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Spatial Constraints on Learning in Visual Search:
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Predictive visual context facilitates visual search, a benefit termed contextual cuing (M. M. Chun & Y.
Jiang, 1998). In the original task, search arrays were repeated across blocks such that the spatial
configuration (context) of all of the distractors in a display predicted an embedded target location. The
authors modeled existing results using a connectionist architecture and then designed new behavioral
experiments to test the model’s assumptions. The modeling and behavioral results indicate that learning
may be restricted to the local context even when the entire configuration is predictive of target location.
Local learning constrains how much guidance is produced by contextual cuing. The modeling and new
data also demonstrate that local learning requires that the local context maintain its location in the overall

global context.
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The visual world is full of an overwhelming amount of infor-
mation, and much of this information is not immediately useful to
individuals at any given moment. In a given scene, there are
dozens or even hundreds of objects and events competing for
visual awareness, and yet observers may be looking for only one
specific object— or may be trying to ignore all of them. This huge
amount of largely irrelevant information would be impossible to
process and deal with if one had no way to sort and choose what
to attend. Attentional mechanisms help individuals to focus on a
specific set of objects and events (Chun & Wolfe, 2001; Kan-
wisher & Wojciulik, 2000; Pashler, 1998; Treisman & Gelade,
1980) and therefore prioritize the scene and attend to only relevant
stimuli. Researchers have identified a number of visual cues that
attract attention. Visual search tasks, for example, have suggested
that some objects enter attention because they simply pop out from
a scene if they possess unique or salient features (Egeth, Jonides,
& Wall, 1972; Treisman & Gelade, 1980; Wolfe, 1994; Yantis,
1998) or if they abruptly onset (Yantis & Jonides, 1984). Although
such bottom-up cues are very useful when noticing a bright red
stop sign on a suburban street, they are less useful when it comes
to noticing a red traffic light in the middle of Times Square in
Manhattan, New York City. Yet people do somehow reliably
detect traffic lights even amidst hundreds of other stimuli that are
just as salient.

Beyond visual salience, an important cue for attention may be
contextual information that informs which objects should appear in
a scene and where. Objects and events almost always occur in a
rich visual context (Biederman, 1972; Chun, 2000). This context
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tends to be highly predictable, because one’s visual experience is
not based on a random sample of objects; it is highly structured
and repetitive, a fact that the visual system takes advantage of
(E. J. Gibson, 1963, 1991; J. J. Gibson, 1966). Thus, objects are
associated with the context in which they are usually found,
helping to facilitate recognition of objects in their normal context
(Bar & Ullman, 1996; Boyce, Pollatsek, & Rayner, 1989; Chun &
Jiang, 1999; Mackworth & Morandi, 1967; but see Hollingworth
& Henderson, 1998). Likewise, context information constrains the
positions of objects within scenes (Biederman, Mezzanotte, &
Rabinowitz, 1982; Hollingworth, 2006; Palmer, 1975). This helps
cut down on the massive information overload because it provides
constraints on the range of possible objects that can be expected to
occur in a particular context (e.g., visual experience suggests that
a long tan object in someone’s living room is probably a couch, not
a lion). Contextual information allows the visual system to benefit
from the fact that the visual world is, in general, stable—what
people see in a particular context one day is likely to still be there
the next day.

The visual system’s sensitivity to context has also been dem-
onstrated using a more highly controlled visual search task, in a
paradigm known as contextual cuing (Chun, 2000). The original
contextual cuing paradigm showed that observers implicitly learn
the global configuration of targets in visual search tasks and that
this context can serve to cue the target location and facilitate
search performance in subsequent encounters (Chun & Jiang,
1998). In the generic contextual cuing experiment, observers per-
form a visual search for targets appearing among distractor stimuli
arrayed in invariant (predictive) or variable (nonpredictive) spatial
configurations, randomly intermixed within blocks (see Figure 1
for a sample display). Predictive configurations are repeated across
blocks throughout the entire session, and targets appear in consis-
tent locations within these configurations. Sensitivity to global
context leads to faster target search performance in these repeated
configurations compared with the nonpredictive configurations
that are regenerated in each block. This learning is implicit, as
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Figure 1. Example contextual cuing display. In Chun and Jiang (1998),
the entire display would be repeated from block to block. In Olson and
Chun (2002), only one side of the screen (in this example, the right side
containing the target in the short-range predictive condition and the left
side in the long-range predictive condition) would be repeated.

observers are at chance in predicting which quadrant the target
should appear in when given both predictive and nonpredictive
configurations in a memory test (Chun & Jiang, 2003).

Newer work has suggested that observers are not equally sen-
sitive to the entire invariant configuration, however. Olson and
Chun (2002, Experiment 1) demonstrated that attention is cued
more strongly by the configuration neighboring the target location
than by the configuration on the opposite side of the screen. In this
experiment, the invariant configuration occupied only one half of
the screen in predictive trials, with the other half of the screen
variable between repetitions. The division between variable and
invariant configuration was imperceptible because no visual
boundaries existed between the two halves of the screen. Thus, the
difference between signal and noise was defined statistically over
trials. The target appeared either within the invariant half of the
screen (short-range predictive condition) or within the variable
half (long-range predictive condition). Observers showed signifi-
cant contextual cuing in the short-range predictive condition but
not in the long-range predictive condition, indicating that they
were not equally sensitive to the entire configuration. Olson and
Chun (2002) explained their result as a difficulty in learning
through intervening noise. However, a more general account is
possible. This article will introduce a model and behavioral exper-
iments that demonstrate how learning is restricted to the local area
around the target, constraining how much statistical information is
encoded from the displays.

Connectionist Model

We modeled Chun and Jiang’s (1998, Experiment 1) and Olson
and Chun’s (2002, Experiment 1) contextual cuing experiments
using a two-layer neural network to help understand what is
learned in these contextual cuing tasks and what the computational
limitations on this learning might be. This model formalizes the
assumptions underlying contextual cuing, including the units it
operates over, the spatial extent of the learning, and the role of

attentional selection. It also attempts to unite a wide range of
findings on contextual cuing into a simple model to make the
mechanisms of contextual cuing more explicit.

This model tested contextual learning only. A number of other
computational models have been designed to describe how the
visual input is processed to support target search among distractors
(Bundesen, 1990; Cave, 1999; Humphreys & Muller, 1993; Itti &
Koch, 2000; Logan, 1996; Wolfe, 1994), but our model operates
independently of the specific details of visual processing. The only
input necessary for our model is a representation that specifies
which locations contain search items and which do not—in other
words, configuration information." In this sense, our model can be
applied to almost any other model of visual search to implement
contextual cuing.

The network receives the displays as input in matrix form and
then processes them on the basis of its past experience. The
network then outputs values for each location in the screen matrix,
representing what it estimates to be the likelihood the target is
present there. After each target is found, the network adjusts its
weights so that the next time it sees the same input, it is more likely
to rank the correct target location highly, which in turn would
prioritize the deployment of attention and eye movements (Peter-
son & Kramer, 2001). Thus, the network learns in the same style
that human observers must be: associating the target location with
its surrounding context to help facilitate future searches.

The network’s input nodes are given their values from a screen
matrix with a value of 0 assigned if no object is present at the
location and a value of 1 assigned if there is an object present. The
output nodes are treated as an activation map, with one output node
per screen location. Each of these output nodes is given a value
between 0 and 1 indicating how likely the network believes it is to
be the target location. For each trial, the appropriate screen is given
as an input to the network, and its output is calculated using a
feed-forward mechanism based on two sets of previously assigned
weights and a sigmoid transfer function. The first set of weights is
the model’s learned weights, and the second is a fixed set of
weights built into the model. The fixed weights are used to
implement spatial constraints in the model and will be discussed
further below. Additionally, we included a bottom-up activation
term, which increases the value of any output node when its
corresponding input node is active. This makes the network more
closely resemble human behavior by having it search primarily
those locations in the screen matrix that actually contain items (an
assumption that is implicit in telling people to identify the target).

Mathematically, this means that for any output node, y,, where
W1 is the learned weight matrix, W2 is the fixed weight matrix, 3
is the bottom-up activation component, and x, is an input node, y,’s
value is derived using the following:

v, = 1/(1+e”)
8= Ek[kaI(xk, Y)W2(x;, yf)] + (Bx).

Once this output has been calculated, the network “looks” at the
locations that produced the highest activations in its output layer,
continuing in decreasing order until the target is found. The

' The assumption that contextual cuing operates over configuration
information will be examined in the Modeling Results section.



