 622

they condition everything that happens next. These should 623

be formulated in terms of one or more life course long 624

projects and not represented by a cross-sectional choice 625

model. Similarly, decisions about yearly school and work 626

schedules that determine work days and vacation days in 627

a year should also be modeled as a stream of interrelated 628

choices. Conditional on all this are the daily schedules 629

of individuals and the myriad of decisions determining 630

a daily schedule, which are modeled in much more de- 631

tail and paying closer attention to the mutual dependency 632

among the different facets of a within a day schedule. The 633

next section explores this further in the context of research 634

and enabling technology. A section onmathematicalmod- 635

els later in this article shows the beginning of a new way 636

in modeling a simulation that emphasizes human interac- 637

tion. 638

New Research and Technology 639

The planning and policy analysis discussion identified 640

many requirements for modeling and simulation. Plan- 641

ning and policy expanded the context of travel behav- 642

ior models to entire life paths of individuals and for this 643

reason a more general modeling framework is emerg- 644

ing. In fact, modeling made tremendous progress toward 645

a comprehensive approach to, in essence, build simulated 646

worlds on computer enabling the study of complex pol- 647

icy scenarios. Although, passenger travel received the bulk 648

of the attention, similar contributions to new research 649

and technology are found in modeling the movement of 650

goods [151,153]. The emerging framework, although in- 651

complete, is rich in the directions taken and potential for 652

scientific discovery, policy analysis, and more comprehen- 653

sive approaches in dealing with sustainability issues. 654

There are four dimensions that one can identify in 655

building taxonomies of simulation models. The first is the 656

geographic space and its conditional continuity, the sec- 657
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Travel Behaviour and Demand Analysis and Prediction 9

ond is the temporal scale and calendar continuity, the third658

is interconnectedness of jurisdictions, and the fourth and659

most important is the set of relationships in social space for660

individuals and their communities. The first dimension,661

geographic space here is intended as the physical space in662

which human action occurs. This dimension has played663

important roles in transportation planning and modeling664

because the first preoccupation of the transportation sys-665

tem designers has been to move persons from one location666

to another (i. e., overcoming spatial separation). Initial ap-667

plications considered the territory divided into large ar-668

eas (traffic analysis zones), represented by a virtual center669

(centroid), and connected by facilities (higher level high-670

ways). The centroids were connected to the higher level fa-671

cilities using a virtual connector summarizing the charac-672

teristics of all the local roads within the zone. As computa-673

tional power increased and the types of policies/strategies674

required increased resolution, the zone became smaller675

and smaller. Today, is not unreasonable to expect software676

to handle zones that are as small as a parcel of land and677

transportation facilities that are as low in the hierarchy as678

a local road (the centroid becomes the building on a parcel679

and the centroid connector is the driveway of the unit and680

they are no longer virtual).681

In modeling and simulation we are interested in un-682

derstanding human action. For this reason in some appli-683

cations geographic space needs to consider more than just684

physical features (p. 387 in [49]) moving us into the notion685

of place and social space (see also below). The second di-686

mension is time that is intended here as continuity of time,687

irreversibility of the temporal path, and the associated arti-688

ficiality of the time period considered in manymodels. For689

example, models used in long range planning applications690

use typical days (e. g., a summer day for air pollution). In691

many regional long-range models the unspoken assump-692

tion is that we target a typical work weekday in developing693

models to assess policies. Households and their members,694

however, may not always (if at all) obey this strict defini-695

tion of a typical weekday to schedule their activities and696

theymay follow very different decisionmaking horizons in697

allocating time to activities within a day, spreading activ-698

ities among many days including weekends, substituting699

out of home with in home activities in some days but doing700

exactly the opposite on others, and using telecommunica-701

tions only selectively (e. g., on Fridays and Mondays more702

often than on other days). Obviously, taking into account703

these scheduling activities is by far more complex than704

what is allowed in existing transportation planning mod-705

els. The third dimension is jurisdictions and their inter-706

connectedness. The actions of each person are “regulated”707

by jurisdictions with different and overlapping domains708

such as federal agencies, state agencies, regional authori- 709

ties, municipal governments, neighborhood associations, 710

trade associations and societies, religious groups, and for- 711

mal and informal networks of families and friends. In fact, 712

the federal government definesmany rules and regulations 713

on environmental protection. These may end up being en- 714

forced by a local jurisdiction (e. g., a regional office of an 715

agency within a city). On the one hand, we have an orga- 716

nized way of governance that clearly defines jurisdictions 717

and policy domains (e. g., tax collection in the US). On 718

the other hand, however, the relationships among jurisdic- 719

tions and decision making about allocation of resources 720

does not follow always this orderly governance principle 721

of hierarchy. A somewhat different and more “bottom up” 722

relationship is found in the social network and for this rea- 723

son requires a different dimension that is the fourth and 724

final dimension named social space and the relationships 725

among persons within this space. For example, individu- 726

als from the same household living in a neighborhood may 727

change their daily time allocation patterns and location 728

visits to accommodate and/or take advantage of changes 729

in the neighborhood such as elimination of traffic and the 730

creation of pedestrian zones. Depending on the effects of 731

these changes on the pedestrian network we may also see 732

a shift in the within the neighborhood social behavior. In 733

contrast, increase in traffic to surrounding places may cre- 734

ate an outcry by other surrounding neighborhoods, thus, 735

complicating the relationships among the residents. 736

One important domain and entity within this social 737

space is the household. This has been a very popular unit 738

of analysis in transportation planning recognizing that 739

strong relationships within a household can be used to 740

capture behavioral variation (e. g., the simplest method is 741

to use a household’s characteristics as explanatory vari- 742

ables in a regression model of travel behavior). In this 743

way any changes in the household’s characteristics (e. g., 744

change in the composition due to birth, death, or chil- 745

dren leaving the nest or adults moving into the house- 746

hold) can be used to predict changes in travel behavior. 747

New model systems are created to study this interaction 748

within a household looking at the patterns of using time in 749

a day and the changes across days and years. It is therefore 750

very important in modeling and simulation to incorporate 751

in the models used for policy analysis interactions among 752

these four fundamental dimensions, which bring us to the 753

next major issue that of scale. 754

The typical long range planning analysis is usually 755

defined for larger geographical areas (region, states, and 756

countries) and addresses issues with horizons from 10 to 757

50 years. In many instances we may find that large ge- 758

ographic scale means also longer time frames applied to 759
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10 Travel Behaviour and Demand Analysis and Prediction

