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!THE GROWING CAPABILITIES of silicon technology

and the increasing complexity of applications in re-

cent decades have forced design methodologies

and tools to move to higher abstraction levels. Raising

the abstraction levels and accelerating automation of

both the synthesis and the verification processes have

for this reason always been key factors in the evolu-

tion of the design process, which in turn has allowed

designers to explore the design space efficiently and

rapidly.

In the software domain, for example, machine

code (binary sequence) was once the only language

that could be used to program a computer. In the

1950s, the concept of assembly language (and assem-

bler) was introduced. Finally, high-level languages

(HLLs) and associated compilation techniques were

developed to improve software productivity. HLLs,

which are platform independent, follow the rules of

human language with a grammar, a syntax, and a se-

mantics. They thus provide flexibility and portability

by hiding details of the computer architecture. As-

sembly language is today used only in limited scenar-

ios, primarily to optimize the critical parts of a

program when there is an absolute need for speed

and code compactness, or both. However, with the

growing complexity of both modern system architec-

tures and software applications, using HLLs and com-

pilers clearly generates better overall results. No one

today would even think of program-

ming a complex software application

solely by using an assembly language.

In the hardware domain, specification

languages and design methodologies

have evolved similarly.1,2 For this reason,

until the late 1960s, ICs were designed,

optimized, and laid out by hand. Simula-

tion at the gate level appeared in the early 1970s, and

cycle-based simulation became available by 1979. Tech-

niques introducedduring the 1980s includedplace-and-

route, schematic circuit capture, formal verification,

and static timing analysis. Hardware description lan-

guages (HDLs), such as Verilog (1986) and VHDL

(1987), have enabled wide adoption of simulation

tools. These HDLs have also served as inputs to logic

synthesis tools leading to the definition of their synthe-

sizable subsets. During the 1990s, the first generation of

commercial high-level synthesis (HLS) tools was avail-

able commercially.3,4 Around the same time, research

interest on hardware-software codesign!!including

estimation, exploration, partitioning, interfacing, com-

munication, synthesis, and cosimulation!!gained mo-

mentum.5 The concept of IP core and platform-based

design started to emerge.6-8 In the 2000s, there has

been a shift to an electronic system-level (ESL) para-

digm that facilitates exploration, synthesis, and verifica-

tion of complex SoCs.9 This includes the introduction

of languages with system-level abstractions, such as

SystemC (http://www.systemc.org), SpecC (http://

www.cecs.uci.edu/~specc), or SystemVerilog (IEEE

1800-2005; http://standards.ieee.org), and the intro-

duction of transaction-level modeling (TLM). The

ESL paradigm shift caused by the rise of system com-

plexities, a multitude of components in a product

(hundreds of processors in a car, for instance),
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amultitude of versions of a chip (for better product dif-

ferentiation), and an interdependency of component

suppliers forced the market to focus on hardware

and softwareproductivity, dependability, interoperabil-

ity, and reusability. In this context, processor custom-

ization and HLS have become necessary paths to

efficient ESL design.10 The new HLS flows, in addition

to reducing the time for creating the hardware, also

help reduce the time to verify it as well as facilitate

other flows such as power analysis.

Raising the hardware design’s abstraction level is

essential to evaluating system-level exploration for ar-

chitectural decisions such as hardware and software

design, synthesis and verification, memory organiza-

tion, and power management. HLS also enables

reuse of the same high-level specification, targeted

to accommodate a wide range of design constraints

and ASIC or FPGA technologies.

Typically, a designer begins the specification of an

application that is to be implemented as a custom

processor, dedicated coprocessor or any other cus-

tom hardware unit such as interrupt controller,

bridge, arbiter, interface unit, or a special function

unit with a high-level description capture of the

desired functionality, using an HLL. This first step

thus involves writing a functional specification (an

untimed description) in which a function consumes

all its input data simultaneously, performs all compu-

tations without any delay, and provides all its output

data simultaneously. At this abstraction level, varia-

bles (structure and array) and data types (typically

floating point and integer) are related neither to the

hardware design domain (bits, bit vectors) nor to

the embedded software. Realistic hardware imple-

mentation thus requires conversion of floating-point

and integer data types into bit-accurate data types

of specific length (not a standard byte or word size,

as in software) with acceptable computation accu-

racy, while generating an optimized hardware archi-

tecture starting from this bit-accurate specification.