800 BRADY AND CHUN

learned weights are then updated using the delta rule, with the error
term (¢) for a given output node being its distance from the correct
output (1 if it corresponded to the target location and 0 in all other
locations), before the network moves onto the next trial. So, where
Wl(x,, y,), is the value of the learned weight between input node
X, and output node y;, at time #, w is the learning rate, and m is the
momentum, the new value is computed using the following:

O (xp Y1 = (ne)()(x) + [md(x, y).J

W1(x, ¥)er = WL(x, y), + 8(xp ) 141

Momentum (m) is set to 0.95, learning rate () is set to 0.001,
with bottom-up activation (3) at 0.1.

Over many trials, this results in each input node activating only
those output nodes that have been target locations while the input
node was active. This means that when a display is repeated, the
nodes with the highest activations tend to be those that have been
paired as target locations with a large subset of the distractor
locations. After learning, this converges to the correct target loca-
tion. The network’s search time is computed as a function of how
many locations in the matrix it looks at before finding the target
(e.g., the number of locations in the output layer that have a higher
activation than the target location), as an approximation to human
response time. This search time does not include any of the fixed
costs of visual search (segregation of items from background,
response selection, motor planning and execution, etc.).

The contextual cuing paradigm is represented as closely as
possible, with the network going through the same number of
learning blocks and trials used in the original behavioral experi-
ments. Each time the network is run, it emulates 1 observer,
starting with randomly assigned learned weights and going
through the entire experiment. Reported network outputs are the
result of averaging together as many runs of the network as
observers were used in the equivalent human experiment.

Spatial Constraints on Network Connectivity

The fixed weights were used to impose spatial constraints on the
learning of the model. This was necessary in order to make it
compatible with the Olson and Chun (2002, Experiment 1) data
showing that human observers are more sensitive to a short-range
than a long-range context. This higher sensitivity to local context
in search behavior indicates that any connectionist implementation
of contextual cuing must not have full connectivity between the
input and output layers of the network. This constraint is necessary
because a fully connected network cannot encode spatial informa-
tion—all of the output nodes have equal access to all of the input
nodes, which means that with the proper adjusting of the network’s
weights, it is as easy for the network to learn an association
between the target location and a set of distant stimuli as an
association between the target location and nearby stimuli.

Our particular account of spatial constraints is based on the idea
of an attentional spotlight that surrounds the target when it is
localized, allowing the spatial relationships within the spotlight to
be encoded. The strength of the learning for a given distractor is
based on how far from the center of the spotlight it is located.

In this account of spatial constraints, no arbitrary borders are
hard coded into the display. Likewise, the constraints are contin-
uous, such that two nodes are neither connected or not connected,

but instead the strength of their connection is modulated by the
distance between the two nodes. This account is the result of
considering the computational limitations inherent in the task and
the need to explain both the original Olson and Chun (2002,
Experiment 1) limitation in learning far from the target and the
possibility that learning at a distance may sometimes be possible
(see the Modeling Results section and Olson & Chun, 2002,
Experiment 3).

Mathematically, the spatial constraints are represented using an
exponential function:

Wz(xk’ yl-) = e_d(k'i),

where d is distance and d(k, i) represents the number of matrix
locations separating the kth input node from the ith output node.
Figure 2 provides a graphical view of the fixed weights from all of
the input nodes to one particular output node (in this case, the
location of the target).

In sum, spatial configurations are made explicit in the model via
the addition of a separate set of fixed weights that implement our
account of spatial constraints in contextual cuing.

Model Results

We initially tested the network on the original experiment by
Chun and Jiang (1998, Experiment 1). We used an 8 X 6 screen
matrix, with 12 objects per screen (11 distractors and 1 target) and
ran 30 blocks of 24 trials each, just as in the original experiment.
Half of the trials in a given block were predictive trials, and half
were nonpredictive. The model data very closely approximated the
human data. At first, the network was no better at guessing the
location of the target than random looking throughout the input,
but as it was exposed to the repeated configurations, it learned to
associate the configuration with the target locations. As indicated
by Figure 3, the network shows significant cuing (p < .01 in all
epochs except one) after a short learning period.

The model also captures another element of human performance
in contextual cuing tasks by showing an improvement in response
time for nonpredictive displays. It demonstrates this improvement
because only half of the 48 possible screen locations are actually
target locations in this experiment. The model automatically ex-
tracts these target location probabilities over time, using them to
limit its search to only potential target locations—an effect often

Figure 2. Modulation weights in the model, for an output node corre-
sponding to the target location in this picture.
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Figure 3. Data from the original contextual cuing experiment (as in Chun & Jiang, 1998): Human data are on
the left, and model data are on the right. The model data are an average of 32 runs of the model, each representing
1 observer. The human data are based on 16 participants. RT = response time. Data in the left panel are from
“Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention,” by M. M.
Chun and Y. Jiang, 1998, Cognitive Psychology, 36, p. 36. Copyright 1998 by Elsevier. Adapted with

permission.

observed in human observers (e.g., Miller, 1988). The model does
this automatically as a byproduct of the way it learns from context.

Directly comparing the model and human learning curves in a
nonarbitrary way is not possible, because the model does not
include the fixed costs of search (e.g., segregation of items from
background, response selection, motor planning and execution).
To get some idea of the degree of this target location learning in
the model, however, we can take advantage of the fact that it
results in a benefit of approximately the same magnitude as con-
textual cuing. Because human observers showed a contextual
cuing benefit of between 60 and 80 ms in Chun and Jiang’s (1998)
experiment and because the model showed a benefit of approxi-
mately two locations checked, each location the model is checking
corresponds to a 30- 40-ms increase in response time, comparable
with prior estimates of the rate of attentional shifts in tasks like this
(Wolfe, 1994).

Human observers exhibit overall practice effects of nearly 200
ms (Chun & Jiang, 1998), suggesting that if human observers are
similarly extracting target location probabilities, more than 120-
140 ms of the overall practice effect is likely due to factors other
than learning target location probabilities (e.g., better segregation
of the displays, improved shape discrimination of the target shapes

100 7
80 ~

y = 32.317Ln(x) + 22.963
R?=0.789

60
40 ~

CC (ms)

20 A
0 -

1 2 3 4 5 6
Epoch

from distractors, motor learning, etc.). These other practice effects
are outside the scope of our model, which attempts to account for
contextual cuing only, rather than visual search more generally.
Thus, we will focus on the differences between old and new
conditions.

Because learning in the model is based on the delta rule, the
amount of change in the weights is directly proportional to the
amount of error the model makes in predicting the location of the
target. At the beginning, when this error is very high, the weight
changes are very large and make a large difference in the predic-
tions of the model. As the amount of error decreases, the amount
of change in the weights in each trial decreases. The model thus
displays an exponential learning curve that is very typical of neural
networks in general, especially those using a form of gradient
descent like the delta rule (Haykin, 1998). This exponential shape
is very similar to the learning curves displayed by contextual cuing
in previous experiments, which were found to fit both an expo-
nential and a power function well (Chun & Jiang, 2003).

In response to this learning, the magnitude of contextual cuing
increases roughly logarithmically in both the model and human
observers. As shown in Figure 4, the best fit curve for both
contextual cuing in the model and contextual cuing in human
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Figure 4. Magnitude of contextual cuing (from Chun & Jiang, 1998): Human data are on the left, and model
data are on the right. CC = contextual cuing. Data in the left panel are from “Contextual Cueing: Implicit
Learning and Memory of Visual Context Guides Spatial Attention,” by M. M. Chun and Y. Jiang, 1998,
Cognitive Psychology, 36, p. 36. Copyright 1998 by Elsevier. Adapted with permission.
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observers is logarithmic, with 7 = .79 for human observers and
> = .92 for the model, both accounting for a very large amount of
the variance. By comparison, the best fit linear model gives r* =
.61 for the human data and 7> = .73 for the model data, accounting
for less of the variance. In both the model and human observers,
therefore, the greatest magnitude of contextual learning takes place
early in the experiment.

After assessing how well the model fit the general trend of
contextual cuing, we next ran the model on the Olson and Chun
(2002, Experiment 1) experiment that prompted the inclusion of
spatial constraints. As in the behavioral experiment, four condi-
tions were used: short-range predictive contexts, long-range pre-
dictive contexts, global-predictive contexts, and completely non-
predictive contexts. To generate the displays, we divided screens
in half vertically, with the invariant context being on the same side
as the target in the short-range predictive condition, on the oppo-
site side than the target in the long-range predictive condition, and
on both sides in the global-predictive condition. There were no
visible boundaries to distinguish the two sides. We used a 12 X 8
screen matrix and ran 20 blocks of 32 trials each (8 trials of each
condition per block).