widermosaics of social entities and includingmore diverse760

jurisdictions. On the other side of the spectrum issues that761

are relevant to smaller geographic scales are most likely to762

be accompanied by shorter term time frames applied to763

a few social entities that are relatively homogeneous and764

subject to the rule of very few jurisdictions. This is one im-765

portant organizing principle but also an indicator of the766

complex relationships we attempt to recreate in our com-767

puterized models for decision support. In developing the768

blueprints of these models one can choose from a variety769

of theories (e. g., neoclassical microeconomics) and con-770

ceptual representations of the real world that help us de-771

velop these models. At the heart of our understanding of772

how the world (as an organization, a household, a formal773

or informal group, or an individual human being) works774

are models of decision making and conceptual representa-775

tions of relationships among entitiesmaking up this world.776

Transportation planning applications are about judg-777

ment and decision making of individuals and their orga-778

nizations. There are different settings of decision making779

that we want to understand. Three of these settings are the780

travelers and their social units from which motivations for781

and constraints to their behavior emerge; the transporta-782

tion managers and their organizations that serve the trav-783

elers and their social units, and the decision makers sur-784

rounding goodsmovement and service provision that con-785

tain a few additional actors, Southworth [151]. These in-786

clude land usemarkets (see www.urbansim.org). Travelers787

received considerable attention in transportation planning788

and the majority of the models in practice aim at capturing789

their decision making process. The remaining settings re-790

ceivedmuch less attention and they are poorly understood791

and modeled.792

Conceptual models of this process are transformed793

into computerizedmodels of a city, a region, or even a state794

in which we utilize components that are in turn models795

of human judgment and decision making (e. g., travelers796

moving around the transportation network and visiting797

locations where they can participate in activities). Models798

of this behavior are simplified versions of strategies used799

by travelers when they select among options that are di-800

rectly related to their desired activities. In some of these801

models we also make assumptions about hierarchies of802

motivations, actions, and consequences. Some of these as-803

sumptions are explicit (e. g., when deriving the functional804

forms of models as in the typical disaggregate choice mod-805

els or the rules in a production system) and in other mod-806

els these assumptions are implicit.807

When designing transportation planning model inter-808

faces for transportation planners and managers we also809

implicitly make assumptions about the managers’ abil-810

ity to understand the input, agent representation, inter- 811

nal functioning, and output of these computerizedmodels. 812

Our objective is therefore not only to understand travel 813

behavior and build models that describe and predict hu- 814

man behavior but also to devise tools that allow trans- 815

portation managers to understand the assumed behavior 816

in the models, study scenarios of policy actions, and define 817

and explain policy implications to others. This, in essence, 818

implies that we, the model system designers, create a plat- 819

form for a relationship between planners and travelers. 820

A similar but more direct relationship also exists between 821

travelers and transportation managers when we design the 822

observation methods that provide the data for modeling 823

but also the data used to measure attitudes and opinions 824

such as travel surveys. In fact, this relationship is stud- 825

ied in much more detail in the survey design context and 826

linked directly to the image of the agency conducting the 827

survey and the positive or negative impression of the trav- 828

elers about the sponsoring agency [33]. Most transporta- 829

tion research for modeling and simulation, however, has 830

emphasized traveler behavior when building surveys and 831

their models neglecting the interface with the planners. 832

The summary of theories below, however, applies to in- 833

dividuals traveling in a network but also to organizations 834

and planners in the sense used by H.A. Simon in his Ad- 835

ministrative Behavior [150]. 836

Rational decision making is a label associated with hu- 837

man behavior that follows a strategy in identifying the best 838

course of action. In summary, a decision maker solves an 839

optimization problem and identifies the best existing so- 840

lution to this problem. Within this more general strategy 841

when an operational model is needed and this operational 842

model provides quantitative predictions about human be- 843

havior some kind of mathematical apparatus is needed to 844

produce the predictions. One such machinery is the sub- 845

jective expected utility [146] formulation of human behav- 846

ior. In developing alternative models to SEU Simon [149] 847

defines four theoretical components: 848

� A person’s decision is based on a utility function assign- 849

ing a numerical value to each option – existence and 850

consideration of a cardinal utility function; 851

� The person defines an exhaustive set of alternative 852

strategies among which just one will be selected – abil- 853

ity to enumerate all strategies and their consequences; 854

� The person can build a probability distribution of all 855

possible events and outcome for each alternate option – 856

infinite computational ability; and 857

� The person selects the alternative that has the maxi- 858

mum utility –maximizing utility behavior. 859

http://www.urbansim.org
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This behavioral paradigm served as the basis for a rich860

production of models in transportation that include the861

mode of travel, destinations to visit as well as the house-862

hold residence (see the examples in the seminal textbook863

by Ben-Akiva and Lerman [9]. It served also as the the-864

oretical framework for consumer choice models and for865

attempts to develop models for hypothetical situations866

(see the comprehensive book by Louviere, Hensher, and867

Swait [108]. It has also replaced the aggregate modeling868

approaches to travel demand analysis as the orthodoxy869

against which many old and new theories and applications870

are compared and compete with. SEU can be considered871

to be a model from within a somewhat larger family of872

models under the label of weighted additive rule (WADD)873

models [127]. Real humans, however, may never behave874

according to SEU or related maximizing and infinitely875

computational capability models (Simon labels this the876

Olympian model, [149]). Based on exactly this argument877

different researchers in psychology have proposed a vari-878

ety of decisionmaking strategies (or heuristics). For exam-879

ple, Simon created alternate model paradigms under the880

label of bounded rationality – the limited extent to which881

rational calculation can direct human behavior [149,150]882

to depict a sequence of a person’s actions when searching883

for a suitable alternative. The modeled human is allowed884

to make mistakes in this search giving a more realistic de-885

scription of observed behavior (see also Rubinstein [142]).886

Tversky is credited with another stream of decision mak-887

ing models starting with the lexicographic approach [169,888

in which a person first identifies the most important at-889

tribute, compares all alternatives on the value of this at-890

tribute, and chooses the alternative with the best value on891

this most important attribute. Ties are resolved in a hier-892

archical system of attributes. Another Tversky model [170893

assumes a person selects an attribute in a probabilistic way894

and influenced by the importance of the attribute, all alter-895

natives that do not meet a minimum criterion value (cutoff896

point) are eliminated. The process proceeds with all other897

attributes until just one alternative is left and that one is898

the chosen. This has been named the elimination by as-899

pects strategies (EBA) model. Later, Kahneman and Tver-900

sky [86] developed prospect theory and its subsequent ver-901

sion of cumulative prospect theory in Tversky and Kah-902

neman [171] in which a simplification step is first un-903

dertaken by the decision maker editing the alternatives.904

Then, a value is assigned to each outcome and a deci-905

sion is made based on the sum of values multiplying each906

by a decision weight. Losses and gains are treated differ-907

ently. All these alternatives to SEU paradigms did not go908

unnoticed in transportation research with early significant909

applications appearing in the late 1980s. In fact, a confer-910

ence was organized attracting a few of the most notable 911

research contributors to summarize the state of the art in 912

behavior paradigms and documented in Garling, Laitila, 913

andWestin [45]. One of the earlier examples using another 914

of Simon’s inventions, the satisficing behavior – acceptance 915

of viable choices that may not be optimal – is a series of 916

transportation-specific applications described inMahmas- 917

sani and Herman [110]. Subsequent contributions con- 918

tinue along the path of more realistic models and the most 919

recent example, discussing a few models, by Avineri and 920

Prashker [7], uses cumulative prospect theory giving a pre- 921

view of a movement toward more realistic travel behavior 922

models. As Garling et al. [45] and Avineri and Prashker [7] 923

point out, these paradigms are not ready for practical ap- 924

plications, contrary to the Mahmassani and colleagues ef- 925

forts that have been applied, and additional work is re- 926

quired to use them in a simulation framework for appli- 927

cations. Another aspect is contextual adaptation. Payne, 928

Bettman, and Johnson [127] provide an excellent review of 929

decision making models and their differentiating aspects. 930

They also provide evidence that decision makers adapt by 931

switching between decision making paradigms to the task 932

and the context of their choices. They also make mistakes 933

and they may also fail to switch strategies. As Vause [175] 934

discusses to some length transportation applications are 935

possible using multiple decision making heuristics within 936

the same general framework and employing a production 937

system approach [123]. A key consideration, however, that 938

has received little attention in transportation is the defini- 939

tion of context within which decision making takes place. 940

Recent production systems [5] are significant improve- 941

ments over past simulation techniques. However, travelers 942

are still assumed to be passive in shaping the environment 943

within which they decide to act (action space). This action 944

space is viewed as largely made by constraints and not by 945

their active shaping of their context. Goulias [58,60] re- 946

views another framework from human development that 947

is designed to treat decisionmakers in their active and pas- 948

sive roles and explicitly accounts for mutual influence be- 949

tween an agent (active autonomous decision maker) and 950

her environment. 951

Transportation modeling and simulation experienced 952

a few tremendously innovative and progressive steps for- 953

ward. Interestingly these key innovations are from non- 954

engineering fields but very often transferred and applied 955

to transportation systems analysis and simulation by en- 956

gineers. These are listed here in a somewhat sequential 957

chronological order merging technological innovations 958

and theoretical innovations. At exactly the time that the 959

Bay Area Rapid Transit system was studied and evaluated 960

in the 1960s, Dan McFadden (the Year 2000 Nobel Lau- 961
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12 Travel Behaviour and Demand Analysis and Prediction

