
Towards a Complexity Model for Design and

Analysis of PGAS-Based Algorithms

Mohamed Bakhouya1, Jaafar Gaber2, and Tarek El-Ghazawi1

1 Department of Electrical and Computer Engineering
High Performance Computing Laboratory

The George Washington University
{bakhouya,tarek}@gwu.edu

2 Universite de Technologies de Belfort-Montbeliard
gaber@utbm.fr

Abstract. Many new Partitioned Global Address Space (PGAS)
programming languages have recently emerged and are becoming ubiqui-
tously available on nearly all modern parallel architectures. PGAS pro-
gramming languages provide ease-of-use through a global shared address
space while emphasizing performance by providing locality awareness
and a partition of the address space. Examples of PGAS languages in-
clude the Unified Parallel C (UPC), Co-array Fortran, and Titanium
languages. Therefore, the interest in complexity design and analysis of
PGAS algorithms is growing and a complexity model to capture implicit
communication and fine-grain programming style is required. In this pa-
per, a complexity model is developed to characterize the performance of
algorithms based on the PGAS programming model. The experimental
results shed further light on the impact of data distributions on locality
and performance and confirm the accuracy of the complexity model as
a useful tool for the design and analysis of PGAS-based algorithms.

1 Introduction

PGAS implicit communication and fine-grain programming style make appli-
cation performance modelling a challenging task [2], [5]. As stated in [2] and
[5], most of the efforts have gone into PGAS languages design, implementation
and optimization, but little work has been done for the design and analysis of
PGAS-based algorithms. Therefore, a complexity model for PGAS algorithms is
an interesting area for further research and design, and this field, to the best of
our knowledge, had not yet been adequately defined and addressed in the litera-
ture. The challenge is to design, analyze, and evaluate PGAS parallel algorithms
before compiling and running them on the target platform.

Recall that in sequential programming, assuming that sufficient memory is
available, execution time of a given algorithm is proportional to the work per-
formed (i.e., number of operations). This relationship between time and work
makes the performance analysis and comparison very simple. However, in parallel
performance models proposed in literature, other platform-dependent parame-
ters, such as communication overhead, are used in developing parallel programs

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 672–682, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Towards a Complexity Model for Design and Analysis 673

[8]. By changing these parameters, developers can predict the performance of
the programs on different parallel machines. However, these parameters are not
program-dependent and considering them in the design phase can complicate
the analysis process. In other words, having platform-dependent parameters in
the model makes it quite difficult to obtain a concise analysis of algorithms. To
meet this requirement, complexity models are useful for programmers to design,
analyze, and optimize their algorithms in order to get better performance. They
also provide a general guideline for programmers to choose the better algorithm
for a given application.

This paper addresses a complexity model for the analysis of the intrinsic ef-
ficiency of the PGAS algorithms with disregard to machine-dependent factors.
The aim of this model is to help PGAS parallel programmers understand the be-
havior of their algorithms and programs, making informed choices among them,
and discovering undesirable behaviors leading to poor performance.

The rest of the paper is organized as follows. In section 2, we present related
work. Section 3 presents an overview of PGAS programming model by focusing
on one language implementing it, UPC. In section 4, the complexity model for
PGAS-based algorithms is presented. Experimental results are given in section
5. Conclusion and future work are presented in section 6.

2 Related Work

There has been a great deal of interest in the development of performance models,
also called abstract parallel machine models, for parallel computations [12]. The
most popular is the Parallel Random Access Machine (PRAM) model, which is
used for both shared memory and network-based systems [10]. In shared mem-
ory systems, processors execute in concurrently and communicate by reading
and writing locations in shared memory spaces. In network-based systems, pro-
cessors coordinate and communicate by sending messages to their neighbors in
the underlying network (e.g., array, hypercube, etc) [6], [10]. While the PRAM
model does not consider the communication cost [10], it is considered by many
studies to be high level and unable to accurately model parallel machines. New
alternatives such as Bulk Synchronous Parallel (BSP) [9], LogP and its variants
[4],[8], and Queuing Shared Memory (QSM) [10] have been proposed to capture
the communication parameters. These models can be grouped into two classes:
shared memory-based models and message passing-based models. LogP and its
variants, and BSP are message passing-based models that directly abstract dis-
tributed memory and account for bandwidth limitations. Queuing Shared Mem-
ory (QSM) is a shared memory-based model [10], [11]. Despite its simplicity it
uses only machine-dependent parameters, and in addition the shared memory is
global and not partitioned, i.e. it provides no locality awareness.