The results shown in Figure 5 indicate that the model’s data very
closely approximated the human data, in terms of both contextual
cuing and the limits imposed by the spatial separation of the
predictive context from the target. Long-range cuing was negligi-
ble, whereas short-range cuing was moderate and comparable with
the global-predictive condition. Cuing in the model was significant
for the short-range and global-predictive conditions in all but
Epoch 1 (all ps < .01) and was insignificant in all epochs for the
long-range predictive condition (all ps > .10). Thus, our model
correctly captured the results of Olson and Chun (2002, Experi-
ment 1).

It is important to note that others have previously modeled
contextual learning using the selective attention for identification
model of visual search (Backhaus, Heinke, & Humphreys, 2005;
Heinke & Humphreys, 2003). To do so, they used a Hopfield-like
memory with asymmetrical weights. These weights represented
the observed covariation between two spatial locations and biased
the network’s attentional selection layer toward settling on the
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target location. This model succeeded in capturing both the basic
contextual cuing effect and the effects of set size on contextual
cuing, the first model to do so. However, their model did not
address the question of spatial constraints on learning, a major,
novel focus of our model that helps explain a much wider range of
results, as detailed later in the Modeling Results section of this
article. In theory, similar spatial constraints could be implemented
in their model, and we suggest that, given the similarity of the two
models, they would come to many of the same conclusions we
have in this article.

Once we had established that our network could accurately
model basic contextual cuing, we tested its predictions with new
behavioral experiments. In particular, we wanted to test how
robust learning could be with limited predictive information em-
bedded in nonpredictive noise. No parameters of the model de-
scribed above were changed to generate the specific predictions
reported below. Four experiments tested the model’s predictions
with human performance. Afterwards, we used the same model to
simulate a large body of results from the broader contextual cuing
literature. New insights are gained from such simulations, such as
answers to why attentional guidance from contextual cuing is not
perfect.

Experiment 1

We first tested whether it is possible to decrease the amount of
predictive information available to benefit observers in their search
for the target and still obtain contextual cuing. Rather than have
one half of the distractors be predictive as in Olson and Chun
(2002, Experiment 1), we limited the predictive information to
only the distractors in the target quadrant. Thus, rather than the 8
distractors out of 15 that were predictive of target location in Olson
and Chun (2002, Experiment 1), only 2 distractors out of 11 were
predictive of the target location in this experiment (see Figure 6).
This represents an extremely noisy and limited amount of predic-
tive information for observers to learn from each of the repeated
displays. If observers are limited by spatial constraints like those
posited by our model, this task should be no more difficult than the
Olson and Chun (2002, Experiment 1) task. However, if observers
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Figure 5. Data from Olson and Chun (2002), using contexts in which only half the screen was invariant and
predictive. Human data are on the left, and model data are on the right. RT = response time; Pred. = predictive.
Data in the left panel are from “Perceptual Constraints on Implicit Learning of Spatial Context,” by I. R. Olson
and M. M. Chun, 2002, Visual Cognition, 9, p. 281. Copyright 2002 by Psychology Press (www.psypress.co.uk/

journals.asp). Adapted with permission.
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Figure 6. Example displays from Experiment 1. In one block, the
quadrant-predictive trial would look like the display on the left; in the next
block, it might look like the one on the right. The target quadrant (top right)
is the only invariant area.

do not have such spatial constraints, learning should be extraordi-
narily difficult in this experiment: There is far more noise than
signal in each display, and even side by side the displays barely
resemble each other (see Figure 6).

Method

Observers. Fourteen members of the Yale University commu-
nity participated in this experiment in partial fulfillment of an
introduction to psychology course requirement or as paid volun-
teers ($10/hour for approximately 1 hr). All observers reported
normal or corrected-to-normal visual acuity and normal color
vision. None of the observers were aware of the purpose of this
study.

Stimuli. The target was a T-shaped stimulus rotated 90° to
either the left or the right. The distractor stimuli were L shapes that
were rotated to appear randomly in any of four possible orienta-
tions (0°, 90°, 180°, or 270°). The L shapes were modified such
that the two line segments that would meet at a 90° angle in a
typical L were offset by 33%, making the Ls more similar to the
target stimuli. This made the search task more difficult for observ-
ers (Duncan & Humphreys, 1989). On each trial, there was exactly
one target, and observers pressed the arrow key (left or right)
corresponding to the direction the bottom of the 7" was pointed.
Each display contained 12 items (11 distractors and 1 target),
which were distributed across an 8§ X 8 matrix of locations not
visible to the observer. The locations were constrained such that an
equal number (3) of items appeared in each of the four quadrants
of display. In addition, targets were prevented from appearing
directly near the center of the display or at the corners of the
display, creating a bias for them to appear within a donut-shape set
of locations around fixation. This was done in order to control for
eccentricity and to avoid excessively easy (at fixation) or exces-
sively hard (in the corners) target locations. As a result, targets
were more likely to be aligned with local context items within the
same quadrant than across quadrants. The target quadrant con-
tained 1 target item and 2 other distractor items. The distractor
quadrants always contained 3 distractors.

All experiments were performed on a Macintosh computer using
MATLAB (The MathWorks, Natick, MA) with the Psychophysics
Toolbox extensions (Brainard, 1997). The viewing distance was
approximately 55 cm, although observers were unrestrained. Stim-
uli were about 1.8 X 1.8 degrees in visual angle, and were aligned
in an invisible 8 X 8 grid that took up the entire screen. The

position of each item was jiggled so as to prevent collinearities
with other stimuli. The background was set to a dark gray, and the
stimuli were always white.

Design and procedure. The two main variables were config-
uration (nonpredictive vs. quadrant predictive) and block. The
quadrant-predictive trials consisted of 16 randomly generated con-
figurations in which the target quadrant configuration remained
constant throughout the experiment. In other words, the target
location and the layout of distractors within the quadrant were
fixed for each target quadrant configuration. On the quadrant-
predictive trials, the identity of the distractor items in the target’s
quadrant were preserved, but the target direction was changed
from repetition to repetition so that the correct response did not
correlate with any of the configurations it appeared in. The dis-
tractor configuration in the other three quadrants was newly gen-
erated in each block. The nonpredictive trials consisted of 16
different configurations, which were entirely newly generated for
each block to serve as a control. Distractor configurations were
chosen randomly from all possible locations, including target
locations from other trials.

The experiment was conducted in two phases: training (20
blocks) and test (10 blocks). During the training trials, observers
were exposed only to the 16 quadrant-predictive configurations.
During the test trials, these same quadrant-predictive trials config-
urations were interspersed with 16 nonpredictive trials that shared
the same target locations, in order to control for effects based on
target location probabilities. Each session consisted of 20 blocks of
16 trials during training and 10 blocks of 32 trials during test, for
a total of 640 trials per observer. Each configuration appeared
exactly once per block.

The observer pressed the space bar to begin each block. Each
trial started with a small fixation dot appearing in the middle of the
screen. After a pause of 500 ms, the stimuli appeared on the screen.
They remained there until either the observer pressed a button or
8 s had passed. Observers were directed to press the arrow key
corresponding to the target as soon as they had identified the
target. The response caused the screen to clear, with the word
Error appearing if the observer responded incorrectly. A beep was
also sounded if the observer did not respond correctly or if he or
she took more than 8 s to respond. The response was followed by
a pause of 1,500 ms and then the next trial was automatically
started. Following each block of trials, the observers were given a
break of at least 5 s but were allowed to wait as long as they
wished before hitting the space bar to begin the next block. At the
conclusion of the experiment, observers were presented with 32
configurations with the target replaced with a distractor and were
asked to guess which quadrant the target should appear in (Chun &
Jiang, 2003). Half of these trials were entirely nonpredictive, and
the other half were the quadrant-predictive trials used throughout
the experiment.

The experiment began with instructions followed by a practice
block of 16 trials to allow the observers to adjust to the task.
Observers were not informed in advance that some aspects of the
configurations might repeat. They were simply given instructions
on what the target and distractors looked like and which button to
press in response to a given target. Observers were told to respond
as quickly as possible without sacrificing accuracy. The experi-
ment took approximately 50 min to complete.
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Model Results

Before running the behavioral experiment, we first used the
model to predict the results of this experiment. The model was not
modified except for the parameters that are specific to the methods
of this experiment. The model used the same setup as the behav-
ioral experiment: 20 training blocks containing only the quadrant-
predictive trials, followed by 10 test blocks containing both
quadrant-predictive and nonpredictive trials, with an 8 X 8 screen
matrix containing three items per quadrant. Data presented below
are a result of averaging together 12 runs of the network, each
emulating 1 observer.

The training block data are shown in Figure 7, and the test block
data are shown in Figure 8. Overall, the model results predicted
significant contextual cuing. The model was significantly faster at
finding the target in the quadrant-predictive configurations than in
the nonpredictive configurations, #11) = 3.13, p < .01.