reate in Economics) and a team of researchers produced962

practical mode choice regression models at the level of963

an individual decision maker (see http://emlab.berkeley.964

edu/users/mcfadden/ – accessed June 2007). The models965

are based on random utility maximization (of the SEU966

family) and their work opened up the possibility to pre-967

dict mode choice rates more accurately than ever before.968

These models were initially named behavioral travel-de-969

mand models [155] and later the more appropriate term970

of discrete choice models [9] prevailed. Although restric-971

tive in their assumptions, these models are still under con-972

tinuous improvement and they have become the standard973

tool in evaluating discrete choices. Some of the most no-974

table and recent developments advancing the state of the975

art and practice are:976

� Better understanding of the theoretical and particularly977

behavioral limitations of these models [45,50,115];978

� more flexible functional forms that resolve some of979

the problems raised in Williams and Ortuzar [184] al-980

lowing for different choices to be correlated when us-981

ing the most popular discrete choice regression mod-982

els [14,16,95];983

� combination of revealed preference, stated choices by984

travelers, with stated preferences and intentions, an-985

swers to hypothetical questions by travelers, availabil-986

ity of data in the same choice framework to extract987

in a more informative way travelers willingness to988

use a mode and willingness to pay for a mode op-989

tion [10,108]. This latter “improvement” enables us to990

assess situations that are impossible to build in the real991

world;992

� computer-based interviewing and laboratory experi-993

mentation to studymore complex choice situations and994

the transfer of the findings to the real world [111] TS2 .995

This direction, however, is also accompanied by a wide996

variety of research studies aiming at more realistic be-997

havioral models that go beyondmode choice and travel998

behavior [50]; and999

� expansion of the discrete choice framework using ideas1000

from latent class models with covariates that were first1001

developed by Lazarsfeld in the 1950s and their estima-1002

tion finalized by Goodman in the 1970s (see the re-1003

view in [56], and discrete choice applications in [20]).1004

This family of models was used in Goulias [57] to study1005

the dynamics of activity and travel behavior and in the1006

study of choice in travel behavior [12].1007

As mentioned earlier the rational economic assumption1008

of the maximum utility model framework (that underlies1009

many but not all of the disaggregate models) is very re-1010

strictive and does not appear to be a descriptive behav-1011

ioral model except for a few special circumstances when 1012

the framing of decisions is carefully designed (something 1013

we cannot expect to happen every time a person travels on 1014

the network). Its replacement, however, requires concep- 1015

tualmodels that can provide the types of outputs needed in 1016

regional planning applications. A few additional research 1017

paths, labeled as studies of constraints, are also functioning 1018

as gateways into alternate approaches to replace or com- 1019

plement the more restrictive utility-based models. A few 1020

of these models also consider knowledge and informa- 1021

tion provision to travelers. The first aspect we consider is 1022

about the choice set in discrete choice models. Choice set 1023

is the set of alternatives from which the decision maker 1024

selects one. These alternatives need to be mutually exclu- 1025

sive, exhaustive, and finite in number [166]. Identifica- 1026

tion, counting, and issues related to the alternatives con- 1027

sidered have motivated considerable research in choice set 1028

formation [77,78,140,158,159]. Key threat to misspecifica- 1029

tion of the choice set is the potential for incorrect predic- 1030

tions [161]. When this is an issue of considerable threat 1031

as in destination choice models where the alternatives are 1032

numerous, a model of choice set formation appears to be 1033

the additional burden [71]. Other methods, however, also 1034

exist and they may provide additional information about 1035

the decision making processes. Models of the processes 1036

can be designed to match the study of specific policies 1037

in specific contexts. One such example and a more com- 1038

prehensive approach defining the choice sets is the situa- 1039

tional approach [25]. The method uses in depth informa- 1040

tion from survey respondents to derive sets of reasons for 1041

which alternatives are not considered for specific choice 1042

settings (individual trips). This allows separation of ana- 1043

lyst observed system availability from user perceived sys- 1044

tem availability (e. g., due to misinformation and willing- 1045

ness to consider information). This brings us to the du- 1046

ality between “objective choice attributes” and “subjective 1047

choice attributes”. Most transportation applications, inde- 1048

pendently of the decision making paradigm adopted, as- 1049

sume the analysts (modelers) and the travelers (modeled) 1050

measured attributes to be the same. Modeling the process 1051

of perceived constraints may be far more complex when 1052

one considers the influence of the context within which 1053

decisions are made. Golledge and Stimpson (pp. 33–34 1054

in [49]) describe this within a conceptual model of deci- 1055

sion making that has a cognitive feel to it. They also link 1056

the situational approach to the activity-based framework 1057

of travel extending the framework further (pp. 315–328 1058

in [49]). 1059

Chapin’s research [28], providing one of the first com- 1060

prehensive studies about time allocated to activity in space 1061

and time, is also credited for motivating the foundations of 1062

TS2 Please check reference. There is only a reference for Mahmassani and Jou for the year 1998?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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Travel Behaviour and Demand Analysis and Prediction 13

activity-based approaches to travel demand analysis. His1063

focus has been on the propensity of individuals to par-1064

ticipate in activities and travel linking their patterns to1065

urban planning. In about the same period Becker also de-1066

veloped his theory of time allocation from a household1067

production viewpoint [8] applying economic theory in1068

a non-market sector and demonstrating the possibility of1069

formulating time allocation models using economics rea-1070

soning (i. e., activity choice). In parallel another approach1071

was developing in geography and Hagerstrand’s seminal1072

publication on time geography [72] presents the founda-1073

tions of the approach. The idea of constraints in the move-1074

ment of persons was taken a step further by this time-ge-1075

ography school in Lund. In that framework, themovement1076

of persons among locations can be viewed as their move-1077

ment in space and time under external constraints. Move-1078

ment in time is viewed as the one way (irreversible) move-1079

ment in the path while space is viewed as a three dimen-1080

sional domain. It provides the third base about constraints1081

in human paths in time and space for a variety of plan-1082

ning horizons. These are capability constraints (e. g., phys-1083

ical limitations such as speed); coupling constraints (e. g.,1084

requirements to be with other persons at the same time1085

and place); and authority constraints (e. g., restrictions due1086

to institutional and regulatory contexts such as the open-1087

ing and closing hours of stores). Figure 1 provides a picto-1088

rial representation in space and time of a typical activity-1089

travel pattern of two persons (P1 and P2) and the three1090

types of constraints. H indicates home, W indicates work,1091

L indicates leisure, and S indicates shopping.1092

Cullen and Godson [31] also reviewed by Arentze and1093

Timmermans [5] and Golledge and Stimpson [49] appear1094

to be the first researchers attempting to bridge the gap be-1095

tween the motivational (Chapin) approach to activity par-1096

ticipation and the constraints (Hagerstrand) approach by1097

creating a model that depicts a routine and deliberated ap-1098

proach to activity analysis. The Cullen and Dobson study1099

also definedmany terms often used today in activity-based1100

approaches. For example, each activity (stay-home, work,1101

leisure, and shopping) is an episode characterized by start1102

time, duration, and end time. Activities are also classi-1103

fied into fixed and flexible and they can be engaged alone1104

or with others. Moreover, they also analyzed sequencing1105

of activities as well as pre-planned, routine, and on the1106

spur of the moment activities. Within this overall theoret-1107

ical framework is the idea of a project which according to1108

Golledge and Stimpson [49], is a set of linked tasks that are1109

undertaken somewhere at some time within a constraining1110

environment (pp. 268–269). This idea of the project un-1111

derlies one of the most exciting developments in activity-1112

based approaches to travel demand analysis and forecast-1113

ing because seemingly unrelated activity and trip episodes 1114

can be viewed as parts of a “big-picture” and given mean- 1115

ing and purpose completing in this way models of human 1116

agency and explaining resistance to change behavior. 1117

Most subsequent contributions to the activity-based 1118

approach emerge in one way or another from these initial 1119

frameworks with important operational improvements 1120

(for reviews see [5,17,89,114]). The basic ingredients of an 1121

activity based approach for travel demand analysis [5,84] 1122

are: 1123

a) explicit treatment of travel as derived demand [112], 1124

i. e., participation in activities such as work, shop, and 1125

leisure motivate travel but travel could also be an ac- 1126

tivity as well (e. g., taking a drive). These activities are 1127

viewed as episodes (i. e., they are characterized by start- 1128

ing time, duration, and ending time) and they are ar- 1129

ranged in a sequence forming a pattern of behavior 1130

that can be distinguished from other patterns (i. e., a se- 1131

quence of activities in a chain of episodes). In addition, 1132

these events are not independent and their interdepen- 1133

dency is accounted for in the theoretical framework; 1134

b) the household is considered to be the fundamental so- 1135

cial unit (i. e., decision making unit) and the interac- 1136

tions among household members are explicitly mod- 1137

eled to capture task allocation and roles within the 1138

household, relationships at one time point and change 1139

in these relationships as households move along their 1140

life cycle stages and the individual’s commitments and 1141

constraints change and these are depicted in the activ- 1142

ity-based model; and 1143

c) explicit consideration of constraints by the spatial, 1144

temporal, and social dimensions of the environment is 1145

given. These constraints can be explicit models of time- 1146

space prisms [130] or reflections of these constraints in 1147

the form of model parameters and/or rules in a pro- 1148

duction system format [5]. 1149

Input to these models are the typical regional model 1150

data of social, economic, and demographic information 1151

of potential travelers and land use information to create 1152

schedules followed by people in their everyday life. The 1153

output are detailed lists of activities pursued, times spent 1154

in each activity, and travel information from activity to 1155

activity (including travel time, mode used, and so forth). 1156

This output is very much like a “day-timer” for each per- 1157

son in a given region. Figure 2 provides an example of time 1158

allocation to different activities from an application that 1159

collected activity participation data [2,3]. It displays time 1160

allocation by one segment of the population showing the 1161

proportion of persons engaging in each activity by each 1162

hour of a day. Figure 3 shows the output from amodel that 1163
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14 Travel Behaviour and Demand Analysis and Prediction