Recently, approaches to predict the performance of UPC programs and com-
piler have been proposed in [2] and [5]. In [5], authors include machine-dependent
parameters in their model to predict UPC program performance. The model
proposed in [2], offers a more convenient abstraction for algorithms design and



674 M. Bakhouya, J. Gaber, and T. El-Ghazawi

development. More precisely, the main objective of this modelling approach is to
help PGAS designers to select the most suitable algorithm regardless of the im-
plementation or the target machine. The model presented in this paper extends
the modelling approach proposed in [2] by deriving analytical expressions to mea-
sure the complexity of PGAS algorithms. As stated in [2], considering explicitly
platform parameters, such as the latency, the bandwidth, and the overhead, dur-
ing the design process could lead to platform-dependent algorithms. Our primary
concern in this paper is a complexity model for the design and analysis of PGAS
algorithms.

3 PGAS Programming Model: An Overview

PGAS programming model uses fine-grain programming style that makes ap-
plication performance modelling and analysis a challenging task. Recall that
unlike coarse-grain programming model where large amounts of computational
work are done between communication events, fine-grain programming style rela-
tively small amounts of computational work can be done between communication
events. Therefore, if the granularity is too fine it is possible that the overhead
required for communications takes longer than the computation. PGAS pro-
gramming model provides two major characteristics namely data partition and
the locality that should be used to reduce the communication overhead and get
better performance. UPC is one of partitioned global address space programming
language based on C and extended with global pointers and data distribution
declarations for shared data [1].

A PGAS-based algorithm depends on the number of threads and how they
are accessing the space [1], [2]. A number of threads can work independently in a
Simple Program Multiple Data (SPMD) model. Threads communicate through
the shared memory and can access shared data while a private object may be
accessed only by its own thread. The PGAS memory model, used in UPC for
example, supports three different kinds of pointers: private pointers pointing
to the shared address space, pointers living in shared space that also point to
shared data, and private pointers pointing to data in the thread’s own private
space. The speed of local shared memory accesses will be slower than that of
private accesses due to the extra overhead of shared-to-local address translation
[5]. Also, remote accesses in turn are significantly slower because of the network
overhead and address translation process.

According to these PGAS programming features, the fine-grained program-
ming model is simple and easy to use. Programmers need to only specify the
data to be distributed across threads and reference them through special global
pointers. However, a PGAS program/algorithm can be considered efficient (com-
pared to another algorithm) if it achieves the following objectives [2]. The first
objective is to minimize the inter threads communication overhead incurred by
remote memory accesses to shared space. The second objective is to maximize
the efficient use of parallel threads and data placement or layout together with
data locality (i.e., the tradeoff between the number of allocated threads and



Towards a Complexity Model for Design and Analysis 675

the communication overhead). The third objective is to minimize the overhead
caused by the synchronization points.

Recently, all efforts are focused on compiler optimization, i.e. without the con-
trol of the programmer, in order to increase the performance of the PGAS parallel
programming language such as UPC. In [3] and [7], many optimization sugges-
tions have been proposed for incorporation into UPC compilers, such as message
aggregation, privatizing local shared accesses, and overlapping computation and
communication to hide the latencies associated with remote shared accesses.

4 A Complexity Model for PGAS Algorithms

A PGAS algorithm consists of a number of threads that use a SPMD model to
solve a given problem. Each thread has its own subset of shared data and can
coordinate and communicate with the rest of threads by writing and reading
remote shared objects or data to perform its computation. In addition, each
thread performs local computations and memory requests to its private space.
The algorithm complexity can be expressed using algorithm-dependent param-
eters to measure the number of basic operations and the number of read/write
requests. More precisely, the algorithm complexity can be expressed using Tcomp

and Tcomm, where Tcomp denotes the computational complexity, and Tcomm the
number of read and write requests. The computational complexity depends on
the problem size, denoted by N , and the number of threads, T . For example, in
the case where all threads execute the same workload (i.e., the workload is uni-
form), the number of computation operations for all threads is similar. However,
in irregular applications, certain threads could perform more or less computa-
tional operations. To includes the idle time induced by waiting, e.g. for other
threads, we consider that Tcomp is the maximum of T i