Behavioral Results

Two observers were excluded from analysis because of a large
number of errors, both of which fell outside the 95% confidence
interval around the mean error rate. For the other 12 observers,
error rates were extremely low, around 1.5% for both nonpredic-
tive and quadrant-predictive conditions. No difference in error rate
was observed between conditions, #(11) = 0.464, p = .65.

There was a main effect of block, as shown by a one-way
analysis of variance (ANOVA), F(19, 220) = 3.21, p = .0001 (see
Figure 9). Observers showed a significant downward trend
throughout the training period as a result of practice at the task.

The mean response time was calculated separately for the two
conditions in each block of the test period. In all of the experiments
presented, response times of less than 200 ms or more than 6 s
were discarded as outliers. This resulted in the exclusion of less
than 1% of the data in each experiment. The mean was then taken
over the entire test period for each of the conditions.

The test session results are shown in Figure 10. The 95-ms
difference between the conditions was significant, #(11) = 2.73,
p = .0195. The benefit for the quadrant-predictive condition shows
that observers were able to localize targets more efficiently in this
condition compared with the nonpredictive trials, demonstrating
contextual cuing (Chun & Jiang, 1998).
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Figure 7. Model training data from Experiment 1.
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Figure 8. Model data from the test blocks of Experiment 1. The model
predicts significant contextual cuing (after a significant learning period of
20 blocks). Only the blocks from the test period are shown. Error bars
represent the standard error of the mean. Quad-pred = quadrant predictive;
Non-pred = nonpredictive. * p < .05.

Observers were at chance in the explicit target location guessing
task, designed to test if observers were consciously aware of how
contexts predicted target location. In the quadrant-predictive con-
dition, observers guessed the correct quadrant 26% of the time,
whereas in the nonpredictive condition, they guessed the correct
one 20% of the time, #(11) = 1.26, p = .23. Neither condition
differed significantly from chance guessing levels of 25% (1s <
1.45, ps > .12). This indicates that contextual cuing was implicit.

The results of the model and the behavioral data indicate that a
contextual cuing effect can be obtained from remarkably minimal
predictive information embedded amidst substantial noise. In this
experiment, the locations of only 2 local distractors out of 11 were
predictive of the target location, and observers nonetheless dem-
onstrated a significant benefit compared with a baseline in which
no distractors were predictive of the target location. This strongly
supports the idea of spatial constraints on learning, as implemented
in the model. In sum, the present results suggest that a large
amount of the learning seen in globally predictive contexts may be
local to the target area. The degree to which this is true is further
addressed in Experiment 2.
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Figure 9. Training data for Experiment 1. The only condition is quadrant
predictive during the training period. RT = response time.
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Figure 10. The results of Experiment 1. The benefit for the quadrant-
predictive condition is a result of contextual cuing. Error bars represent
within-observer standard error. Quad-pred = quadrant predictive; Non-
pred = nonpredictive; RT = response time. ~ p < .05.

Experiment 2

Experiment 2 tested how much of the learning typically seen in
contextual cuing is local to the target area. In order to do this, we
trained observers on both quadrant-predictive and global-
predictive contexts and looked at the magnitude of contextual
cuing obtained in both cases. If observers are not learning a
significant amount of information outside the target quadrant, we
would expect the difference in cuing between the quadrant-
predictive and global-predictive conditions to be negligible. How-
ever, if observers are learning a significant amount of information
outside the target quadrant, we would expect to see a benefit for
global-predictive contexts compared with quadrant-predictive con-
texts.

Method

All methods were identical to Experiment 1 except where noted.

In this experiment, there were three conditions: nonpredictive,
quadrant predictive, and global predictive. Training blocks con-
sisted of 8 quadrant-predictive and 8 global-predictive configura-
tions, and test blocks consisted of 8 quadrant-predictive, 8 global-
predictive, and 16 nonpredictive configurations. To rule out target
location probability effects, we used the same target locations in
the nonpredictive trials as in the global- and quadrant-predictive
trials.

Model Results

Before running the behavioral experiment, we used the model to
predict the results. The model was identical to that used in Exper-
iment 1, with the addition of global-predictive trials. As in the
behavioral experiment, there were 20 training blocks containing
only the quadrant-predictive and global-predictive trials, followed
by 10 test blocks containing quadrant-predictive, global-
predictive, and nonpredictive trials. Training data were similar to
that for Experiment 1, decreasing exponentially in both global- and
quadrant-predictive conditions, and will not be shown for this and
subsequent experiments. Data presented below are a result of
averaging together 24 runs of the network and taking an average
across all test blocks.

The results shown in Figure 11 indicate that the model learns
equally well when only the quadrant around the target is predictive
compared with when the entire screen is predictive. It does not
show a significant difference between these two conditions,
#(23) = 0.19, p > .10, but shows a large benefit for both compared
with the nonpredictive contexts (rs > 2.80, ps < .01). In other
words, the model is doing most or all of its learning in the target
quadrant. To some degree, this reflects the fact that targets are
more likely to be adjacent to distractors in the same quadrant than
to distractors in different, abutting quadrants. In the general case,
the model may benefit slightly more from global predictive dis-
plays, simply as a result of the local context sometimes including
items outside the target quadrant.

Behavioral Results

Twenty-four observers participated in this experiment. Error
rates remained extremely low at around 2% for all conditions. No
difference in error rate was observed between conditions during
the training period, #23) = 0.29, p = .77, or the test period
(F <1).

The mean response time was calculated separately for the two
conditions for each block of the training period (see Figure 12). A
two-way ANOVA, with block and condition as variables, revealed
a main effect of block, F(19, 460) = 12.13, p < .001, but no main
effect of condition, F(1, 460) = 1.262, p = .26, and no interaction
(F < 1). This suggests that participants improved over time with
practice but did so equally in both global- and quadrant-predictive
displays. The apparent numerical difference at Block 1 reflects
random error, and it was not significant (p = .29).

The mean response time was calculated separately for the three
conditions in each block of the test period. As shown in Figure 13,
there was significant contextual cuing relative to the nonpredictive
condition in both the quadrant-predictive (M = 99 ms), #23) =
2.73, p = .012, and global-predictive (M = 169 ms), #(23) = 4.37,
p = .001 conditions. The difference in cuing between the two
(M = 71 ms) was not significant, #23) = 1.20, p = .25. The
apparent numerical difference was the result of two outlier observ-
ers—excluding these 2 observers from the analysis reduced this
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Figure 11. Model data from Experiment 2. The model predicts cuing in
both quadrant-predictive and global-predictive conditions, with no signif-
icant difference between the two. Only the blocks from the test period are
shown. Error bars represent the standard error of the mean. Quad-pred =
quadrant predictive; Glob-pred = global predictive; Non-pred = nonpre-
dictive. “p < .05.
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Figure 12. Training data from Experiment 2. The lack of difference
between global-predictive and quadrant-predictive trials indicates that both
were learned equally well. Glob = global; Quad = quadrant; RT =
response time.

difference between global-predictive and quadrant-predictive con-
ditions to under 20 ms, whereas contextual cuing for both re-
mained significant. In sum, observers showed a statistically equiv-
alent benefit for configurations in which only the target quadrant
was repeated and for configurations that repeated entirely.

In the explicit target location guessing task, observers were at
chance in all conditions at judging where the target should appear.
In the quadrant-predictive condition, observers guessed the correct
quadrant 22% of the time; in the global-predictive condition, they
guessed correctly 27% of the time; and in the nonpredictive
condition, they guessed correctly 23% of the time. None of the
conditions differed significantly from chance guessing (s < 1.20,
ps > .25). This indicates that contextual cuing was implicit.

The results of this experiment indicate that most or all of the
learning in the global-predictive condition was actually restricted
to the target quadrant. Observers demonstrated statistically equiv-
alent contextual cuing in both the quadrant-predictive and global-
predictive conditions, indicating that they received no significant
benefit from the presence of predictive information outside the
target quadrant. Although it remains possible that some observers
may benefit from more broadly distributed global information, the
majority of observers appeared to rely on a local strategy, as
predicted by the spatial constraints included in the model.

The findings so far show that contextual cuing is even more
locally constrained than initially reported (Olson & Chun, 2002),
and Experiment 2 replicates the lack of further advantage from
global displays. These results raise two issues that were not tested
in prior work, and we will describe and test each of these problems
in Experiments 3 and 4.

One limitation of our conclusions is that it is possible that the
training protocol of this experiment may have encouraged local
processing. The target quadrant was always predictive, whereas
global information was noisy on half of the displays, so an optimal
(but implicit) strategy would have been to focus only on the local
quadrant to minimize distraction and noise. If so, then observers
should learn global information beyond the target quadrant when
all training displays are global predictive. This possibility is ad-
dressed in Experiment 3.