Travel Behaviour and Demand Analysis and Prediction, Figure 1
A two-person (P1 and P2) activity-travel pattern and the time and space limits imposed by constraints (source: Pribyl [132])

predicts the presence of persons in each building during1164

each hour of a day engaging in each activity type. Combin-1165

ing an activity model with a typical travel demand model1166

produces “volumes” of individuals at specific locations and1167

on the network of a city as shown in Figure 4 (a more de-1168

tailed description of this study can be found in [67,97,99].1169

Many planning and modeling applications, however,1170

aim at forecasting. Inherent in forecasting are the time1171

changes in the behavior of individuals and their house-1172

holds and their response to policy actions. At the heart1173

of behavioral change are questions about the process fol-1174

lowed in shifting from a given pattern of behavior to an-1175

other. In addition to measuring change and the relation-1176

ships among behavioral indicators that change in their val-1177

ues over time, we are also interested in the timing, se-1178

quencing, and staging of these changes. Moreover, we are1179

interested in the triggers that may accelerate desirable or1180

delay undesirable changes and the identification of social1181

and demographic segments that may follow one time path1182

versus another in systematic patterns. Knowledge about all1183

this is required to design policies but it is also required to1184

design better forecasting tools. Developments in explor-1185

ing behavioral dynamics and advancing models for them1186

have progressed in a few arenas. First, in the data collection1187

arena with panel surveys, repeated observation of the same1188

persons over time that are now giving us a considerable1189

history in developing new ideas about data collection but1190

also about data analysis [55,61] and interactive and lab-1191

oratory data collection techniques [34] that allow a more 1192

in-depth examination of behavioral processes. The second 1193

arena is in the development of microeconomic dynamic 1194

formulations for travel behavior that challenge conven- 1195

tional assumptions and offer alternative formulations [91]. 1196

The third arena, is in the behavior from a developmental 1197

viewpoint as a single stochastic process, a staged develop- 1198

ment process [57], or as the outcome from multiple pro- 1199

cesses operating at different levels [59]. Experimentation 1200

with new theories from psychology emphasizing develop- 1201

ment dynamics is a potential fourth area that is just begin- 1202

ning to emerge [60]. Behavioral dynamics are also exam- 1203

ined using more comprehensive analyzes [68] and mod- 1204

els [136]. 1205

These models focus more on the paths of persons in 1206

space and time within a somewhat short time horizon such 1207

a day, a week, or maybe a month. The consideration of 1208

behavioral dynamics has expanded the temporal horizons 1209

to a few years. However, regional simulation models are 1210

very often designed for long range plans spanning 25 years 1211

or even longer time horizons. Within these longer hori- 1212

zons, changes in the spatial distribution of activity loca- 1213

tions and residences (land use) are substantial, changes in 1214

the demographic composition and spatial distribution of 1215

demographic segments are also substantial, and changes 1216

in travel patterns, transport facilities, and quality of ser- 1217

vice offered can be extreme. Past approaches in model- 1218

ing and simulating the relationship among land use, de- 1219
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Travel Behaviour and Demand Analysis and Prediction 15

Travel Behaviour and Demand Analysis and Prediction, Figure 2
Time allocation to different activities in a day (source: Alam [2]) A: Personal Needs (includes sleep), B: Eat meal, C: Paid work,
D: Education, E: Household and family care, F: shopping, G:medical, H: Volunteering/Community, I: Socializing, J: Sports andHobbies,
K: Travel, L: All other

mographics, and travel in a region attempted to disengage1220

travel from the other two treating them as mutually ex-1221

ogenous. As interactions among them became more in-1222

teresting and pressing, due to urban sprawl and suburban1223

congestion, increasing attention was paid to their complex1224

interdependencies. This led to a variety of attempts to de-1225

velop “integrated model systems” that enable the study of1226

scenarios of change and mutual influence between land1227

use and travel. An earlier review of these models with1228

heavy emphasis on discrete choice models can be found1229

in Anas [4]. Miller [117] andWaddell and Ulfarsson [180]1230

twenty years later provide two comprehensive reviews of1231

models that have integrated many aspects in the inter-1232

dependent triad of demographics-travel-land use models.1233

Both reviews trace the history of some of the most notable1234

developments and both link these models to the activity-1235

based approach above. Both reviews also agree that a mi-1236

croeconomic and/or macroeconomic approach to model-1237

ing land and transportation interactions are not sufficient1238

and more detailed simulation of the individuals and their1239

organizations “acting” in an time-space domain need to 1240

be simulated in order to obtain the required output for in- 1241

formed decision making. They also introduce the idea of 1242

simulating interactive agents in a dynamic environment of 1243

other agents (multi-agent simulation). The vast literature 1244

is reviewed by Timmermans [163] and Miller [118], from 1245

different viewpoints about progress made until now. How- 1246

ever, they both agree that progress is rapidly made and that 1247

integration of land use and transportation models needs 1248

to move forward. Creation of integrated systems is further 1249

complicated by the emergence of an entire infrastructural 1250

system as another layer of human activity – telecommuni- 1251

cation. Today telecommunication and transportation rela- 1252

tionships aremostly absent from regional simulation plan- 1253

ning and modeling as well from the most advanced land 1254

use and transportation integrated models. Considerable 1255

research findings, however, have been accumulating since 1256

the 1970s [53,66,81,96,111,113,121,128,129,144,182]. An- 1257

other type of technologies (named enabling herein) helped 1258

us move modeling and simulation further. 1259
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16 Travel Behaviour and Demand Analysis and Prediction

Travel Behaviour and Demand Analysis and Prediction, Figure 3
Persons and activities assigned to buildings (source: Alam [2])

A few of the most important technologies are stochas-1260

tic simulation, production systems, geographic information1261

systems, interactive and technology-aided data collection1262

approaches, and more flexible data analysis techniques.1263

Stochastic microsimulation, as intended here, is an evo-1264

lutionary engine software that is used to replicate the rela-1265

tionships among social, economic, and demographic fac-1266

tors with land use, time use, and travel by people. As dis-1267

cussed above the causal links among these groups of en-1268

tities are extremely complex, non-linear, and in many in-1269

stances unknown or incompletely specified. This is the rea-1270

son that no closed form solution can be created for such1271

a forecasting model system. An evolutionary engine, then,1272

provides a realistic representation of person and house-1273

hold life histories (e. g., birth, death, marriages, divorces,1274

birth of children, etc.), spatio-temporal activity opportu-1275

nity evolution, and a variety of models that account for1276

uncertainties in data, models, and behavioral variation1277

(see [59,117], for overviews and [157] TS3 for an applica-1278

tion).1279

Production systems were first developed by Newell and1280

Simon [123] to explicitly depict the way humans go about1281

solving problems. These are a series of condition-action1282

(note the parallel with stimulus-response) statements in1283

a sequence. From this viewpoint they are search processes 1284

that may never reach an absolute optimum and they repli- 1285

cate (or at least attempt to) human thought and action. 1286

Models of this kind are called computational process mod- 1287

els (CPM) and through the use of IF . . . THEN. . . rules 1288

havemade possible the creation of a variety of newmodels. 1289

Geographic information systems are software systems 1290

that can be used to collect, store, analyze, modify, and dis- 1291

play large amounts of geographic data. They include lay- 1292

ers of data that are able to incorporate relations among the 1293

variables in each layer and allow to build relationships in 1294

data across layers. One can visualize a GIS as a live map 1295

that can display almost any kind of spatio-temporal infor- 1296

mation. Maps have been used by transportation planners 1297

and engineers for long time and they are a natural inter- 1298

face to use in modeling and simulation. GIS today is mov- 1299

ing beyond this relational database definition and is trans- 1300

forming the entire field into GI Science, which is beyond 1301

the scope of this article. 1302

Advanced data collection methods and devices that are 1303

technologies that merit a note, although, not strictly de- 1304

veloped for modeling. The first is about data collection 1305

and particularly data collection using internet technolo- 1306

gies to build complex interviews that are interactive and 1307

TS3 Please check reference. There is an entry for Sundararajana and Goulias for the year 2002?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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Travel Behaviour and Demand Analysis and Prediction 17