comp for 1 ≤ i ≤ T , where T
is the number of threads. It is worth notice that each thread should be executed
by one processor; the number of threads T is equal to the number of processors
P . In order to calculate T i

comp, we consider that a PGAS algorithm can be com-
posed of a sequence of phases eventually separated by synchronization points. At
a given phase, a thread can compute only or compute and communicate. There-
fore, alike sequential programming, the computational complexity of a thread
i in all elementary phases j, j ∈ φ, is T i

comp = maxj=1:φ(T i
comp(j)), where φ

is the number of all elementary phases. The computational complexity Tcomp

of the algorithm is the highest computational complexity of all threads and is
determined as follows: Tcomp = maxi=1:T (T i

comp). The complexity is dominated
by the thread that has the maximum amount of work. Unlike the computational
complexity, the communication complexity of a thread i is the sum (over all
phases) of T i

comm(j) as follows: Tcomm =
∑φ

j=1 T i
comm(j). The communication

complexity of the algorithm is the highest communication complexity overall
threads and is determined as follows: Tcomm = maxi=1:T (T i

comm). Tcomm is an
upper bound on the number of memory requests made by a single thread.

The communication complexity T i
comm(j) at each phase j and for each thread

i, depends on the number of requests to private and shared memory spaces,



676 M. Bakhouya, J. Gaber, and T. El-Ghazawi

called the pointer complexity [2]. The pointer complexity is defined to be the
total number of pointer-based manipulations (or references) used to access data.
There are three sorts of pointers in a PGAS algorithm represented by N i

p(j),
the number of references to the private memory space, N i

�(j) the number of
references to the local shared memory space, and N i

r(j) the number of references
to remote shared memory spaces. Since accesses to remote shared memory spaces
are more expensive than accesses to private and local shared memory spaces [1],
[2], [5], N i

p(j) and N i
�(j) can be neglected due to their insignificance relative to

the cost of remote references accesses to remote shared spaces N i
r(j). Therefore,

the communication complexity depends mainly on the number of references to
remote shared spaces, and hence we have: T i

comm(j) = O(N i
r(j)). This number

of remote references (i.e., read and write requests) can be easily and directly
computed from the number and layout of data structures declared and used in the
algorithm. More precisely, it depends on the following parameters: the number
of shared Data elements D declared and used in the algorithm, the number of
Local shared data elements L to a thread (L ≤ D), the number of threads T ,
and the size N of the shared Data structures . In what follows, we consider the
worst case when any computational operation could equally involve global or
local shared requests to shared memory spaces. Each thread also needs to write
or read from other threads’ partitions. Using these parameters, the number of
remote references represents the communication complexity (i.e., number of read
and write requests), at each phase j, as follows:

T i
comm(j) = O(N i

r(j)) = O(
(Di

j − Li
j)(T − 1)
T

T i
comp(j)) (1)

T i
comp(j) captures the number of computational operations, at the phase j, and

depends only on the average number of elements in shared data structures N
and the number of threads T . Di

j is the number of all shared pointers to remote
spaces (i.e., local spaces of other threads) used in the algorithm, for the thread
i in the phase j. Li

j captures the number of shared references (i.e., pointers) to
a local space of the thread i in the phase j.

Let us consider that αi
j =

Di
j−Li

j

D−L . Equation 1, which determines the com-
munication complexity of thread i at each phase j, can be rewritten as follows:

T i
comm(j) = O(

αi
j(D − L)(T − 1)

T
Tcomp(j)) (2)

To estimate the communication complexity of the algorithm, let us now con-
sider, that a certain thread i has the highest computational complexity Tcomp =
T i

comp(k) overall threads and overall phases k. According to equation 2, the com-
munication complexity of the algorithm is:

T i
comm = max

i=1:T
(

φ∑

j=1

T i
comm(j)) = O(

α(D − L)(T − 1)
T

Tcomp) (3)

where α = maxi=1:T (
∑φ

j=1 αi
j). It should be noted here that the computation

complexity depends all time on the size of the problem N and the number of



Towards a Complexity Model for Design and Analysis 677

threads T , Tcomp = f(N, T ). In addition, the communication complexity depends
on the number of shared data elements D declared and used in the algorithm, the
number of local shared data elements L to a thread, the size of the shared data
structures N , the number of threads T (T is equal to the number of processors P ),
and the parameter α, f(D, L, N, T, α), where α is a function of T . For example,
let us consider the following N ×N matrix multiplication algorithm, C = A×B:

Matrix multiplication algorithm

Input: a N ×N matrix A and a N ×N matrix B
Output: the N ×N matrix C = A×B
Data Distribution: A , B, and C are distributed in round-robin using four cases
//Loop through rows of A with affinity (e.g., i)
For i← 1 and affinity = i to N parallel Do
For j ← 1 to N Do // Loop through columns of B
C(i, j)← 0
For k← 1 to N Do // perform the product of a row of A and a column of B
C(i, j)← C(i, j) + A(i, k)×B(k, j)

End for k
End for j
End for i

This algorithm takes two matrix A and B as an input and produces a matrix C
as an output. These matrices are N × N two-dimensional arrays with N rows
and N columns. The data distribution allows us to define how these matrices
will be partitioned between threads. Four cases of data distribution are consid-
ered in this example and will be described in section 5. The first loop allows
the distribution of independent work across the threads, each computing a num-
ber of iterations represented by the field affinity. This field determines which
thread executes a given iteration. In this example, the affinity i indicates that
the iteration i will be performed by thread (i mod T ). Using this field, iterations
will be distributed across threads in round-robin manner and each thread will
process only the elements that have affinity to it avoiding costly remote requests
to shared spaces. This parallel loop can be translated into the parallel construct
of the considered PGAS language, UPC for example [1].

In this algorithm, the computational complexity Tcomp requires O(N3

T ) mul-
tiplication and addition operations, and the communication complexity Tcomm

requires O(α(D−L)(T−1)
T 2 N3) requests to remote shared spaces, where D=3, and

L ∈ {0, 1, 2, 3}. The value of L depends on the case of data distribution consid-
ered (see section 5). According to this analysis, the communication complexity
of a given PGAS algorithm achieves a lower bound when L = D, which means
that threads compute on their own data without performing any communica-
tion to access remote ones. In other words, a communication complexity of a
PGAS algorithm achieves its lower bound when L = 0; all data are accessed
with remote shared pointers.

The speedup of a PGAS algorithm, denoted by SPGAS , is defined as the ratio
between the time taken by the most efficient sequential algorithm, denoted by



678 M. Bakhouya, J. Gaber, and T. El-Ghazawi

Tseq, to perform a task using one thread and the time, denoted by Tpar, to
perform the same task using T threads (i.e., T = P ). This speedup can be
estimated as follows:

SPGAS =
Tseq

Tpar
= O(

Tseq

1 + α(D − L) (T−1)
T Tcomp

) (4)

Since the most optimal sequential algorithm yields to Tcomp ≤ Tseq

T , the speedup,
given in the equation 4, can be rewritten as follows:

SPGAS = O(
T

1 + a(T − 1)
) (5)

where a = α(D−L)
T is a key parameter that emphasizes the influence of the lo-

cality degree of the algorithm in function of the number of threads, i.e., number
of processors. According to this equation, the PGAS speedup is optimal, i.e.,
linear, when SPGAS is close to T (i.e., SPGAS = O(T )). This linear speedup can
be obtained when D = L; i.e., there are no remote requests to shared spaces.
Therefore the designer should simultaneously maximize the locality degree L,
and minimize the usage of remote shared pointers represented by α. When T
approaches infinity, a(T − 1) is bounded by a(D − L), where α is not constant,
but depends on the number of threads. Hence, even if we increase the number
of threads, in parallel the number of processors, to run the algorithm, the per-
formance is limited by the impact of the number of requests to remote shared
memory spaces a. Therefore, the designer of PGAS algorithms should attempt
to reduce this parameter to the smallest possible value. It should be noted also
that since the model considers the asymptotic complexity of the computation
and the communication, the overlapping mechanism that allows the computa-
tion to proceed without waiting for the entire data transfer to be completed is
also captured by the model.

5 Experimental Results

In this section, to validate the performance model presented in this paper, we
have implemented a UPC program to perform matrix multiplication algorithm
with different data distribution schemes. The matrix multiplication is selected
because it is simple to show the effectiveness of the model. In addition, matrix
multiplication represents one of the most important linear algebra operations in
many scientific applications..