HLS tools transform an untimed (or partially timed)

high-level specification into a fully timed implementa-

tion.10-13 They automatically or semiautomatically gen-

erate a custom architecture to efficiently implement

the specification. In addition to the memory banks

and the communication interfaces, the generated ar-

chitecture is described at the RTL and contains a

data path (registers, multiplexers, functional units,

and buses) and a controller, as required by the given

specification and the design constraints.

Key concepts
Starting from the high-level description of an appli-

cation, an RTL component library, and specific design

constraints, an HLS tool executes the following tasks

(see Figure 1):

1. compiles the specification,

2. allocates hardware resources (functional units,

storage components, buses, and so on),

3. schedules the operations to clock cycles,

4. binds the operations to functional units,

5. binds variables to storage elements,

6. binds transfers to buses, and

7. generates the RTL architecture.

Tasks 2 through 6 are interdependent, and for a de-

signer to achieve the optimal solution, they would ide-

ally be optimized in conjunction. To handle real-world

designs, however, the tasks are commonly executed in

sequence to manage the computational complexity of

synthesis. The particular order of some of the synthesis

tasks, as well as a measure of how well the interdepen-

dencies are estimated and accounted for, significantly

impacts the generated design’s quality. More details

are available elsewhere.10-13

Compilation and modeling

HLS always begins with the compilation of the

functional specification. This first step transforms

the input description into a formal representation.

Specification

Compilation

Allocation Scheduling

Binding

Generation

Formal model

RTL architecture

Library

Logic synthesis

...

Figure 1. High-level synthesis (HLS) design steps.
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This first step traditionally includes several code opti-

mizations such as dead-code elimination, false data

dependency elimination, and constant folding and

loop transformations.

The formal model produced by the compilation

classically exhibits the data and control dependen-

cies between the operations. Data dependencies

can be easily represented with a data flow graph

(DFG) in which every node represents an operation

and the arcs between the nodes represent the input,

output, and temporary variables.12 A pure DFG mod-

els data dependencies only. In some cases, it is pos-

sible to get this model by removing the control

dependencies of the initial specification from the

model at compile time. To do so, loops are com-

pletely unrolled by converting to noniterative code

blocks, and conditional assignments are resolved by

creating multiplexed values. The resulting DFG explic-

itly exhibits all the intrinsic parallelism of the specifi-

cation. However, the required transformations can

lead to a large formal representation that requires

considerable memory to be stored during synthesis.

Moreover, this representation does not support

loops with unbounded iteration count and nonstatic

control statements such as goto. This limits the use

of pure DFG representations to a few applications.

The DFG model has been extended by adding control

dependencies: the control and data flow graph

(CDFG).12-15 A CDFG is a directed graph in which

the edges represent the control flow. The nodes in a

CDFG are commonly referred to as basic blocks and

are defined as a straight-line sequence of statements

that contain no branches or internal entrance or

exit points. Edges can be conditional to represent

if and switch constructs. A CDFG exhibits data

dependencies inside basic blocks and captures the

control flow between those basic blocks.

CDFGs are more expressive than DFGs because

they can represent loops with unbounded iterations.

However, the parallelism is explicit only within

basic blocks, and additional analysis or transforma-

tions are required to expose parallelism that might

exist between basic blocks. Such transformations in-

clude for example loop unrolling, loop pipelining,

loop merging, and loop tiling. These techniques, by

revealing the parallelism between loops and between

loop iterations, are used to optimize the latency or

the throughput and the size and number of memory

accesses. These transformations can be realized auto-

matically,14 or they can be user-driven.10 In addition to

control dependencies, data dependencies between

basic blocks can be added to the CDFG model as

shown in the hierarchical task graph representation

used in the SPARK tool.14,16

Allocation
Allocation defines the type and the number of

hardware resources (for instance, functional units,

storage, or connectivity components) needed to sat-

isfy the design constraints. Depending on the HLS

tool, some components may be added during sched-

uling and binding tasks. For example, the connectiv-

ity components (such as buses or point-to-point

connections among components) can be added be-

fore or after binding and scheduling tasks. The com-

ponents are selected from the RTL component

library. It’s important to select at least one component

for each operation in the specification model. The li-

brary must also include component characteristics

(such as area, delay, and power) and its metrics to

be used by other synthesis tasks.