Travel Behaviour and Demand Analysis and Prediction, Figure 4
Persons and activities assigned to buildings and travel to the network (source: Goulias et al. [67])

dynamic [34]. In the same line of development we also1308

see the use of geographic positioning systems (GPS) that1309

allow one to develop a trace of individual paths in time1310

and space [35,186]. Very important development is also1311

the emergence of devices that can record the bulk of envi-1312

ronmental data surrounding a person’smovement, classify1313

the environment in which the individual moves, and then1314

ask simplified questions [74].1315

Soft computing and non-parametric data analysis is the1316

last innovation mentioned here. In the data analysis we1317

see greater strides in using data mining and artificial in-1318

telligence-born techniques to extract travel behavior pat-1319

terns [134,160] and advanced and less restrictive statis-1320

tical methods to discover relationships in travel behav-1321

ior data (e. g., [88]). Soft computing is increasingly find-1322

ing many applications in activity-based models (see www.1323

imob.uhasselt.be). For a more recent and accessible review1324

see Pribyl [133].1325

The EvolvingModeling Paradigm1326

Policies are dictating to create and test increasingly more1327

sophisticated policy assessment instruments that account1328

for direct and indirect effects of behavior, procedures for1329

behavioral change, and to provide finer resolution in the 1330

four dimensions of geographic space, time, social space, 1331

and jurisdictions. Dynamic planning is also stressing the 1332

need to examine trends, cycles, and the inversion of time 1333

progression to develop paths from the future visions to to- 1334

day’s actions. Newmodel developments are also becoming 1335

increasingly urgent. Although, tremendous progress has 1336

been observed in the past 20 years, development requires 1337

a faster pace to create new policy tools. These policy tools 1338

need to disentangle the actions of persons under different 1339

policy actions and the impact of policy actions on aggre- 1340

gates to identify conflicts and resolutions. Supporting all 1341

this is a rich collection of decision paradigms that are al- 1342

ready used and a few new ideas are starting to migrate to 1343

practice as illustrated below. 1344

Early models incorporating activity-based behavioral 1345

processes into applications were published in the late 1346

1970s and early 1980s as proof-of-concept and experimen- 1347

tal applications. Following Hagerstrand’s time-geography 1348

approach, PESASP [103] is one of the first models to oper- 1349

ationally show the use of a time-space prism and to ac- 1350

count for the relationship among activities. The Cullen 1351

and Godson [31] study was also the first comprehen- 1352

sive treatment of activities that brought different research 1353

http://www.imob.uhasselt.be
http://www.imob.uhasselt.be
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18 Travel Behaviour and Demand Analysis and Prediction

findings together. In parallel, models were developed that1354

were utility-maximizing models such as Adler and Ben-1355

Akiva model [1] and much later the Kawakami and Isobe1356

model [87]. Following these studies, BSP [79] and Compu-1357

tational Algorithms for Rescheduling Lists of Activities –1358

CARLA [83] also use the activities within a time-space1359

prism paradigm and define the foundations of data col-1360

lection for activity-based approaches.1361

After this period of experimentation three streams1362

in model development emerged. The first is in deriv-1363

ing representative activity patterns (RAPs) and then us-1364

ing regression techniques to correlate RAPs to person1365

and household social and demographic data and then1366

forecasting. The second development refines the meth-1367

ods used to simulate persons and adds to the forecasting1368

repertoire other forecasting tasks viamicrosimulation. The1369

third is a movement that expands the envelope to include1370

cognition and explicit representation of mental processes1371

through CPMs.1372

The Simulation of Travel/Activity Responses to Com-1373

plex Household Interactive Logistic Decisions (STAR-1374

CHILD – Recker and McNally [138,139] derived RAPs,1375

employed a utility-based model and incorporated con-1376

straints. It is considered a fundamental transition devel-1377

opment from research to practical application of an activ-1378

ity-based approach and it is still the foundation of models1379

that first derive representative patterns and then forecast1380

travel behavior. The more recent SIMAP [100] is a direct1381

derivation of STARCHILD. In this line of development,1382

Ma [109] created a model system that combined long term1383

activity patterns (Long-term activity and travel planning –1384

LATP) with a within-a-day activity scheduling and simu-1385

lation (Daily Activity and Travel Scheduling – DATS) in-1386

corporating day-to-day variation and history dependence.1387

Her model system produced very accurate forecasts. How-1388

ever it required panel survey data (the repeated observa-1389

tion of the same persons and households over time) that1390

are rarely collected. In the LATP/DATS system longitu-1391

dinal statistical models are extracted from longitudinal1392

records and they capture important aspects of behavioral1393

dynamics such as habit persistence, day-to-day switching1394

behaviors, and account for observed and unobserved het-1395

erogeneity contributed by the person, the household, the1396

area of residence, and the area of workplace.1397

One of the first models to include a microsimulation in1398

its paradigm is ORIENT [152]. This methodology suitably1399

refined was demonstrated in a countrywide model for the1400

Netherlands developed between 1989 and 1991 and named1401

the Microanalytic Integrated Demographic Accounting1402

System (MIDAS – Goulias and Kitamura [63,64]). MI-1403

DAS integrates demographic microsimulation, with dy-1404

namic car ownership models and a comprehensive suite 1405

of travel behavior equations. A cross-sectional version of 1406

MIDAS using data from the United States was also devel- 1407

oped by Chung and Goulias [29]. MIDAS-USA simulates 1408

the evolution of households along with car ownership and 1409

travel behavior for Centre County, PA, and it is linked to 1410

a model to assign fees for development using GIS. A more 1411

ambitious development is the Activity Mobility Simula- 1412

tor – AMOS – by Kitamura et al. [93], which defines a few 1413

RAPs as templates. Then, uses a neural network to identify 1414

choices and a satisficing rule to simulate schedule changes 1415

due to policies.WhileMIDAS is a strictly longitudinal pro- 1416

cess econometric model progressing one year at a time, 1417

AMOS is constraint-based model designed for much finer 1418

temporal resolution. DEMOS, developed by Sundararajan 1419

and Goulias [157] TS3 , is another MIDAS derivative. DE- 1420

MOS is an object-oriented environment designed to sim- 1421

ulate the evolution of people and their households using 1422

a variety of external data with the coremodels based on the 1423

Puget Sound Transportation Panel. It also simulates ac- 1424

tivity participation, travel, and telecommunication market 1425

penetration using a few representative patterns that were 1426

derived in Ma’s LATP/DATS supplemented by telecom- 1427

munications and travel behavior models. 1428

SCHEDULER (Gärling et al. [43] is the first CPM that 1429

adds a psychometric cognitive implementation based on 1430

the Hayes-Roth and Hayes-Roth [73] planning model. In 1431

SCHEDULER, activities, selected from the long term cal- 1432

endar that represents a person’s long term memory, com- 1433

prise a schedule that is “mentally executed”. Models start 1434

to combine CPM, microsimulation, and data derived be- 1435

havioral patterns with random utility models to fill dif- 1436

ferent modeling needs. The Simulation Model of Activ- 1437

ity Scheduling Heuristics (SMASH – Ettema et al. [38]) is 1438

a CPM and econometric utility-based hybrid model that 1439

focuses on the pre-trip planning process predicting se- 1440

quences of activities. In parallel, COMRADE [37], uses 1441

competing risk hazard models for activity scheduling and 1442

incorporates duration models in the system. The Model of 1443

Action Space in Time Intervals and Clusters (MASTIC – 1444

Dijst and Vidakovic [32]), identifies clusters in the ac- 1445

tion space to perform and schedule activities. Time-space 1446

prisms are also the foundation of the Prism-Constrained 1447

Activity-Travel Simulator (PCATS – Kitamura [90], Kita- 1448

mura and Fujii [92]), which is also a utility-based model. 1449

A direct operational derivative of SCHEDULER [44] was 1450

developed by Kwan, in her 1994 dissertation [101,102], 1451

and named GIS-Interfaced Computational-process mod- 1452

eling for Activity Scheduling (GISICAS). It is a simpli- 1453

fied CPM, that uses time-space constraints and GIS to 1454

incorporate spatial information into a behavioral model 1455
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to create individual schedules, starting with activities at1456

