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Nonlinear Multiscale Wavelet Diffusion for Speckle
Suppression and Edge Enhancement in Ultrasound
Images

Yong Yue, Student Member, IEEE, Mihai M. Croitoru, Akhil Bidani, Joseph B. Zwischenberger, and
John W. Clark, Jr., Fellow, IEEE

Abstract—This paper introduces a novel nonlinear multiscale
wavelet diffusion method for ultrasound speckle suppression
and edge enhancement. This method is designed to utilize the
favorable denoising properties of two frequently used techniques:
the sparsity and multiresolution properties of the wavelet, and the
iterative edge enhancement feature of nonlinear diffusion. With
fully exploited knowledge of speckle image models, the edges of
images are detected using normalized wavelet modulus. Relying
on this feature, both the envelope-detected speckle image and the
log-compressed ultrasonic image can be directly processed by the
algorithm without need for additional preprocessing. Speckle is
suppressed by employing the iterative multiscale diffusion on the
wavelet coefficients. With a tuning diffusion threshold strategy,
the proposed method can improve the image quality for both
visualization and auto-segmentation applications. We validate
our method using synthetic speckle images and real ultrasonic
images. Performance improvement over other despeckling filters
is quantified in terms of noise suppression and edge preservation
indices.

Index Terms—Dyadic wavelet transform, iterative denoising,
multiscale analysis, nonlinear diffusion, speckle suppression,
ultrasound imaging, wavelet diffusion.

1. INTRODUCTION

LTRASOUND speckle is the result of the diffuse scat-
U tering, which occurs when an ultrasound pulse randomly
interferes with the small particles or objects on a scale compa-
rable to the sound wavelength. Speckle is an inherent property of
an ultrasound image, and is modeled as spatial correlated mul-
tiplicative noise. In most cases, it is considered a contaminating
factor that severely degrades image quality.

To improve clinical diagnosis, speckle reduction is gener-
ally used for two applications: visualization enhancement and
auto-segmentation improvement. Most speckle filters are devel-
oped for enhancing visualization of speckle images [1]-[3]. For
these approaches, texture recovery is a desired feature of fil-
tering, and needs to be addressed. Another goal of ultrasonic
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speckle suppression is to improve image simplification, which
is in turn very beneficial in automated object detection (e.g.,
in segmentation and motion tracking). In this sense, texture re-
moval significantly improves the speed and accuracy of auto-
mated object detection. Consequently, speckle filters that are
designed for texture recovery have rather limited application in
auto-segmentation improvement.

We therefore consider the design of a speckle suppression al-
gorithm, which mainly focuses on producing the denoising re-
sult for auto-segmentation improvement, but is also able to pro-
vide visualization enhancement. For the main goal (segmenta-
tion improvement), image texture does not improve boundary
tracking. Rather, texture recovery is better ignored. In fact, a
simplified image with piecewise smoothing regions and the es-
sential edges of objects, often improves segmentation perfor-
mance. Such simplification can be described by use of a “car-
toon model,” which has been elaborated by the Mumford-Shah
functional [4].

An image can be simplified using iterative filtering such that
the output of each iteration represents a coarser version of its
input. A class of techniques for accomplishing that purpose is,
the scale-space denoising methods, called nonlinear anisotropic
diffusion, e.g., Perona—Malik filter [5], Weickert filter [6] and
total variation diffusion [7]. These techniques rely on the diffu-
sion flux to iteratively eliminate small variations due to noise or
texture, and to preserve large variations due to edges. For the
multiplicative noisy image, however, the general signal/noise
relationship no longer exists, since the variations due to noise
may be larger than those due to signal. This limits the appli-
cation of the nonlinear diffusion method in the processing of
ultrasound images. A solution is to integrate the speckle sup-
pression algorithm into the diffusion technique. For instance,
a speckle reducing anisotropic diffusion (SRAD) method [8§]
has been derived by casting the typical spatial adaptive filers
(the Lee and Frost filter [1], [9]) into the nonlinear diffusion
technique. Although the SRAD method improves edge detec-
tion via the anisotropic filtering, the filtering result with regard
to speckle suppression and edge preservation is still preserved
for segmentation purposes. For example, low-contrast edges are
often smeared with speckle, and speckle texture is usually re-
tained in the high-intensity region.