Experiment 3

In Experiment 2, the target quadrant was always predictive,
whereas global information was noisy on half of the displays. This
may have caused observers to learn only the local information in
an attempt to minimize noise and optimize learning. Therefore, in
this experiment, all training was done using global-predictive
contexts. During the test period, half of these displays became
predictive only in the target quadrant, and half remained global
predictive. If observers were learning more than the target quad-
rant during the training period, we would expect a benefit for
displays that remained global predictive compared with displays
that became quadrant predictive. However, if observers were only
learning the local information during the test period, we would
expect an equivalent benefit for both during the test period.

Method

All methods were identical to Experiment 1 except where noted.

Training blocks consisted of 16 global-predictive configura-
tions, and test blocks consisted of 8 quadrant-predictive, 8 global-
predictive, and 16 new-quadrant-predictive configurations. The
test conditions were derived as follows. Sixteen global-predictive
trials shown during the training phase were divided into two
separate test conditions: half (8) remained global predictive, and
half (8) became predictive only in the target quadrant. To control
for learning of the quadrant-predictive configurations during the
test phase, we used a baseline that was also quadrant predictive.
That is, 16 new-quadrant-predictive configurations were generated
using the same target locations as the global-predictive trials
shown during the training phase. This controlled target location
probabilities.

Model Results

Once again, we used the model to predict the results before
running the behavioral experiment. The model was identical from
Experiments 1 and 2 and simulated the same setup as the current
behavioral experiment: 20 training blocks containing only the
global-predictive trials, followed by 10 test blocks containing
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Figure 13. Results of Experiment 2. There was a significant benefit for
both quadrant-predictive (Quad-pred) and global-predictive (Glob-pred)
trials compared with nonpredictive trials (Non-pred) and no significant
difference between them. Error bars represent within-observer standard
error. RT = response time. " p < .05.
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quadrant-predictive, global-predictive, and new-quadrant-
predictive trials. Data presented below are a result of averaging
together 24 runs of the network and taking an average across all
test blocks.

The model results shown in Figure 14 indicate that even when
the entire configurations were predictive during training, only the
local configurations were learned. This is indicated by the lack of
a difference between the quadrant-predictive and global-predictive
conditions in the test phase, #23) = 0.28, p > .10. Both of these
conditions showed a large benefit compared with the new-
quadrant-predictive contexts (ts > 2.91, ps < .01) as a result of
learning during the training phase. These results confirm that the
model is doing most or all of its learning in the target quadrant in
this experiment.

Behavioral Results

Twenty-five observers participated in this experiment. One of
these observers was excluded from analysis because of a high error
rate, which fell outside the 95% confidence interval around the
mean error rate. Error rates for the other observers were extremely
low at around 2.5% for all conditions. No difference in error rate
was observed between conditions during the test period (F' < 1).

The mean response time was calculated for each block of the
training period. There was a main effect of block, as shown by a
one-way ANOVA, F(19, 460) = 11.64, p < .00001. As in the
prior two experiments, observers showed a significant downward
trend throughout the training period (not shown here).

The mean response time was calculated separately for the three
conditions in each block of the test period, and Figure 15 shows the
results. Observers showed significantly stronger contextual cuing
in both the quadrant-predictive (M = 73 ms), #(23) = 3.16, p =
.004, and global-predictive (M = 99 ms), #(23) = 2.86, p = .009,
conditions, compared with the new-quadrant-predictive baseline.
The difference in cuing between the two conditions (M = 26 ms)
was not significant, #(23) = .36, p = .72. Thus, the benefit in both
conditions was statistically equivalent. Those configurations that
remained globally predictive throughout the entire experiment
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Figure 14. Model data from Experiment 3. The model predicts cuing in
both quadrant-predictive (Quad-Pred) and global-predictive (Glob-Pred)
conditions compared with the baseline new-quadrant-predictive condition
(New-QPred), with no significant difference between the two. Error bars
represent the standard error of the mean. * p < .05.
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Figure 15. Results of Experiment 3. There was a significant benefit for
both quadrant-predictive (Quad-pred) and global-predictive (Glob-pred)
compared with the new-quadrant-predictive (New-QPred) baseline, and no
significant difference between them. Error bars represent within-observer
standard error. RT = response time. * p < .05.

provided no advantage over those that were globally predictive
during training but only locally predictive during the test blocks.

Observers were at chance level in all conditions at judging
where the target should appear. In the quadrant-predictive condi-
tion, observers guessed the correct quadrant 23% of the time; in the
global-predictive condition, they guessed correctly 24% of the
time; and in the new-quadrant-predictive condition, they guessed
correctly 24% of the time. None of the conditions differed signif-
icantly from chance guessing (s < 1.04, ps > .30). This indicates
that contextual cuing was implicit.

The results strongly suggest that most or all of the learning was
centered locally around the target even when the entire configu-
ration was predictive of the target location. The lack of difference
between the global-predictive and quadrant-predictive conditions
suggests that the results of Experiment 2 were not a result of a
change in strategy when presented with some displays that were
not predictive outside the target quadrant. Thus, the learning in the
contextual cuing paradigm appears to be spatially constrained to
the region around the target, justifying the spatial constraints
encoded in the model. Given the local nature of contextual learn-
ing, an interesting question is whether this learning is position
specific or position invariant—in other words, whether it would
transfer across different target locations. This question was tested
in our final experiment.

Experiment 4

Experiment 4 was very similar to Experiment 1. The only
change was that the target quadrant was allowed to move to a
different quadrant of the display from repetition to repetition (see
Figure 16). That is, the target quadrant configuration remained
fixed, but its location on the screen and relative to the global
configuration was variable from block to block.

Our motivation for this experiment was to see whether the
localized learning we saw in Experiments 1, 2, and 3 was position
invariant or position specific (e.g., whether it depends on the
global location of the local configuration). On the surface, we
would expect much of our visual learning to be position invariant;
after all, people regularly learn to recognize objects even when
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Figure 16. Example displays: In one block, the quadrant-predictive trial
would look like the display on the left; in the next, it might look like the
one on the right. Notice that the configuration of distractors is the same
within the target quadrant (top right quadrant in the first display; lower left
quadrant in the second); it has simply moved to a different quadrant of the
screen.

their position in space changes. However, despite individuals’
ability to recognize an object even when its projection on the retina
varies significantly, several studies have shown that perceptual
learning is not necessarily invariant to translation in the visual field
(Dill & Fahle, 1997; Fahle, 1994; Fahle, Edelman, & Poggio,
1995; Fiorentini & Berardi, 1981; Karni & Sagi, 1991; Nazir &
O’Regan, 1990; Ramachandran, 1976; Shiu & Pashler, 1992). In
fact, response times and error rates tend to increase linearly with
the degree of translation applied to a stimulus, which is taken as
evidence that some type of shifting process is responsible for
lining up visual input with stored memory (Foster & Kahn, 1985).
Dill and Fahle (1997), for example, trained observers to recognize
particular novel stimuli (bilaterally symmetric 6 X 6 matrices of
dots) and discriminate them from distractors. They then translated
the stimuli to a different visual field location and found that the
learning did not transfer if the training was restricted to a particular
location in the visual field. This suggests that one’s normal toler-
ance to translation may occur from exposure to familiar objects at
different locations in the visual field as opposed to translation of
learning to different locations in the visual field. This would
indicate that we should not expect learning in this type of contex-
tual cuing experiment to transfer between quadrants.

On the other hand, transfer of learning to translated displays in
contextual cuing has been demonstrated previously, albeit with
much simpler translations. In Jiang and Wagner’s (2004, Experi-
ment 2) study, contextual cuing was preserved when the entire
configuration of items was translated or rescaled after learning,
involving changes in the locations of the items relative to the
observers but not relative to each other. However, as just noted, a
significant difference is that all of Jiang and Wagner’s manipula-
tions were relative to the observer rather than relative to other
items on the screen. In other words, they did not change the
configuration of items on the screen, whereas we did so here. The
successful transfer of learning in the Jiang and Wagner task does
point to the possibility of successful learning in this experiment,
however.

Method

All methods were identical to Experiment 1 except where noted.
Experiment 4 was very similar to Experiment 1. The only
change was that the target quadrant was allowed to move to a
different quadrant of the display from repetition to repetition. That

is, the target quadrant configuration remained fixed, but its loca-
tion on the screen was variable from block to block.

To rule out target location probability effects, we moved the
target quadrant for nonpredictive trials during the test phase as
well so that a given target location was occupied with equal
probability for both the quadrant-predictive and nonpredictive
conditions.