higher levels of priority. Other models also attempt to1457

recreate personal schedules such as Vause’s model [175],1458

a CPM that creates a restricted choice set for creating ac-1459

tivity patterns, a model by Ettema [39], and VISEM [41],1460

a data-driven model that is a part of PTV Vision, an ur-1461

ban and regional transportation planning system, that cre-1462

ates daily activity patterns for behaviorally homogeneous1463

groups within the population. Stopher et al. [156] also pro-1464

posed the Simulation Model for Activity Resources and1465

Travel (SMART) using a time geography framework and1466

a taxonomy of activities in a GIS environment. All these1467

use observed patterns to derive behavioral models. In con-1468

trast, Recker [137], developed the Household Activity Pat-1469

tern Problem (HAPP) as a normative model based on the1470

pick up and delivery time window problem to be used as1471

a yardstick model testing optimal behavioral hypotheses.1472

The model framework that impacted practice the most1473

in the United States is the Daily Activity Schedule model1474

by Ben-Akiva et al. in [11]. This model, was used to create1475

the Portland Daily Activity Schedule Model [23], advocat-1476

ing modeling lifestyle and mobility decisions on a scale of1477

years. These influence daily activity schedules, which are1478

comprised of primary and secondary tours constrained in1479

time and space. It contains two key elements that sim-1480

plify activity-based model development and takes advan-1481

tage of the research surge in developing more general dis-1482

crete choice models. A similar simplification using condi-1483

tional probabilities was also developed for Los Angeles by1484

Kitamura et al. [94].1485

Figure 5 TS4 shows this hierarchy of decisions and the1486

scheme used to convert the daily pattern into a system of1487

discrete choices. This framework was used to design new1488

models for the regions around San Francisco, New York,1489

Columbus, Denver, Atlanta, and Sacramento [24].1490

Arentze and Timmermans [5] designed the most com-1491

plete CPM named ALBATROSS, which is a multi-agent1492

simulation and predicts the time, location, duration, ac-1493

tivity companionship, and travel modes subjecting ev-1494

erything to spatio-temporal, institutional, and household1495

constraints. The theoretical underpinnings of this model1496

are by far wider and all encompassing than any other ac-1497

tivity-based model. However, it does not simulate route1498

choice and does not produce data suitable for traffic as-1499

signment algorithms. Development of the third version1500

of ALBATROSS is currently underway [76]. This model1501

is also representative of raising the ambitions of travel1502

modelers. The Alam Penn State Emergency Management1503

model (Alam-PSEM, Alam and Goulias [3]) is a building-1504

by-building simulation of activity participation and pres-1505

ence at specific locations of a university campus for each1506

hour of a typical day. In parallel Bhat and his co-work- 1507

ers [15,18] developed the Comprehensive Activity-Travel 1508

Generation System for Workers (CATGW), which is a se- 1509

ries of econometric models that replicate a commuter’s 1510

eveningmode choices, number of evening commute stops, 1511

and the number of stops after arriving home. The models 1512

developed by Bhat and colleagues are characterized by the 1513

use of hazard/duration regressionmodels that were specif- 1514

ically developed for activity-based approaches and are by 1515

far more flexible that other regression methods. Another 1516

econometric model, the Conjoint-Based Model to Predict 1517

Regional Activity Patterns (COBRA), developed by Wang 1518

and Timmermans in [181], generates general patterns of 1519

stops for specific activities using a conjoint-based model 1520

with stated preference data instead of travel or activity di- 1521

ary data. The Wen and Koppelman model [183] utilizes 1522

three layers of decisions that are influenced by exogenous 1523

variables to generate activity patterns. 1524

All these models point to new directions such as spa- 1525

tial choice needs to be dealt in more detail [3], activity 1526

choice and duration need to be dealt in a way the recog- 1527

nizes satiation in activity participation (e. g., in the dura- 1528

tion models of Bhat [15]), sooner of later we will need to 1529

account for unobserved patterns and lack of experimen- 1530

tal data (e. g., using conjoint experiments Wang and Tim- 1531

mermans [181]), and relations within the household need 1532

to also receive attention and inserted in the model hierar- 1533

chy [183]. 1534

Spatial aspects of model development were consid- 1535

ered in the CentreSIM regional model [67,98,99] that uses 1536

time-of-day activity and travel data for different mar- 1537

ket segments to predict hour-by-hour presence at loca- 1538

tions and travel among zones. In 2004, as a part of the 1539

Longitudinal Integrated Forecasting Environment (LIFE) 1540

framework [58], Pribyl and Goulias [135] developed Cen- 1541

treSIM (medoid simulation) to derive a few representa- 1542

tive patterns and simulate daily schedules accounting ex- 1543

plicitly for within-household interactions for entire daily 1544

patterns. In the Netherlands, PATRICIA (Predicting Ac- 1545

tivity-Travel Interdependencies with a Suite of Choice- 1546

Based, Interlinked Analyzes), was developed by Borgers et 1547

al. [22] to help assess the performance of ALBATROSS. 1548

PATRICIA is a suite of linked models that incorporates 1549

an expanded set of activity choices, based on 63 distinct 1550

patterns, and activity destinations and describes activ- 1551

ity transport modes and sequences. AURORA [82,165], 1552

which is a complementary model to ALBATROSS, is 1553

a utility-based system that models the dynamics of ac- 1554

tivity scheduling and rescheduling decisions as a func- 1555

tion of many choice facets. AURORA is for short-term 1556

adaptation and rescheduling using just a few critical pa- 1557

TS4 Please confirm reference to Fig. 5.
TS5 Please check url.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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Travel Behaviour and Demand Analysis and Prediction, Figure 5
The Bowman and Ben-Akiva daily activity model formulation

rameters. The model has since been expanded to include1558

many new facets [76]. A much simpler model is PE-1559

TRA [42] that allows the model to work with a small1560

number of daily travel patterns with some statistical ad-1561

vantages (see also Henson et al. [76]). Microsimulation1562

software experienced another push forward by the de-1563

velopment of a multi-million investment in TRansporta-1564

tion ANalysis SIMulation System. This model system1565

was developed in the decade 1995–2005 and one of its1566

versions is now available via a NASA open source li-1567

cense from TMIP at http://tmip.fhwa.dot.gov/transims/1568

download_transims/files/3_1_1/ TS5 . TRANSIMS is a sur-1569

vey data-driven cellular automata microsimulation and1570

was developed by a team at Los Alamos National Lab-1571

oratory [106]. It was one of the first simulation pack-1572

ages to contain models that create a synthetic population,1573

generate activity plans for individuals using directly ob-1574

served data in travel surveys, formulate routes on a net-1575

work based on these, and execute activity plans.Microsim-1576

ulation models also evolved in the interface between land1577

use and travel behavior. The Integrated Land Use, Trans-1578

portation and Environment (ILUTE) model [145] model1579

is designed to simulate the evolution of people and their1580

activity patterns, transportation networks, houses, com-1581

mercial buildings, the economy, and the job market over1582

time. Within this vision, Miller and Roorda [119], devel-1583

oped the Toronto Area Scheduling model for Household1584

Agents (TASHA) that uses projects to organize activity1585

episodes into schedules of persons. Schedules for members1586

in a household are simultaneously generated to allow for1587

joint activities. Both ILUTE and TASHA utilize CPMs and1588

econometric utility-based paradigms.1589

Another microsimulation that uses econometric mod- 1590

els to simulate daily activity travel patterns for an individ- 1591

ual, is the Comprehensive Econometric Microsimulator 1592

for Daily Activity-travel Patterns (CEMDAP) model [19] 1593

that is based on land use, socio-demographic, activity sys- 1594

tem, and level-of-service (LOS) attributes. Key distinc- 1595

tive element of CEMDAP is its reliance on hazard-based 1596

regression models to account for the continuous nature 1597

time of activity duration. It includes population synthe- 1598

sis as well as the activity-pattern generation and schedul- 1599

ing of children, which is missing form many other simula- 1600

tors. Another model that utilizes constraints is the Florida 1601

Activity Mobility Simulator (FAMOS) [131]. FAMOS en- 1602

compasses two modules, the Household Attributes Gen- 1603

eration System (HAGS) and PCATS. Together, they com- 1604

prise a system for modeling the activity patterns of indi- 1605

viduals in Florida. The output is a series of activity-travel 1606

records. FAMOS is currently being further enhanced to 1607

include intra-household interactions and capture task al- 1608

location behavior among household members. Most re- 1609

cently, Ettema et al. [40] developedPUMA (Predicting Ur- 1610

banization with Multi-Agents), a full-fledged multi-agent 1611

system of urban processes that represents land use changes 1612

in a behaviorally realistic way. These processes include the 1613

evolution of population, businesses, and land use as well 1614

as daily activity and travel patterns of people. To simu- 1615

late activity-travel patterns, an updated version of AU- 1616

RORA by Arentze et al. [6] will be created and also in 1617

the model FEATHERS (Forecasting Evolutionary Activ- 1618

ity-Travel of Household and their Environmental Reper- 1619

cussions) to simulate activity-level scheduling decisions, 1620

within-a-day rescheduling, and learning processes in high 1621

resolutions of time and space. Developed as a complement 1622

http://tmip.fhwa.dot.gov/transims/download_transims/files/3_1_1/
http://tmip.fhwa.dot.gov/transims/download_transims/files/3_1_1/
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to ALBATROSS, FEATHERS is econometric utility-based1623