The nonlinear diffusion technique relies on the gradient
operator to distinguish signal from noise. Such a method often
cannot achieve a precise separation of signal and noise. Ultra-
sound image denoising problems are better solved if a powerful
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signal/noise separating tool (e.g., wavelet analysis) is incor-
porated in the speckle-reducing diffusion process. Moreover,
multiscale wavelet despeckling methods have demonstrated
tremendous performance improvement compared to typical
spatial speckle filters [10]-[12]. Intuitively, integration of the
multiresolution and sparsity properties of the wavelet with
anisotropic speckle reduction from nonlinear diffusion should
lead to stronger speckle suppression and edge preservation than
that achieved by spatial domain filtering alone. Recent work
[13] has shown that nonlinear anisotropic diffusion can be
employed within framework of the dyadic wavelet transform
(DWT). We refer to the integration of nonlinear diffusion and
wavelet shrinkage as wavelet diffusion. Inherited from the
wavelet, this technique has more favorable denoising proper-
ties than nonlinear diffusion (namely, via multiscale analysis
and more efficient signal/noise separation). It is also distin-
guished from wavelet-based denoising methods by its improved
edge-enhancement and iterative noise reduction features.

In this paper, we present a normalized modulus-based
nonlinear multiscale wavelet diffusion (NMWD) method for
speckle suppression and edge enhancement. The proposed
approach aims to improve the ultrasound image quality for
automated image interpretation. With a tunable parameter, the
algorithm can also preserve texture for visual enhancement.
The proposed algorithm is versatile for both the envelope-de-
tected speckle image and the log-compressed ultrasonic image.
Relying on edge detection by the normalized wavelet modulus,
the algorithm can directly take either type of image as input
without prior compressing via the logarithmic transform or un-
compressing via the exponential function. This feature actually
solves the performance instability problem, which is caused by
inaccurate estimation of the compression coefficiente—a tricky
problem for most speckle filters.

The paper is organized as follows. In Section II, we review
the theories of nonlinear diffusion, the dyadic wavelet transform
and two—dimensional (2-D) wavelet diffusion. In Section III, we
introduce the new algorithm. In Section IV, we quantify the per-
formance of our algorithm and present results for both synthetic
(simulated) and real ultrasonic images. Conclusions are drawn
in Section V.

II. WAVELET DIFFUSION
A. Nonlinear Diffusion

Perona and Malik proposed a fundamental nonlinear
anisotropic diffusion based on partial differential equation
(PDE) for noise smoothing [5], [6]. Given a noisy image
f(z,y,t) at time (scale) ¢, the nonlinear diffusion equation is
expressed as

{ %f(a:,y,t) = div[c(z,y, 1)V f(z,y,t)] (1)
f(2,y,0) = folz,y)

where V is the gradient operator, div is the divergence oper-
ator, and c(z, y, t) is the diffusion coefficient. If ¢(z,y,t) is a
constant, (1) reduces to the isotropic heat diffusion equation. To
avoid the edge-smearing during the diffusion, ¢(x,y,t) should
be constructed to encourage homogenous-region smoothing
and to inhibit the smoothing across the boundaries. A satisfied
¢(z,y,t) is determined by two components: the edge map
n(z,y,t) and the diffusivity function ¢(-). The edge map
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n(x,y,t) is the estimation of the location of the edges at time
t. Ideally, n(x, y, t) should have the following two properties:
1) n(z,y,t) equals to zero for the region inside boundaries;
2) n(z,y,t) has the local contrast at edge point in a direction
perpendicular to the edge.
In the scale space, 7n(x,y,t) = V f(z,y,t) can generally pro-
vide an accurate estimation of the edge positions. The diffusivity
function ¢(-) has to be a nonnegative monotonically decreasing
function, with g(0) = 1. As a consequence, c(z,y,t) can be
formulated as

c=g(|nl). )
A diffusivity function proposed in [5] is given by
1
g (Inl) = ©)

(2
where A is an edge magnitude threshold parameter. The influ-
ence of A on the diffusion process can be illustrated by the flux,
defined as ®(n) = g(n)n [5]. Given a value of A, the maximum
flux ®,s occurs at || = A for (3) [14]. Below @/, the flux is
reduced to zero, indicating that diffusion encourages homoge-
nous region smoothing. Above ®,,, the flux also goes to zero,
suggesting that diffusion inhibits smoothing across edges. Gen-
erally, a large value of A\ produces a smoother result in a ho-
mogenous region than a smaller one. In this sense, A acts as a
threshold for the diffusion process.