Scheduling

All operations required in the specification model

must be scheduled into cycles. In other words, for

each operation such as a ¼ b op c, variables b and

c must be read from their sources (either storage

components or functional-unit components) and

brought to the input of a functional unit that can ex-

ecute operation op, and the result a must be brought

to its destinations (storage or functional units).

Depending on the functional component to which

the operation is mapped, the operation can be sched-

uled within one clock cycle or scheduled over several

cycles. Operations can be chained (the output of an

operation directly feeds an input of another opera-

tion). Operations can be scheduled to execute in par-

allel provided there are no data dependencies

between them and there are sufficient resources

available at the same time.

Binding

Each variable that carries values across cycles

must be bound to a storage unit. In addition, several

variables with nonoverlapping or mutually exclusive

lifetimes can be bound to the same storage units.

Every operation in the specification model must

be bound to one of the functional units capable

of executing the operation. If there are several

High-Level Synthesis
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units with such capability, the binding algorithm

must optimize this selection. Storage and functional-

unit binding also depend on connectivity binding,

which requires that each transfer from component

to component be bound to a connection unit

such as a bus or a multiplexer (see, for example,

http://www-labsticc.univ-ubs.fr/www-gaut/). Ideally,

high-level synthesis estimates the connectivity delay

and area as early as possible so that later HLS steps

can better optimize the design. An alternative

approach is to specify the complete architecture dur-

ing allocation so that initial floorplanning results can

be used during binding and scheduling (see http://

www.cecs.uci.edu/~nisc).

Generation

Once decisions have been made in the preceding

tasks of allocation, scheduling, and binding, the goal

of the RTL architecture generation step is to apply all

the design decisions made and generate an RTL

model of the synthesized design.

Architecture. The RTL architecture is implemented

by a set of register-transfer components. It usually

includes a controller and a data path (see Figure 2).

A data path consists of a set of storage elements

(such as registers, register files, and memories), a set

of functional units (such as ALUs, multipliers, shifters,

and other custom functions), and interconnect ele-

ments (such as tristate drivers, multiplexers, and

buses). All these register-transfer components can be

allocated in different quantities and types and con-

nected arbitrarily through buses. Each component

can take one or more clock cycles to execute, can

be pipelined, and can have input or output registers.

In addition, the entire data path and controller can

be pipelined in several stages.

Primary input and output ports of the design inter-

face with the external world to transfer both data and

control (used for interface protocol handshaking and

synchronization). Data inputs and outputs are con-

nected to the data path, and control inputs and out-

puts are connected to the controller. There are also

control signals from the controller to the data path

and status signals from the data path to the controller.

However, some architectures may not have all the

connectivity just described, and in general some of

the controller functions may be implemented as

part of the data path!!for example, a counter plus

other logic in the data path that generates control

signals.

The controller is a finite state machine that

orchestrates the flow of data in the data path by set-

ting the values of control signals (also called control

RF/Scratch pad

ALU MUL Memory

Bus 1
Bus 2

Bus 3

Next-
state
logic

Output
logic

State
register

(SR)

Control
signals

Data pathController

Control
inputs

Control
outputs

Status signals

...

...

Figure 2. Typical architecture.
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word) such as the select inputs of functional units,

registers, and multiplexers. The inputs to the control-

ler may come from primary inputs (control inputs)

or from the data path components such as compara-

tors and so on (status signals). The controller con-

sists of a state register (SR), next-state logic, and

output logic. The SR stores the present state of the

processor, which is equal to the present state of

the finite-state machine (FSM) model describing

the controller’s operation. The next-state logic com-

putes the next state to be loaded into the SR, whereas

the output logic generates the control signals and the

control outputs.

The controller of a simple dedicated coprocessor

is classically implemented with hardwired logic

gates. On the other hand, a controller can be pro-

grammable with a read-write or read-only program

memory for a specific custom processor. In this

case, the program memory can store instructions or

just control words, which are longer but require no

decoding. In such a circumstance, SR is called a pro-

gram counter, the next-state logic is an address gener-

ator, and the output logic is RAM or ROM.