Model Results

Before running the behavioral experiment, we used the model to
predict the results. The model was identical to that used in all of
the previous experiments, and it simulated the same setup as the
behavioral experiment: 20 training blocks containing only the
quadrant-predictive trials, followed by 10 test blocks containing
both quadrant-predictive and nonpredictive trials. The target quad-
rant was moved between blocks in both conditions. Data presented
below are a result of averaging together 12 runs of the network and
then taking an average across all of the test blocks.

As shown in Figure 17, when participants were presented with
this task, our model showed no significant contextual cuing,
t(11) = 0.22, p > .10. The predictive information about the
target’s location in this experiment did not benefit the model in its
search for the target. This is because the model links each stimulus
to its absolute location within the configuration and therefore does
not generalize its learning to other quadrants.

It is important to note here that the results of Jiang and Wagner
(2004, Experiment 2) discussed above do not pose a problem for
our model of contextual cuing. Because our model presupposes
that learning in contextual cuing depends only on the particular
configuration of items and not on their relation to the observer, the
model would see the translated and rescaled displays of Jiang and
Wagner as identical to the original displays. It would therefore
correctly predict cuing in the Jiang and Wagner task, although it
predicts no cuing for the present task in which the configuration of
items changes.

Behavioral Results

Twelve observers participated in this experiment. Error rates
remained extremely low, around 2% for both nonpredictive and
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Figure 17. Model data from Experiment 4. The model predicts no cuing
(even after a significant learning period of 20 blocks). Error bars represent
the standard error of the mean. Quad-pred = quadrant predictive; Non-
pred = nonpredictive.
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quadrant-predictive conditions. There was no difference in error
rate between conditions, #(11) = 0.146, p = .89.

There was a main effect of block during the training period,
F(19, 220) = 5.019, p < .0001. Observers showed significant
improvement throughout the training period (not shown).

As shown in Figure 18, the quadrant-predictive condition and
the nonpredictive condition were not significantly different,
#(11) = 0.90, p = .38. In other words, observers showed no benefit
for repeated configurations and were not able to localize the target
more effectively when the predictive quadrant was variable in
location.

Observers were at chance in both conditions at judging where
the target should appear. In the quadrant-predictive condition,
observers guessed the correct quadrant 26% of the time, whereas
in the nonpredictive condition, they guessed the correct one 22%
of the time, #(11) = 1.54, p = .16. Neither condition differed
significantly from chance guessing (both s < 0.94, both ps > .37).

The results of this experiment indicate that the quadrant-
predictive contexts were not learned when the target quadrant
moved location across repetitions. Observers did not benefit from
the predictive information contained in such configurations, such
that no contextual cuing was observed. This lack of contextual
cuing indicates that the local contextual learning is somewhat tied
to absolute spatial location; it is position specific rather than
position invariant. This is in accordance with the model’s imple-
mentation of local spatial constraints, which requires the location
of items to stay the same in order for learning to occur. It is also
indicative of the fact that not only is the local context important in
contextual cuing but also its place relative to the global context. In
other words, the locations that are learned in contextual cuing are
not relative to the target location but are instead absolute to the
configuration.

With more training, we would expect both human observers and
the connectionist model to be able to learn in this experiment, by
learning each quadrant separately. However, with the same amount
of training as in Experiment 1, neither the model nor human
observers benefit from the predictive context in this experiment.

The conclusions above may be restricted to spatial contextual
cuing situations. When spatial configuration is predictive of target
location, distractor identities are not encoded (Chun & Jiang,
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Figure 18. The results of Experiment 4. The two conditions were not
significantly different, showing a lack of learning of the quadrant-
predictive (Quad-pred) condition. Error bars represent within-observer
standard error. Non-pred = nonpredictive; RT = response time.

1998). However, distractor identity can cue target identity if they
are consistently paired through training, even when spatial config-
uration and target location are randomized (Chun & Jiang, 1999).
Yet, such object contextual cuing may show spatially local effects
as well for distractor and target identity pairings. For example,
Hoffman and Sebald (2005) demonstrated that targets appearing
with the same flanking distractors were detected better than when
the targets appeared with rare flankers. Of note, this learning
occurred independent of target position for items that could appear
anywhere in a global circular array that was constant for all trials.
Thus, object contextual cuing may exhibit local effects as well, but
such local effects may transfer to different locations.

Modeling Results

The model was accurate in predicting the results of the four
previous experiments, and we further tested it on a broad range of
published contextual cuing studies. Correctly modeling these prior
experiments is critical, because the model was explicitly designed
to model only two experiments—the original experiment by Chun
and Jiang (1998, Experiment 1) and the first experiment to dem-
onstrate the necessity of spatial constraints, performed by Olson
and Chun (2002, Experiment 1). Remarkably, the same model is
able to account for an even broader range of past findings in the
contextual cuing literature, as will be detailed below. In addition,
our modeling yields new insights into the operations of contextual
cuing, such as why it never produces perfect attentional guidance
in human observers.

Configurations or Individual Locations

Jiang and Wagner (2004, Experiment 1) demonstrated that re-
combined displays benefit observers as much as completely pre-
served old displays. They trained observers on two sets of old
displays that shared a common set of target locations (such that
each target location was associated with two unique sets of dis-
tractors) and then tested them in three conditions. In their new
condition, the target location was all that was preserved from
training, and the display was otherwise completely novel. In their
old condition, the display was one of the two displays that had
been associated with the target location during training. In the
recombined condition, the display was made up of a combination
of distractor locations from the two displays that had been asso-
ciated with the target location during training. We ran the model on
this same experiment, using 11 items per display and a 12 X 8
screen matrix with 20 blocks of training and 3 blocks of test, just
as in the Jiang and Wagner (2004, Experiment 1) experiment; the
results are presented in Figure 19.

Jiang and Wagner (2004, Experiment 1) found that observers
were cued as much by the recombined displays as they were by the
old displays at test. Without any modification, our model also
predicted this result. This is because the model functions by
associating any given input node with each output node that has
served as a target when it was active. Decisions about target
location are then made on the basis of how many of the active
input nodes activate a particular output node location—the greater
the number of active input nodes associated with a particular
location, the more likely the model is to select it. This measure
does not differ between the old displays and the recombined
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Figure 19. Data from the Jiang and Wagner (2004) experiment with recombined displays. Human data are on
the left, and model data are on the right. Model error bars represent the standard error of the mean. Non-pred =
nonpredictive; RT = response time. “ p < .05. " p < .01. Data in the left panel are from “What is Learned in
Spatial Contextual cueing—Configuration or Individual Locations?” by Y. Jiang and L. C. Wagner, 2004,
Perception & Psychophysics, 66, p. 457. Copyright 2004 by Psychonomic Society. Adapted with permission.

displays in this experiment—both have the same number (11) of
input nodes that activate the correct target location, and therefore
the model is cued equally by both types of displays. This implies
that observers in a contextual cuing experiment are not encoding
configurations as patterns. Instead, they are encoding the locations
of multiple individual items, just as our model is doing.

The model also correctly predicts several results from the orig-
inal Chun and Jiang (1998) article that it was not explicitly
designed to capture. Chun and Jiang (1998, Experiment 2) dem-
onstrated that what is learned in contextual cuing tasks is spatial
configuration information rather then specific item identities. In
their experiment, observers learned the context and then halfway
through the experiment the distractor identities were changed. If
observers had been encoding identity information, we would ex-
pect this change in distractor identities to have impaired their
learning. In fact, they showed no impairment, demonstrating that
spatial contextual cuing is insensitive to identity information. The
model operates only over the configuration of items (as it is given
only the location of the items, not their identity, as input) and so
predicts cuing regardless of the particular identities of the items,
paralleling the results of this experiment.

As another attempt to rule out low-level priming effects of
display repetition, Chun and Jiang (1998, Experiment 3) allowed
target locations to vary within the repeated contexts. If participants
learned to simply search through repeated displays more quickly,
search should benefit regardless of target location. However, if the
predictive, associative relation is what is important, then contex-
tual cuing should be diminished when repeated contexts were no
longer predictive of target locations. Chun and Jiang (1998) found
that contextual cuing was abolished when target locations varied
within repeated contexts (see also Wolfe, Klempen, & Dahlen,
2000). The model replicated this result: The mean number of
locations checked was 4.9 in the case in which both the display and
the target location varied and was 4.8 in the case in which the
display remained the same but the target location was allowed to
vary within it, a nonsignificant difference, #(9) = 0.24, p > .10.
This is because cuing in the model results from the increased
activation of the formerly cued target location compared with the
other locations that have items. Thus, moving the target within a
repeated configuration will result in no benefit compared with
generating an entirely new configuration. Contextual cuing, in

both observers and the model, is based on an association between
the target location and the distractor locations.