The experiments were done using the GCC UPC toolset running on Ori-
gin 2000. The SGI Origin 2000 platform consists of 16 processors and 16GB of
SDRAM interconnected with a high speed cache coherent Non Uniform Mem-
ory Access (ccNUMA) link in hypercube architecture. The GCC UPC toolset
provides a compilation and execution environment for programs written in UPC
language.



Towards a Complexity Model for Design and Analysis 679

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30  35

S
pe

ed
up

# Threads

L=0
L=1
L=2
L=3

Fig. 1. The theoretical speedup vs. L

In this experimentation, three data structures A, B, and C (D = 3) are
considered. We consider the case where all matrices are of size (N = 128) and
the number α is equal to 3. Four different data distribution cases (L = 0, L = 1,
L = 2, and L = 3) are also considered in these experiments. In the first case,
L = 0, matrices A, B, C are partitioned among T threads (i.e., processors) by
assigning, in round robin, each thread N

T columns of A, B, and C respectively.
More precisely, elements of these matrices will be distributed acroses the threads
element-by-element in round-robin fashion. For example, the first element of the
matrix A is created in the shared space that has affinity to thread 0, the second
element in the shared space that has affinity to thread 1, and so on. In the
second case, L = 1, the compiler partitions computation among T threads by
assigning each thread N

T rows of A and N
T columns of B and C. More precisely,

the elements of matrices A and B are distributed element-by-element in round-
robin fashion, i.e., each thread gets one column in round robin fashion. At the
end, each thread up with N

T columns of B and C, where (N mod T = 0).
The elements of the matrix A will be distributed across the threads N -elements
by N -elements in round-robin fashion. In the case where L = 2, the compiler
partitions computation among T threads by assigning each threads N

T rows of A,
and C, and N

T columns of B. This case is similar to the second case except that
the elements of the matrix C will be distributed across the threads N -elements
by N -elements in round-robin fashion. The last case, L = 3, is similar to the
third case with the exception that each thread has the entire B.

Recall that from the model, the designer should maximize the locality degree
L, and minimize α, i.e. minimize the usage of remote shared pointers. Figure 1
presents the theoretical speedup, calculated from the model (eq. 5), in function of
the locality degree, L = 0, L = 1, L = 2, and L = 3 (α = 3). This figure shows
that as we increase L, the speedup increases and tends to become linear when D =
L, i.e., good data locality. More precisely, the algorithm (matrix multiplication)
without remote communication (L = 3) performs better than the algorithm with



680 M. Bakhouya, J. Gaber, and T. El-Ghazawi

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  5  10  15  20  25  30  35

S
pe

ed
up

# Threads

Alpha = 3
Alpha = 2

Fig. 2. The theoretical speedup vs. α

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0  2  4  6  8  10  12  14  16  18

S
pe

ed
up

# Threads

L=0
L=1
L=2
L=3

Fig. 3. The experimental speedup vs. L

a minor remote communication (L = 2) that performs better than the algorithm
with an intermediate remote communication (L = 1). This last case performs
better than the algorithm with a larger remote communication (L = 0).

According to the model, the designer should also attempt to reduce the pa-
rameter α to the smallest possible value. To illustrate this point, let us consider
the matrix multiplication algorithm with three data structures (D = 3), and L
is equal to 0. Figure 2 presents the theoretical speedup in function of the number
α. This figure shows that as we decrease the the usage of remote shared pointers
(i.e., from α = 3 to α = 2), the speedup increases.

The objective of the experimentation is to prove this statement, which is
given from the complexity model. Each thread is executed in one processor. The



Towards a Complexity Model for Design and Analysis 681

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0  2  4  6  8  10  12  14  16  18

S
pe

ed
up

# Threads

Alpha = 3
Alpha = 2

Fig. 4. The experimental speedup vs. α

results depicted in figure 3 illustrate that as we increase L, the speedup increase
to become linear when L = D. We can see also in figure 4 that decreasing
the usage of remote shared pointers (i.e., from α = 3 to α = 2), the speedup
increases. It should be noted that the objective of these experiments is not to
compare the performance of this program according to the literature but to show
the following behavior: as we increase L and decrease α there is an increase in
the speedup.

These primary experimental results corroborate the result obtained from the
complexity model described above and show that to improve the algorithms’
performance, by decreasing the communication cost, the programmer must in-
crease as much as possible the value of the locality parameter L and minimize
the usage of remote shared pointers represented by α.