Output model. According to the decisions made in

the binding tasks, the description of the architecture

can be written on RTL with different levels of detail

(that is, without binding or with partial or complete

binding). For example, a ¼ b þ c executing in state

(n) can be written as Figure 3 indicates:

When the RTL description includes only partial

binding of resources, the logic synthesis step that

follows HLS must perform the binding task and the

associated optimization. Leaving components un-

bound in the generated RTL provides the RTL and

physical synthesis the flexibility to optimize the bind-

ings on the basis of updated timing estimates that

take into account wire loads due to physical (floor-

planning and place-and-route) considerations.

Several design flows
Allocation, scheduling, and binding can be

performed simultaneously or in specific sequence

depending on the strategy and algorithms used. How-

ever, they are all interrelated. If they are performed to-

gether, the synthesis process becomes too complex to

be applied to realistic examples. The order in which

they are realized depends on the design constraints

and the tool’s objectives. For example, allocation

will be performed first when scheduling tries to min-

imize the latency or to maximize the throughput

under a resource constraint. Allocation will be deter-

mined during scheduling when scheduling tries to

minimize the area under timing constraints.17

Resource-constrained approaches are used when a

designer wants to define the data path architec-

ture,18,19 or wants to accelerate an application by

using an FPGA device with a limited amount of avail-

able resources.20 Time-constrained approaches are

used when the objective is to reduce a circuit’s area

while meeting an application’s throughput require-

ments, as in multimedia or telecommunication

applications.21

In practice, the resource-constrained problem can

be solved by using a time-constrained approach or

tool (and vice versa). In this case, the designer

relaxes the timing constraints until the provided cir-

cuit area is acceptable. Latency, throughput, resource

count, and area are now well-known constraints and

objectives. However, recent work has considered fea-

tures such as clock period, memory bandwidth, mem-

ory mapping, power consumption, and so forth that

make the synthesis problem even more difficult to

solve.10,22-24

Another example of how synthesis tasks can be or-

dered concerns the allocation and the binding steps.

The types and numbers of resources determined in

the allocation task are taken as input for the binding

task. In practical HLS tools, however, resources are

often allocated only partially. Additional resources

High-Level Synthesis

Without any binding:
state (n): a = b + c;
go to state (n + 1);

With storage binding:
state (n): RF(1) = RF(3)+ RF(4);
go to state (n + 1);

With functional-unit binding:
state (n): a = ALU1 (+, b, c);
go to state (n + 1);

With storage and functional-unit binding:
state(n):RF(1)=ALU1(+,RF(3),RF(4));
go to state (n + 1);

With storage, functional-unit, and connectivity binding:
state (n): Bus1 = RF(3); Bus2 = RF(4);
Bus3 = ALU1 (+, Bus1, Bus2);
RF(1)= Bus3;
go to state (n + 1);

Figure 3. RTL description written with different

binding details.
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are allocated during the binding step according to

the design constraints and objectives. These addi-

tional resources can be of any type: functional

units, multiplexers, or registers. Hence, functional

units can be first allocated to schedule and bind

the operations. Both registers and multiplexers can

then be allocated (created) during the variable-to-

register binding step.

The synthesis tasks can be performed manually or

automatically. Obviously, many strategies are possible,

as exemplified by available EDA tools: these tools

might perform each of the aforementioned tasks

only partially in automatic fashion and leave the

rest to the designer.10

Industrial tools
Here, we take a brief look first at commercially

available HLS tools for specifying the input descrip-

tion, and then we more carefully examine two state-

of-the-art industrial HLS tools.

Input languages and tools

The input specification must capture the intended

design functionality at a high abstraction level. Rather

than coding low-level implementation details, the de-

signer uses the automation provided by the HLS tool

to guide the design decisions, which heavily depend

on performance goals and the target technology. For

instance, if there is parallelism in an HLS specifica-

tion, it is extracted using dataflow analysis in accor-

dance with the target technology’s capabilities and

performance goals (on a slow technology, more paral-

lelism is required to achieve the performance goal).