Learning Across Intervening Noise

Another experiment that the model can correctly predict is
Experiment 3 of Olson and Chun (2002). This is a particularly
important experiment because it indicates that learning in contex-
tual cuing cannot be strictly local. In this experiment, Olson and
Chun (2002, Experiment 3) once again repeated only the half of
the distractors on the opposite side of the screen as the target.
However, this time they broke this long-range predictive condition
into two different conditions. In one condition, no noise (extrane-
ous distractors) ever appeared between the target location and the
opposite side of the display, so that all of the distractors on the
same side of the screen as the target were kept farther from the
target location. In the other condition, noise always appeared
between the target and the opposite side of the display. These were
referred to as long-range-space and long-range-noise, respec-
tively. They found that observers were cued by the long-range
distractors in the long-range-space condition but not in the long-
range-noise condition. This result could not be explained if learn-
ing is strictly local. However, our model’s account of spatial
constraints is able to take advantage of the distractors that are
outside the target quadrant when there are fewer items close to the
target to interfere with the learning. This is a result of the model’s
modulation weights, which decline exponentially with distance.
When there are many items close to the target, they render any
effects from items that are farther away insignificant. However,
when there are fewer items near the target, the small effects of the
items farther away from the target become more significant in
affecting search. The results of the Olson and Chun (2002) exper-
iment and the modeling results are presented in Figure 20.

The behavioral results from Olson and Chun (2002) and the
present model indicate significant cuing in the space condition,
1(19) = 2.65, p < .01, but no significant cuing in the noise
condition, #(19) = 0.52, p > .10. In the model, this result can be
thought of as the spread of attention to items farther from the target
when there are fewer items near the target, something one might
expect in an account of learning being constrained by attentional
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Figure 20. Data from the Olson and Chun (2002, Experiment 3) experiment. Human data are on the left, and
model data are on the right. Both graphs are based on the mean of each condition in the second half of the
experiment (last 10 blocks). The only comparisons made in either graph were between the new-space (New-Sp)
condition and the long-range-space (LR-Sp) condition and between the new-noise (New-Ns) condition and the
long-range-noise (LR-Ns) condition. Error bars on the right represent the within-subject standard error of the
mean. RT = response time. “p < .05. " p < .01. Data in the left panel are from “Perceptual Constraints on
Implicit Learning of Spatial Context,” by I. R. Olson and M. M. Chun, 2002, Visual Cognition, 9, p. 281.
Copyright 2002 by Psychology Press (www.psypress.co.uk/journals.asp). Adapted with permission.

and computational limitations. This will be considered further in
the General Discussion.

Search Efficiency: Effects of Set Size

Likewise, the model captures the results of set size demonstrated
in Chun and Jiang (1998, Experiment 4). That is, the model does
not demonstrate a difference in intercept between the predictive
and nonpredictive displays in search. The only difference between
the two conditions in the model comes from a benefit of searching
fewer and fewer items in each display as it is learned. That is, the
model originally searches approximately half of the items in the
display in both the nonpredictive and predictive conditions. With
learning over time, the model begins to constrain its search to
probable target locations that have been associated with predictive
distractors.

It is worth noting that no contextual cuing experiment has
demonstrated search slopes that approach zero in the predictive
condition—an effect one would expect if learning contexts cued
attention straight to the correct target location after suitable train-
ing. Both our model and the behavioral experiments presented
above (Experiment 1-3) suggest that the lack of perfect cuing
could be explained by the spatial constraints on learning. Because
observers must get to a local region of the display that they have
learned before they can benefit from the predictive context, it is
unlikely that observers could ever reliably demonstrate search
slopes near zero.

To fully explicate this idea that spatial constraints prevent
contextual cuing from reaching highly efficient search slopes (<
10 ms/item), we ran a probabilistic simulation of contextual cuing.
This simulation was normative, in that it assumed that observers
had perfectly learned the information within a local spatial window
and that observers always looked at only locations that contained
items. With these constraints, we estimated how the size of the
spatial window influenced how quickly simulated observers would
be guided to the target. By varying the set size of the displays as
well, we were able to estimate and compare the search slopes in the
predictive and nonpredictive conditions. Intuitively, the larger the

spatial window, the more efficient guidance should be, leading to
shallower search slopes. The narrow window revealed in our
experiments above suggests that search slopes will asymptote well
above perfect guidance.

We generated 128 random contexts, half of which contained 8
items and half of which contained 16. Then for each context, we
sampled (5,000 times) how many locations were examined when
search was random—without any guidance or learning; this obvi-
ously results in about half of the display being searched on aver-
age. We then used the same contexts and sampled how long it took
to find the target with perfect guidance according to the spatial
constraints of our connectionist network. Whenever the model
focused on a particular location, it took the probability of being
immediately cued to the target location to be ¢~ (where d was the
distance between the current location and the target location), the
same spatial constraints used in the connectionist model.

In addition to using the spatial constraints used by our connec-
tionist model, we also tested several other spatial parameters to get
an idea of what the actual spatial extent of learning in contextual
cuing might be, based on the slopes empirically obtained from
contextual cuing experiments. We tested the model with spatial
windows of various widths as pictured in Figure 21.

We used this simple simulation to estimate search slopes for an
observer that used no information other than learned context to
search the display. The results are presented in Figure 22, along
with behavioral search slopes from the last epoch (6) of the Chun
and Jiang (1998, Experiment 4) contextual cuing experiment.
Chun and Jiang’s (1998) set size manipulation yielded search
slopes of 35 ms/item for nonpredictive (new) trials and 27 ms/item
for predictive (old) trials, yielding a predictive—nonpredictive
slope ratio of 76%. These ratios are used to facilitate comparison
between the human behavioral response time data and the simu-
lation results below.

The best spatial constraints for emulating contextual cuing seem
to be the constraints our connectionist network is using, ¢ Thus,
the spatial constraints used by the model seem to have the correct
shape (exponential decay) as required to emulate Olson and Chun
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Figure 21.
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Graphs of the three sets of spatial constraints used, shown for the target location in these pictures

(so d is always the distance between the current location and the target location). The maximum height in all of
them is 1, which represents perfect cuing from a given location to the target.

(2002, Experiment 3) and the correct spatial extent as required to
yield a similar gain in search efficiency as shown by Chun and
Jiang (1998, Experiment 4).

Similarly, as the spatial extent of the constraints grows to
encompass more of the display, this normative simulation of
contextual cuing suggests that perfect cuing should be possible, as
search slopes approach zero. For example, the largest spatial
window simulated here produces a search benefit ratio of 12%,
which would correspond to a highly efficient target search slope of
4 ms/item for predictive trials, assuming a 35 ms/item slope for
nonpredictive trials. Thus, a major reason that the slope does not
approach zero in contextual cuing is the restricted area of learning
predicted by the spatial constraints. In fact, it suggests that it
should be able make empirical predictions about the contextual
cuing benefit in search slope on the basis of how wide or narrow
an individual’s spatial window of attention is during the search
task. For example, experimental manipulations that widen the
spatial window of attention should increase contextual cuing,
whereas manipulations that narrow the window should decrease
contextual cuing. Of note, Lleras and Von Muhlenen (2004)
showed that an active search strategy, which may lead to more
spatially focused scrutiny of a display, eliminated contextual cu-
ing. It would also be useful to see if individual differences in the
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Figure 22. The difference between the nonpredictive slope and the pre-
dictive slope, expressed as a percentage. The lower the percentage, the
greater the slope benefit provided by contextual cuing. Nonpredictive
slopes were always 0.50 locations checked per item in the simulation.
Pred = predictive; d = distance.

spatial extent of attentional processing may also explain variability
in contextual cuing effects.

Multiple Target Locations

Chun and Jiang (1998, Experiment 6) demonstrated that it is
possible to obtain contextual cuing of two target locations with a
single display but that this results in less cuing than normal. In
their experiment, they paired a given set of distractors with two
different possible target locations. On some trials with a given set
of distractors, the target appeared in one location, and on others, it
appeared in the second paired location. There was contextual cuing
for both target locations, but it was weaker than that obtained when
a given display always predicted the same target location. This
result is also true in the model—associating two different target
locations with a single display still allows learning, but search
times are slowed because the active input nodes are indicative of
two different output nodes being possible targets. Following the
original experiment, we ran 20 blocks with a nonpredictive con-
dition and a predictive condition. In the predictive condition, the
target appeared at each of the two possible target locations 10
times randomly throughout the blocks. In the final block, the
number of locations searched was 4.8 in the nonpredictive condi-
tion and 2.7 in the predictive condition, #(15) = 3.13, p < .01,
indicating that the model was able to associate at least two target
locations with each display. However, cuing for two potential
target locations resulted in a decrease in the predictive condition to
only 2.7 locations checked, whereas our model of the original
Chun and Jiang (1998) experiment that had only one potential
target location decreased to 1.4 locations checked after the same
training. This is similar to the effect found in this study, with a
lower magnitude of contextual cuing with more target locations.