microsimulation that utilizes constraints that focuses on1624

the short-term dynamics of activity-travel patterns. Mem-1625

bers from this same Dutch team also developed MER-1626

LIN [173] and RAMBLAS [176].1627

Microsimulations have continued to gain in popularity1628

in the activity-based modeling universe as they move from1629

research applications to practice. Besides the Portland1630

Daily Activity ScheduleModelmentioned previously, New1631

York’s “Best Practice”Model (2002) and theMid-Ohio Re-1632

gional Planning Commission (MORPC) Model [179] TS6 ,1633

both developed by Vovsha et al., and the San Francisco1634

model [85] are currently being utilized by their respective1635

MPO. The San Francisco model is currently being updated1636

to implement enhanced destination choice models and be-1637

ing recalibrated using more recent household and census1638

data. Four other models for Atlanta, Sacramento, the San1639

Francisco Bay Area, and Denver are currently in various1640

stages of implementation [24].1641

Although many past activity-based models have un-1642

defined or large time resolutions, STARCHILD already1643

in mid-1980s used 15-min temporal resolution. The most1644

recent models, however, go even further to simulate1645

activities at small time intervals such as 5min (TA-1646

SHA) and 10min intervals (SIMAP), minute by minute1647

(MASTIC, CentreSIM, MASTIC, GISICAS, and RAM-1648

BLAS), and second-by-second (TRANSIMS-LANL, AL-1649

BATROSS, AURORA, CATGW, CEMDAP, FAMOS, and1650

FEATHERS). Many applications, however, operate with1651

large resolutions of one hour and they are implemented1652

with a target of 30min to one hour [24]. Spatial resolu-1653

tion of the models is still dominated by the zonal level.1654

ALBATROSS and MORPC both can operate at the sub-1655

zone level. Alam-PSEM, AURORA, CEMDAP, FEATH-1656

ERS, GISICAS, ILUTE, PUMA, SIMAP, SMASH, and1657

TRANSIMS-LANL utilize data at essentially the building1658

or point level. Only two applications have spatial reso-1659

lutions below the zonal level (Denver model that con-1660

tains a two-stage destination locator to predict the ad-1661

dress within a zone and the Sacramento model that op-1662

erates at the parcel level). Cognitive theories (models of1663

knowledge and memory as well as behavioral process for1664

planning activities) were used only in SCHEDULER and1665

based on that in ALBATROSS and FEATHERS. Behav-1666

ior is most often incorporated as intra-household inter-1667

action in ALBATROSS, CEMDAP, FAMOS, FEATHERS,1668

ILUTE/TASHA, and CentreSIM as well as some of the ap-1669

plications in regions such as MORPC.1670

Examples ofMathematicalModels 1671

In this section additional details of two examples ofmathe- 1672

matical models for activity and travel behavior analysis are 1673

offered. Both examples aim at incorporating human inter- 1674

action in time allocation models and they are multilevel 1675

regressionmodels (based on Goulias [59]) and group deci- 1676

sionmaking utility maximizationmodels (based on Zhang 1677

et al. [187]). 1678

Multilevel Regression Models 1679

These regression models are known by different names 1680

in different fields of research such as random coefficient 1681

models ([69] and p. 669 in [105]) TS7 , multilevel mod- 1682

els [48], mixed models [147], and hierarchical linear mod- 1683

els [26]. They describe the contextual nature of the data 1684

and/or the way of accounting for dependent variable vari- 1685

ation frommultiple sources. Key advantages of thesemod- 1686

els are: explicit recognition inmodel formulation of the hi- 1687

erarchical, multiple level and nested structure of the data 1688

we analyze, and model specification using three groups 1689

of regression components in the same regression model. 1690

The first group assumes constant sensitivity to explana- 1691

tory variables among the units of analysis representing 1692

the mean effect of an explanatory variable on the depen- 1693

dent variable. The second group assumes a random devi- 1694

ation around this mean and the third group is the usual 1695

random error term(s) of the regression equation. When 1696

compared to traditional regression models, which contain 1697

only one level, multilevel models do not underestimate the 1698

standard errors of coefficient estimates avoiding overstate- 1699

ments about the statistical significance of policy variables 1700

(e. g., we do not exaggerate the effect of taxation on car 1701

ownership or the effect of time and cost on route choice). 1702

A system of multilevel regression models can be written as 1703

follows. TS8 1704

Yq
ti j D ˛

q
ti j C ˇ

q
k Xti j C �

q
mTt i j (1) 1705

aqti j D �
q
0 Cvqj Cuqi j C"

q
ti j ; where q D 1; : : : ;Q ; (2) 1706

ˇ
q
k1 D �

q
k1 C uqk1i j ; ˇ

q
k2 D �

q
k2 C vqk2 j : (3) 1707

Equation (1), represents Q equations that are one for 1708

each Yq
ti j variable that we want to explain and use in travel 1709

demand forecasting. They can be the amount of time ded- 1710

icated to activities and travel or distances to specific des- 1711

tinations or even attributes of routes considered by trip 1712

makers. The index t represents the time at which an obser- 1713

vation was made for a person i from within a household j 1714

TS6 Please confirm reference.
TS7 Please check notation.
TS8 Please check the following equations and declarations. There are lots of differences to themanuscript. I changed back to the manuscript

input.
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(with t D 1; 2; 3; : : :; T , i D 1; 2; : : :, number of people in1715

household j, j D 1; 2; : : :, number of households in sam-1716

ple). In this way we can identify change from one time1717

point to another by an individual and study the relation-1718

ships among individuals within social units (e. g., house-1719

holds, associations, neighborhoods and so forth).1720

The time points can be the same for all individuals1721

or they may vary depending on the data collection pro-1722

cedures and willingness of respondents to provide infor-1723

mation. Equation 1 is called the level 1 model because it1724

is written at the level of the time point (observation oc-1725

casion). The first term in the right hand side of Eq. (1)1726

is a random intercept, ˛, given by Eq. (2). This compo-1727

nent has specific meaning. For example, ˛
q
ti j is the mean1728

value of person i in household j at time t for variable q.1729

The term "
q
ti j is a random temporal variation (also called1730

within person variation) and it is the deviation of time ex-1731

penditure around �
q
0 . The term uqi j is a random person to1732

person variation (also called within household variation)1733

and it is also a deviation of around �
q
0 . The term vqj is1734

a random household to household variation and it is also1735

a deviation around �
q
0 . These are also called random error1736

components and they are usually assumed normally dis-1737

tributedwith E(") D E(u) D E(v) D 0, with Var(") D �2
" ,1738

Var(u) D �2
u , and Var(v) D �2

v to be estimated. It is worth1739

noting that the system of equations represented by Eq. (1)1740

contain a set of gamma coefficients (associated with a ma-1741

trix Z representing explanatory variables) that are defined1742

in a similar way as in typical regression models. The ˇs,1743

however, that multiply the matrix X are defined as ran-1744

dom with a mean and a variation around the means �s.1745

This variation can be due to the temporal, personal, and/or1746

household levels. In this way, we can define a variety of1747

equations at each of these levels to represent heteroge-1748

neous behavior that is either due to temporal fluctuations,1749

personal variation, or household variation. Equation (3)1750

differentiates between ˇs that vary within individuals and1751

those that vary within households. In this way, at each level1752

we have a level-specific variance-covariance matrix of all1753

the random terms ("s, us, vs). The significance of the el-1754

ements in each of these three matrices can be tested us-1755

ing goodness-of-fit measures based on the deviance, which1756

is the difference in the �2Log(likelihood) at convergence1757

between two nested (in terms of specification) models. In1758

addition, the �s can also be tested if they are significantly1759

different than zero using a t-test. The �s in Eq. (1) are1760

called the fixed effects and the remaining terms are called1761

the random effects at each of the three levels in the hier-1762

archy. Estimation of all the fixed and random parameters1763

can be accomplished either by Full InformationMaximum1764

Likelihood, FIML, applied to Y directly or applied to the1765

least-squares residuals, called Restricted Maximum Like- 1766

lihood-REML that can be used in tandem with a gener- 1767

alized least squares approach. Longford [105], Bryk and 1768

Raudensbush [26] and [48] provide a comprehensive re- 1769

view of estimation techniques, their performance assess- 1770

ment, and detailed algorithms. 1771

Household Utility Models 1772

The second example is also representative of a movement 1773

toward more detailed consideration of within household 1774

decision making dynamics. Although the model was spec- 1775

ified by Zhang et al. [187] for time allocation to shared 1776

(j) and non-shared activities (s), it is a potentially use- 1777

ful model for other trip making decisions. Each person in 1778

a household is assumed to form two utility functions. One 1779

utility is for the shared activities (i. e., engagement in activ- 1780

ities with other household members) and non-shared ac- 1781

tivities. These utility functions are given by Eq. (4) (shared 1782

activity) and 5 (non-shared activity). 1783

1784

uis D exp

  

˛s C
X

k

ˇsk xisk

!

1785

ln

 
X

m
�sm�i sm

!

C "i s

!

ln(ti s ) (4) 1786

1787

1788

ui j D exp

  

˛ j C
X

k

ˇ jk xi jk

!

1789

ln

 
X

m
� jm�i jm

!