The latest generation of HLS tools, in most cases,

uses either ANSI C, C++, or languages such as SystemC

that are based on C or C++ that add hardware-specific

constructs such as timing, hardware hierarchy, inter-

face ports, signals, explicit specification of parallelism,

and others. Some HLS tools that support C or C++

or derivatives are Mentor’s Catapult C (C, C++),

Forte’s Cynthesizer (SystemC), NEC’s CyberWorkbench

(C with hardware extensions), Synfora’s PICO (C), and

Cadence’s C-to-Silicon (SystemC). Other languages

used for high-level modeling are MathWork’s Matlab

and Simulink. Tools that support Matlab or Simulink

are Xilinx’ AccelDSP (Matlab) and Synopsys’ Simplify-

DSP (Simulink); both use an IP approach to gener-

ate the hardware implementation. An alternative

approach for generating an implementation is to use

a configurable processor approach, which is the

approach of both CoWare’s Processor Designer and

Tensilica’s Xtensa.

Other languages, not based on C or C++ but which

are tailored to specific domains, have also been pro-

posed. Esterel is a synchronous language for the de-

velopment of reactive systems. Esterel Studio can

generate either software or hardware. Bluespec’s

BSV is language targeted for specifying concurrency

with rule-based atomic transactions.

The input specification to HLS tools must be writ-

ten with some hardware implementation in mind to

get the best results. For example, video line buffering

must be coded as part of the algorithm to generate

high-throughput designs.25 Ideally, such code restruc-

turing still preserves much of the abstraction level. It

is beyond the scope of this article to provide an over-

view of the specific writing styles required in the spec-

ification for various tools. As tools’ capabilities evolve

further, fewer modifications will be required to con-

vert an algorithm written for software into an algo-

rithm that is suitable as input to HLS. An analogous

evolution has occurred with RTL synthesis!!for exam-

ple, with the optimization of arithmetic expressions.

Catapult C synthesis
Catapult takes an algorithm written in ANSI C++

and a set of user directives as input and generates

an RTL that is optimized for the specified target tech-

nology. The input can be compiled by any standard

compiler compliant with C++; pragmas and directives

do not change the functional behavior of the input

specification.

Synthesis input. The input specification is sequen-

tial and does not include any notion of time or explicit

parallelism: it does not hardcode the interface or the

design’s architecture. Keeping the input abstract is es-

sential because any hard-coding of interface and ar-

chitectural details significantly limits the range of

designs that HLS could generate. Required directives

specify the target technology (component library)

and the clock period. Optional directives control inter-

face synthesis, array-to-memory mappings, amount of

parallelism to uncover by loop unrolling, loop pipelin-

ing, hardware hierarchy and block communication,

scheduling (latency or cycle) constraints, allocation

directives to constrain the number or type of hardware

resources, and so on.

Native C++ integer types as well as C++ bit-accurate

integer and fixed-point data types are supported
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for synthesis. The generated RTL faithfully reflects the

bit-accurate behavior specified in the source. Publicly

available integer and fixed-point data types provided

by Mentor Graphics’ (http://www.mentor.com/esl)

Algorithmic C data types library (ANSI C++ header

files) as well as the synthesizable subset of the

SystemC integer and fixed-point data types are sup-

ported for synthesis. The support of C++ language

constructs meets and exceeds the requirements

stated in the most current draft of the Synthesis Subset

OSCI standard (http://www.systemc.org).

Generating hardware from ANSI C or C++. One

of the advantages of keeping the source untimed is

that a very wide range of interfaces and architectures

can be generated without changing the input source

specification. Another advantage of an untimed

source is that it avoids errors resulting from manual

coding of architectural details. The interface and

the architecture of the generated hardware are all

under the control of the designer via synthesis direc-

tives. Catapult’s GUI provides an interactive environ-

ment with both the control and the analysis tools to

enable efficient exploration of the design space.

Interface synthesis makes it possible to map the

transfer of data that is implied by passing of C++ func-

tion arguments to various hardware interfaces such as

wires, registers, memories, buses, or more complex

user-defined interfaces. All the necessary signals

and timing constraints are generated during the syn-

thesis process so that the generated RTL conforms

and is optimized to the desired interfaces.