6 Conclusion and Future Work

In this paper, we present a performance model based on the complexity analysis
that allows programmers to design and analyze their algorithms independent of
the target platform architecture. Given an algorithm, we have shown that we
can extract the program-dependent parameters to calculate the computation and
the communication complexity. According to this model, to obtain algorithms
that perform well, the remote communication overhead has to be minimized. The
choice of a good data distribution is of course the first step to reduce the number
of requests to remote shared spaces. Consequently, the programmer is able to en-
sure good data locality and obtain better performance using this methodology as
a tool to design better algorithms. The utility of this model was demonstrated
through experimentation using matrix multiplication program under different
data distribution schemes. According to the complexity model and the experi-
mental results, the most important parameters are the number D and the size N



682 M. Bakhouya, J. Gaber, and T. El-Ghazawi

of data structures, the locality degree L, the number α used in the algorithm, and
the number of threads. Therefore, the algorithm designer should simultaneously
minimize D and α, and maximize L to get better performance.

Future work addresses additional experiments with larger applications and
other platforms. The objective is to provide a tool for the comparison of alternate
algorithms to the same application without necessarily resorting to an actual
implementation. In addition, we will extend this complexity model to predict the
computational and the communication times by including machine-dependent
parameters such as the latency and the overhead.

References

1. El-Ghazawi, T., Carlson, W., Sterling, T., Yelick, K.: UPC: Distributed Shared
Memory Programming. Book. John Wiley and Sons Inc., New York (2005)

2. Gaber, J.: Complexity Measure Approach for Partitioned Shared Memory Model,
Application to UPC. Research report RR-10-04. Universite de Technologie de
Belfort-Montbeliard (2004)

3. Cantonnet, F., El Ghazawi, T., Lorenz, P., Gaber, J.: Fast Address Translation
Techniques for Distributed Shared Memory Compilers. In: International Parallel
and Distributed Processing Symposium IPDPS 2006 (2006)

4. Cameron, K.W., Sun, X.-H.: Quantifying Locality Effect in Data Access Delay:
Memory logP. In: IPDPS 2003. Proc. of the 17th International Symposium on
Parallel and Distributed Processing, p. 48.2 (2003)

5. Zhang, S., Seidel, R.Z.: A performance model for fine-grain accesses in UPC. In:
20th International Parallel and Distributed Processing Symposium, p. 10 (2006)
ISBN: 1-4244-0054-6

6. Juurlink Ben, H.H., Wijshoff Harry, A.G.: A quantitative comparison of parallel
computation models. In: Proc. 8th ACM Symp. on Parallel Algorithms and Archi-
tectures, pp. 13–24. ACM Press, New York (1996)

7. Chen, W-Y., Bonachea, D., Duell, J., Husbands, P., Iancu, C., Yelick, K.: A Perfor-
mance Analysis of the Berkley UPC Compiler. In: Annual International Conference
on Supercomputing (ICS) (2003)

8. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E., Subramo-
nian, R., von Eicken, T.: LogP: Towards a Realistic Model of Parallel Computation.
In: PPOPP 1993: ACM SIGPLAN, pp. 1–12. ACM Press, New York (1993)

9. Gerbessiotis, A., Valiant, L.: Direct Bulk-Synchronous Parallel Algorithms. J. of
Parallel and Distributed Computing 22, 251–267 (1994)

10. Gibbons, P.B., Mattias, Y., Ramachandran, V.: Can a Shared-Memory Model Serve
as a Bridging Model for Parallel Computation? In: SPAA 1997. 9th Annual ACM
Symposium on Parallel Algorithms and Architectures, pp. 72–83. ACM Press, New
York (1997)

11. Valiant, L.G.: A Bridging Model for Parallel Computation. Comm. of the
ACM 33(8), 103–111 (1990)

12. Maggs, B.M, Matheson, L.R., Tarjan, R.E.: Models of Parallel Computation: A
Survey and Synthesis. In: Proceeding of the Twenty-Eight Hawaii Conference on
System Sciences, vol. 2, pp. 61–70 (1995)


	Towards a Complexity Model for Design and Analysis of PGAS-Based Algorithms
	Introduction
	Related Work
	PGAS Programming Model: An Overview
	A Complexity Model for PGAS Algorithms
	Experimental Results
	Conclusion and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