C "i j

!

ln(ti j) ; (5) 1790

1791

where: 1792

˛s is the constant term for each shared activity s. 1793

˛s is the constant term for each shared activity s. 1794

xisk is the kth explanatory variable (and/or attribute) of 1795

household member i for shared activity s. 1796

ˇsk is the parameter associated with the kth attribute of 1797

the shared activity. 1798

� ism is the travel time by mode m for each activity s by 1799

person i. 1800

�sm is the parameter associated with travel time by 1801

modem. 1802

"is is a random error term of the shared activity s by 1803

person i. 1804

tis is the amount of time dedicated to activity s by per- 1805

son i. 1806

˛j is the constant term for each non-shared activity. 1807

xijk is the kth explanatory variable (attribute) of house- 1808

hold member i for non-shared activity j. 1809
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ˇjk is the parameter associated with the kth attribute of1810

non-shared activity.1811

� ijm is the travel time by mode m for each activity s by1812

person i.1813

� jm is the parameter associated with travel time by1814

modem.1815

"ij is a random error term of the non-shared activity j1816

by person i.1817

tij is the amount of time dedicated to activity j by per-1818

son i.1819

The overall utility of activity participation and travel1820

for each person i under the assumption of a multi-linear1821

utility is given by Eq. (6).1822

ui D
JCS
X

jD1

ri jui j C
JCS
X

jD1

X

j0> j

ıi ri j ri j0ui jui j0 (6)1823

where,1824

uij is the utility of activity j for person i.1825

rij is the relative interest of person i for activity j.1826

ıi is parameter of activity dependency for member i.1827

J C S is the number of non-shared and shared activities1828

for a person within the unit of time under consid-1829

eration.1830

In a similar way the household utility function is1831

a multi-linear combination of the individual utilities in1832

Eq. ( 7 ).1833

HUF D
nX

iD1

wiui C �

nX

iD1

X

i 0>i

(wiwi 0uiui 0 ) (7)1834

where,1835

HUF is the household utility combining the utilities of all1836

household members n.1837

ui is the utility of household member i.1838

wi is the relative influence of each householdmember i.1839

� is a parameter of within household interaction.1840

Under the assumption of maximizing HUF it is possi-1841

ble to create a Lagrangian function that accounts for con-1842

straints (i. e., total amount of time available, signs of pa-1843

rameters and so forth) and through a maximization so-1844

lution derive equations that can be used to estimate the1845

unknown parameters in Eqs. (4–7) (details are provided1846

in Zhang et al. [187] for time allocation). It is worth not-1847

ing that Zhang et al. [187], derived two alternate model1848

systems by changing the utility functions to represent dif-1849

ferent intra-household bargaining models (for a detailed1850

review see Bengstrom 1995 TS9 ). Then through a lineariza- 1851

tion process they developed a system of linear equations 1852

and estimated the parameters using a multiple equations 1853

econometric approach (the Seemingly Unrelated Regres- 1854

sion Estimation, Greene, 1993 TS10 ) that is a simplifying al- 1855

ternative to the multilevel models described earlier in this 1856

section. A more general review of this type of model for- 1857

mulation is also provided by Timmermans [164]. 1858

Summary 1859

Similarities and differences among the implementedmod- 1860

eling ideas are: 1861

� A hierarchy of decisions by households is assumed that 1862

identifies longer term choices determining the shorter 1863

term choices. In this way different blocks of variables 1864

can be identified and their mutual correlation used to 1865

derive equations that are used in forecasting. 1866

� Anchor points (Home location – work location – 1867

school location) are inserted in the first choice level 1868

and they define the overall spatial structure of activity 1869

scheduling. 1870

� Out-of-home activity purposes include work, school, 1871

shopping, meals, personal business, recreation, and es- 1872

cort. These expand the original home-based and non- 1873

home based purposes in travel behavior and the three 1874

activity types in home economics (labor for pay, labor 1875

at home, and leisure). 1876

� In-home activities are explicitly modeled or allowed to 1877

enter the model structure as a “stay-at-home” choice 1878

with some models allowing for activity choice at home 1879

(work, maintenance and discretionary). In this way 1880

limited substitution between at home and outside 1881

home can be reflected in the models. 1882

� Stop frequencies and activities at stops are modeled at 1883

the day pattern and tour levels to distinguish between 1884

activities and trips that can be rescheduled with lit- 1885

tle additional efforts versus the activities and trips that 1886

cannot be rescheduled (e. g., school trips). 1887

� Modes and destinations are modeled together. In this 1888

way the mutual influence – sequential and/or simulta- 1889

neous relationships can be reflected in the model struc- 1890

ture. 1891

� Time is included in a few instances in activity-based 1892

models. For example departure time for trips and tour 1893

time of day choice are modeled explicitly. Model time 1894

periods are anywhere between 30min and second-by- 1895

second and time windows are used to account for 1896

scheduling. This modeling component allows to incor- 1897

porate time-of-day in the modeling suites. It also allows 1898

to identify windows of activity and travel opportunities. 1899

TS9 Please check Bengstrom (1995). There is no entry in the bibliography.
TS10 Please check Greene (1993). There is no entry in the bibliography.
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The presence of departure time also enables models to1900

trip matrices for any desired periods in a day. In fact,1901

output of time periods depends on route choice and1902

traffic assignment needs and can be adjusted almost at1903

will.1904

� Human interaction, although limited for now to the1905

within-household interaction, is incorporated by relat-1906

ing the day pattern of one person to the day patterns1907

of other persons within a household, their joint activi-1908

ties and trip making are explicitly modeled (joint recre-1909

ation, escort trips), and allocation of activity-roles are1910

also modeled.1911

� Spatial aspects of a region are accounted for using1912

methods that produce spatially distributed synthetic1913

populations using as external control totals averages1914

and relative frequencies of population characteristics.1915

� Accessibility measures are used to capture spatial in-1916

teraction among activity locations and the level of ser-1917

vice offered by the transportation systems. These are1918

also the indicators used to account for feedback among1919

the lower level in the hierarchy decisions (e. g., activity1920

location choices, routes followed, congestion) and the1921

higher level such as residence location choice.1922

� Spatial resolution is heavily dependent on data avail-1923

ability and it reached already the level of a parcel and/or1924

building at its most disaggregate level. Outputs of mod-1925

els are then aggregated to whatever level is required by1926

traffic assignment, mode specific studies (nonmotor-1927

ized and/or transit) and reporting needs and require-1928

ments.1929

Overall, the plethora of advances includes: a) models and1930

experiments to create computerized virtual worlds and1931

synthetic schedules at the most elementary level of de-1932

cision making using microsimulation and computational1933

process models; b) data collection methods and newmeth-1934

ods to collect extreme details about behavior and to es-1935

timate, validate, and verify models using advanced hard-1936

ware, software, and data analysis techniques; and c) inte-1937

gration of models from different domains to reflect addi-1938

tional interdependencies such as land use and telecommu-1939

nications.1940

Future Directions1941

Much more work remains to be done in order to develop1942

models that can answer more complex questions in policy1943

analysis and for this reason a few steps are outlined here.1944

In policy and program evaluation, transportation analysis1945

appears to be narrowly applied to only one method of as-1946

sessment that does not follow the ideal of a randomized1947

controlled trial and does not explicitly define what exper-1948

imental setting we are using for our assessments. Unfor- 1949

tunately this weakens our findings about policy analysis 1950

and planning activities. Although we have many labora- 1951

tory experiments that were done for intelligent transporta- 1952

tion systems we lack studies and guidelines to develop ex- 1953

perimental and quasi-experimental procedures to guide us 1954

in policy development and large scale data collection. 1955

In addition, many issues remain unresolved in the ar- 1956

eas of coordination among scale in time and space and re- 1957

lated issues. In addition very little is known about model 1958

sensitivity and data error tolerance and their mapping to 1959

strategy evaluations. This is partially due to the lack of 1960

tools that are able to make these assessments but also due 1961

to lack of scrutiny of these issues and their implications on 1962

impact assessment. 1963

Regarding strategic planning and evaluation, we also 1964

lack models designed to be used in scenario building ex- 1965

ercises such as backcasting and related assessments. The 1966

models about change are usually defined for forecasting 1967

and simple time inversion may not work to make them 1968

usable in backcasting. This area does not have the long tra- 1969

dition of modeling and simulation to help us develop suit- 1970

able models. Should more attention be paid to this aspect? 1971

Is there room for a combination of techniques including 1972

qualitative research methods? What is the interface be- 1973

tween this aspect and the experimental methods questions 1974

in program evaluation? 1975

In the new research and technology area, since we are 1976

dealing with the behavior of persons, it is unavoidable to 1977

consider perceptions of time and space. What role should 1978

perceptions of time and space [51] play in behavioralmod- 1979

els and what is the most appropriate use of these percep- 1980

tions? The multiple dimensions of time such as tempo, du- 1981

ration, and clock time Levine (1997) TS11 are neglected in 1982

behavioral models – is there a role for them in behavioral 1983

models? 1984

Human interaction is considered important and is re- 1985

ceiving attention in more recent research Golob and Mc- 1986

Nally [54], Chandrasekharan and Goulias [27], Simma 1987

and Axhausen [148], Gliebe and Koppelman [47], Gou- 1988

lias and Kim [62], Zhang et al. [187], but only partially 1989

accounted for in applications as illustrated by Vovsha 1990

and Petersen [177]. Future applications will increasingly 1991

pay attention to motivations for human interactions and 1992

the nature of these interactions within households and in 1993

a wider social network context. 1994
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