For example, an array in the C source might result

in a hardware interface that streams the data or trans-

fers the data through a memory, a register bank, and

so forth. Selection of a streaming interface implies

that the environment provides data in sequential

index order whereas selection of a memory interface

implies that the environment provides data by writing

the array into memory. The granularity of the transfer

size!!for example, number of array elements pro-

vided as a stream transfer or as a memory word!!is

also specifiable as a user directive.

Hierarchy (block-level concurrency) can be speci-

fied by user directives. For example, a C function can

be synthesized as a separate hardware block instead

of being inlined. Hierarchy can also be specified in a

style that corresponds to the Kahn process network

computation model (still in sequential ANSI C++).

The blocks are connected with the appropriate

communication channels, and the required hand-

shaking interfaces are generated to guarantee the cor-

rect execution of the specified behavior. The blocks

can be synthesized to be driven by different clocks.

The clock-domain-crossing logic is generated by Cat-

apult. Communication is optimized according to

user directives to enable maximal block-level concur-

rency of execution of the blocks using FIFO buffers

(for streamed data) and ping-pong memories to en-

able block-level pipelining and thus improve the

throughput of the overall design.

All the HLS steps consider accurate component

area and timing numbers for the target ASIC or

FPGA technology for the designer’s RTL synthesis

tool of choice. Accurate timing and area numbers

for components are essential to generate RTL that

meets timing and is optimized for area. During syn-

thesis, Catapult queries the component library so

that it can allocate various combinational or pipelin-

ing components with different performance and area

trade-offs. The queried component library is prechar-

acterized for the target technology and the target RTL

synthesis tool. Component libraries can also be built

by the designer to incorporate specific characteriza-

tion for memories, buses, I/O interfaces, or other

units of functionality such as pipelined components.

Verification and power estimation flows. The

synthesis process generates the required verification

infrastructure in SystemC so that the input stimuli

from the original C++ testbench can be applied to

the generated RTL to verify its functionality against

the (golden) source C++ specification using simu-

lation. The synthesis process also generates the

required verification infrastructure (wrappers and

scripts) to enable the use of sequential equivalence

checking between the source C++ specification and

the generated RTL. Automatic generation of the verifi-

cation infrastructure is essential because the interface

of the generated hardware heavily depends on inter-

face synthesis.

Power estimation flows with third-party tools let

the designer gather switching activity for the design

and obtain RTL and gate-level power estimates. By

exploring various architectures, the designer can rap-

idly converge to a low-power design that meets the

required performance and area goals.

Catapult has been successfully used in more than

200 ASIC tape-outs and several hundred FPGA designs.

Typical applications include computation-intensive

High-Level Synthesis
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algorithms in communications and video and image

processing.

Cynthesizer SystemC synthesis

Cynthesizer takes a SystemC module containing hi-

erarchy, multiple processes, interface protocols, and

algorithms and produces RTL Verilog optimized to a

specific target technology and clock speed. The target

technology is specified by a user-provided .lib file or,

for an FPGA implementation, by the user’s identifying

the targeted Xilinx or Altera part.

Synthesis input. The input to the HLS flow used

with Cynthesizer is a pin- and protocol-accurate Sys-

temC model. Because SystemC is a C++ class library,

no language translation is required to reuse algo-

rithms written in C++. The synthesizable subset is

quite broad, including classes and structures, opera-

tor overloading, and C++ template specialization.

Constructs that are not supported for synthesis

include dynamic allocation (malloc, free, new, and

delete), pointer arithmetic, and virtual functions.

The designer puts untimed high-level C++ into a

hardware context using SystemC to represent the

hardware elements such as ports, clock edges, struc-

tural hierarchy, bit-accurate data types, and concur-

rent processes. As Figure 4 shows, a synthesizable

SC_MODULE can contain multiple SC_CTHREAD instan-

ces and multiple SC_METHOD instances along with sub-

module instances and signals for internal connections.

I/O ports are signal-level SystemC sc_in and sc_out

ports. SC_MODULE instances are C++ classes, so they

can also contain C++ member functions and data

members (variables), which represent the module be-

havior and local storage respectively.