Effects on Accuracy for Brief Displays

Another interesting result is that of Chun and Jiang (1998,
Experiment 5). In this experiment, observers were first trained on
predictive and nonpredictive displays as normal. However, the test
period consisted of flashing the displays onto the screen (for 200
ms) and having observers attempt to answer about the target’s
direction (left or right). The important measure of contextual cuing
in this task was therefore accuracy—participants were more likely
to find the target on the first glance in predictive displays than in
nonpredictive displays, resulting in better accuracy at the predic-
tive trials. To represent this task in the model, we first trained the
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model normally on the predictive and nonpredictive displays. We
then allowed the model only one guess about the target location on
each display and compared its accuracy between predictive and
nonpredictive displays. As expected, the model found the target
more often at the first location it checked in the predictive than the
nonpredictive displays (85% of the time vs. 36% of the time),
t(17) = 3.90, p < .01, demonstrating the accuracy effect found in
Chun and Jiang (1998, Experiment 5).

General Discussion

We developed a simple model of contextual cuing using a
two-layer neural network. The assumptions of the model were then
tested against a novel set of experiments as well as published work
on contextual cuing. Both the experiments and the fit of the model
to previously performed experiments suggest that the model is an
accurate portrayal of contextual cuing in several important ways.
First of all, it suggests that spatial constraints on learning are
needed to accurately model contextual cuing. Second, it suggests
that contextual cuing is based on pairwise associations between the
target location and the distractor locations that are paired with it,
rather than on a gestalt perception of the global context as a whole.

Spatial Constraints on Contextual Cuing

Our model of contextual cuing used spatial constraints on learn-
ing, based on our interpretation of the results of Olson and Chun
(2002, Experiment 1). We tested the specific constraints we had
implemented and their predictions in Experiments 1-3. Experi-
ment 1 demonstrated significant contextual cuing even when the
predictive context was quite minimal, defined by only two neigh-
boring distractors in the same quadrant as the target. This illus-
trates that observers preferentially encode the context of stimuli
near the target to a degree that allows significant contextual cuing
from very limited and highly localized configurations, even more
localized than previously demonstrated by Olson and Chun (2002,
Experiment 1).

The question we tried to answer in Experiments 2 and 3,
therefore, was whether there would be any additional benefit from
global context or whether observers benefit from only the local
information, as the spatial constraints of our model predicted. Both
Experiments 2 and 3 demonstrated that contextual cuing from local
context was as strong as that observed from global context, even
when observers were trained with globally predictive displays
alone. This finding indicates that observers learned only the local
information and is directly in line with the idea of spatial con-
straints that we implemented in the model.

The implementation of spatial constraints in our model of con-
textual cuing can be usefully described in terms of attention and
the attentional spotlight, as alluded to earlier (Broadbent, 1982;
Posner, 1980; Posner, Snyder, & Davidson, 1980). Contextual
cuing is a form of statistical learning in which participants are
encoding the statistical regularities of the display over many trials
and are using it to benefit their search for the target item. Attention
is necessary for statistical learning in visual search (Jiang & Chun,
2001) and in rapid serial visual presentation streams (Baker, Ol-
son, & Behrmann, 2004; Turk-Browne, Junge, & Scholl, 2005).
Specifically, observers only learned contextual and statistical as-
sociations among stimuli that were selectively attended; the asso-

ciations between unattended stimuli were not learned (Baker et al.,
2004; Jiang & Chun, 2001; Turk-Browne et al., 2005). Thus, the
present results suggest that attention is spatially focused around the
target, encoding only a small area of information around it. Instead
of encoding the entire global context throughout the visual search
trial, observers may be encoding just one snapshot of the local
context surrounding the target when it is detected. We also dis-
cussed in an earlier section how such local constraints may explain
why contextual cuing does not produce perfect guidance.

Selective attention to the local region neighboring the target
makes sense ecologically as well. It seems more important to pay
attention to the local context of an item than to the larger context
in most cases. For instance, recognizing a dishwasher immediately
constrains the items one sees in it to be dishes or silverware, but
recognizing that one is in a kitchen leaves open many more
possibilities for what a group of objects in it might be. Objects may
covary more frequently with items in their local context than with
items in their global context, such that the local context more
closely constrains what a given object might be than does its global
context (cf. Hoffman & Sebald, 2005).

An even stronger incentive for local contextual learning is that
computing statistical regularities is a computationally intensive
process and cannot be applied to all possible relationships in the
entire visual field. It makes sense, then, that spatial statistical
learning should be restricted to a local region that is associated
with success in the task (i.e., target detection). Likewise, these
computational considerations are consistent with the results of
Olson and Chun’s (2002) third experiment in which there was
contextual cuing from long-range context in the absence of dis-
tractors near the target: When there is no information nearby the
target, learning may extend further in an attempt to grasp the
context of an item. Altogether, we suggest that although compu-
tational constraints may drive most contextual learning to be
spatially local around the focus of attention, the spatial extent of
contextual encoding may vary depending on stimuli and task
characteristics. However, we believe that a useful approximation
to the type of learning seen in contextual cuing tasks is the set of
fixed weights we implemented in our model, which seems capable
of predicting all of the results on the spatial extent of contextual
cuing to date. An interesting question for future research would be
to study how spatial constraints may or may not influence contex-
tual encoding in real-world scenes.

Association and Contextual Cuing

Another important point about the model is that its implemen-
tation via a neural network means that it learns by associating
particular distractor locations with the target location. These loca-
tions are absolute locations within the configuration; they are not
relative to the target location. This is a strong assumption of the
model, and it predicts that learning in contextual cuing depends on
an implicit association between the target’s location in the config-
uration and the locations of the distractors within the configuration,
with no relationships between the distractors’ locations being learned.
This form of associative learning explains why contextual cuing
tolerates combined, rescaled, or displaced displays in Jiang and Wag-
ner’s (2004) experiments but not displays in which local context
moves around within a global configuration (Experiment 4).
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In Jiang and Wagner (2004, Experiment 1), two different dis-
plays that have both been trained to facilitate the same target
location were recombined with some distractor locations from
each to form a new display. This new display results in entirely
preserved contextual cuing, a result our model predicts because it
ties objects to their specific locations within the configuration.
Decisions about target location in the model are made on the basis
of how many of the active input nodes activate a particular output
node location, something that does not differ between the old
displays and the recombined displays in this experiment. In other
words, because the specific distractor locations still code for the
correct target location, cuing is preserved.

In Experiment 1 presented here, visual search was facilitated by
holding the configuration of the target quadrant constant between
blocks. Experiment 4 revealed that no learning occurred when the
invariant quadrant was allowed to shift locations from block to
block. This implies that not only is the local context important for
such contextual cuing but also its place relative to the global
context. This is consistent with the perceptual learning literature,
which indicates that learning may not be translation invariant (Dill
& Fahle, 1997; Ramachandran, 1976). If a shifting process is
responsible for lining up visual input with stored memory (Foster
& Kahn, 1985), then in order for target quadrant learning to
transfer in the present experiments, it would be necessary to look
at all possible translations for each quadrant and compare the
matches with all previously seen configurations. It is easy to see
why this would become computationally infeasible for the large
target quadrant translations tested here. Likewise, our model pre-
dicts this result because it requires the configuration of items to be
the same in order to preserve contextual cuing. Changing the
location of items relative to one another will always eliminate
cuing in the model, because it encodes location based on absolute
location in the configuration, rather than as relative to the target
location.

On the other hand, transfer of learning to translated displays like
in Jiang and Wagner (2004, Experiment 2), in which the entire
configuration of items was translated or rescaled after learning, is
not problematic for our model. This is because what is changed is
the location of the items relative to the observers but not the
locations of the items relative to each other. This results in a
preserved configuration of items and the preserved location of
each item within the configuration, which is all the model uses to
determine contextual cuing.

Therefore, the model implies that learning in contextual cuing is
based on pairwise statistical associations between the distractor
locations near the target and the target location. This has important
implications for how such information is stored and how statistical
regularities are parsed out of the incoming information. It also
relates contextual cuing more strongly to the statistical learning
literature, where automatic parsing of pairwise associations has
been demonstrated previously, in both children and adults, and in
vision and audition (Fiser & Aslin, 2001, 2002a, 2002b; Saffran,
Aslin, & Newport, 1996).
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