Clocked thread processes implemented as

SystemC SC_CTHREAD instances are used for the major-

ity of the module functionality. They contain an

infinite loop that implements the bulk of the function-

ality along with reset code that initializes I/O ports

and variables. The SystemC clocked thread construct

provides the needed reset semantics. Within a thread,

the designer can combine untimed computation

code with cycle-accurate protocol code. The de-

signer determines the protocol by writing SystemC

code containing port I/O statements and wait() state-

ments. Cynthesizer uses a hybrid scheduling ap-

proach in which the protocol code is scheduled in

a cycle-accurate way, honoring the clock edges speci-

fied by the designer as SystemC wait() statements.

The computation code is written without any wait()

statements and scheduled by the tool to satisfy la-

tency, pipelining, and other constraints given by the

designer.

Triggered methods implemented as SystemC

SC_METHOD instances can also be used to implement

behaviors that are triggered by activity on signals in

a sensitivity list, similar to a Verilog always block.

This allows a mix of high- and low-level coding styles

to be used, if needed.

Complex subsystems are built and verified by com-

bining modules using structural hierarchy, just as in

Verilog or VHDL. The high-level models used as the

input to synthesis can be simulated directly to vali-

date both the algorithms and the way the algorithm

code interacts with the interface protocol code. Mul-

tiple modules are simulated together to validate that

they interoperate correctly to implement the function-

ality of the hierarchical subsystem.

Targeting a specific process technology. To en-

sure that the synthesized RTL meets timing require-

ments at a given clock rate using a specific foundry

and process technology, the HLS tool requires accu-

rate estimates of the timing characteristics of each op-

eration. Cynthesizer uses an internal data path

optimization engine to create a library of gate-level

adders, multipliers, and so on. This takes a few

hours for a specific process technology and clock

speed and can be performed by the designer given

any library file. Cynthesizer uses the timing and

area characteristics of these components to make

trade-offs and optimize the RTL. Designers have the

Clock SC_MODULE

SC_CTHREAD

SC_METHOD

Ports
required for

Signal-level
ports for

reading data

Signal-level
ports for
writing data

Submodule Submodule
Signals

Data members
(storage)

Reset

Member
functions

SC_CTHREAD

Figure 4. SystemC input for synthesis.
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option of using the gates for implementation or of

using RTL representations of the data path compo-

nents for logic synthesis.

Synthesis output. Cynthesizer produces RTL Veri-

log for use with logic synthesis tools provided by

EDA vendors for ASIC and FPGA technology.

The RTL consists of an FSM and a set of explicitly

instantiated data path components such as multipliers,

adders, and multiplexers. More-complex custom data

path components that implement arithmetic expres-

sions used in the design are automatically created,

and the designer can specify sections of C++ code

to be implemented as data path components. The

multiplexers directing the dataflow through the data

path components and registers are controlled by a

conventional FSM consisting of a binary-encoded or

one-hot state register and next-state logic imple-

mented in Verilog always blocks.

Strengths of the SystemC flow. SystemC is a good

fit for HLS because it supports a high level of abstrac-

tion and can directly describe hardware. It combines

the high-level and object-oriented features of C++ with

hardware constructs that let a designer directly repre-

sent structural hierarchy, signals, ports, clock edges,

and so on. This combination of characteristics pro-

vides a very efficient design and verification flow in

which behavioral models of multiple modules can

be concurrently simulated to verify their combined al-

gorithm and interface behavior. Most functional

errors can be found and eliminated at this high-

speed behavioral level, which eliminates the need

for time-consuming RTL simulation to validate interfa-

ces and system-level operation, and substantially

reduces the overall number of slow RTL simulations

required. Once the behavior is functionally correct,

the models that were simulated are used directly for

synthesis, eliminating opportunities for mistakes or

misunderstanding.

ONE INDICATOR OF HOW FAR HLS has come since its

early days in the late 1970s is the preponderance of

different HLS tools that are available, both academi-

cally and commercially. However, many features

must yet be added before these tools become as

widely adopted as layout and logic synthesis tools.

Moreover, many specific embedded-system applica-

tions need particular attention. As HLS moves from

block-level to subsystem to full-system design, the

interaction of hardware and software becomes both

a challenge and an opportunity for further automa-

tion. Additional research is vital, because we are

still a long way from HLS that automatically searches

the design space without the designer’s guidance and

delivers optimal results for different design constraints

and technologies. !
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