B. Dyadic Wavelet Transform

Mallat and Zhong [15] have generalized the Canny edge
detection approach, and have presented a multiscale dyadic
wavelet transform for the characterization of one—dimensional
(1-D) and 2-D signals. With a wavelet function 1)(z) € L?(R),
a continuous wavelet transform of f(z) is given by

“+oo
Wanf(2) = (f.than) = / f(:v)%mﬂ(x;b)dm @

where a > 0 is the scale number, b € R is the translation pa-
rameter, and ¥, () = (1/a)y¥(z — b/a). With a differentiable
smoothing function 0(z), 1(z) is given by

08(x)

P(x) = o

For the 2-D wavelet transform, the wavelet functions ' (z, y)
and 12(x,y) are defined as
08(x,y) 00(x,y)
1 ) )
) — o J) . 5
P (z,y) 5 oy ©)
The dyadic wavelet transform of f(x,y) € L*(R?) at the scale
27 (or level 7) has two components defined by
Wif(e.y) = f*4jy) d=12 ©)
Hence, the wavelet coefficients le f(z,y) and W]-2 f(z,y) are
proportional to the gradient of f x 6(z, y)

W) (2 = 65) ()
(werie) =2 G o)
=2V (f *0;)(z,y). (7

The modulus of the wavelet coefficients at scale 27 is defined as
2 2
M;f(z,y) = \/|W}f(x-,y)| + W2 ()| ®)

and ¢*(z,y) =
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which represents the multiscale edge information obtained by
combining the horizontal and vertical wavelet coefficients. With
a scaling function ¢ (=, y), the coarse approximation of f(z,y)
at scale 27 is

A finite-level discrete dyadic wavelet transform of the 2-D
discrete function f € 1?(Z?) can be represented as

w={ssf.(win)\2E )

where S f is a coarse scale approximation of f at final scale
27, and W f represents the detail image at scale 27. We refer
to this discrete wavelet transform as the MZ-DWT.

A 2-D discrete function f can be decomposed by a lowpass
filter H and a highpass filter GG, and reconstructed with a low-
pass filter H (the conjugate filter of H) and two highpass fil-
ters K and L. In the Fourier domain, the Fourier transform of
five filters are denoted by H s G, H s K and ﬁ, respectively. De-
tails about filter construction can be found in [15] and [13]. The
coarse scale approximation of f(u,v) at scale 2911 can be rep-
resented in the Fourier domain as

(10)

= H(27u)H(270)8; f(u,v) (11)

v). Correspondingly, the

§j+1f(u7 ?))

where j > 0, and So f(u,v) = f(u,
two detail images are obtained as

W}Hf(u? v) =G(27u)S; f(u,v)
W21 f(u,0) = G(20)S, f(u,v).

With the reconstruction filters, the signal is represented recur-
sively as

gjf(“ﬂ”) =

(12)
(13)

Sis1f(u, v>H<2Ju>H< v)
+ W fu,0)K(27u) L(27)

+ W 2o f(u, v)L(27u) K (270). (14)

The time domain representation of (11)—(14) can be found in
[13], [15]. By substituting (11)—(13) into (14), a necessary and
sufficient condition for perfect reconstruction is given as [16]:

H(u)H (0)H (w) H (0)+ K () L(0) G (u) + L () K ()G (0) = 1.

C. Wavelet Diffusion

Recently, Mrazek et al. [17] have sought to determine the
correspondence between wavelet shrinkage and nonlinear dif-
fusion methods. Shih et al. [13] have shown that nonlinear dif-
fusion can be approximated by a MZ-DWT shrinkage process,
and have proposed a novel denoising scheme which combines
the two techniques. We refer to the integration of nonlinear dif-
fusion and wavelet shrinkage as wavelet diffusion. This inte-
grated technique has several favorable denoising properties in-
herited from the individual techniques (e.g., multiscale anal-
ysis and efficient signal/noise separation properties from the
wavelet, edge-enhancement and iterative noise reduction fea-
tures from the nonlinear diffusion). A derivation that proceeds
from 1-D nonlinear diffusion to dyadic wavelet shrinkage has

been shown in [13]. For our application, we briefly demonstrate
the derivation in 2-D. From (1), we have

@00 = 3 e 0 0|

7] 0

Forward time discretization of the time derivative is approx-

imated as
0 _f(f[)y,f-i—At)—

Neglecting the higher-order terms, and substituting the above
equation into (16), we obtain

f(w,y,t) .

O(A).

f(JJy/IL-‘rAt)—f(fI}y,f)_i 8f(x7yt)
At = oz {C(w’y’t) oz }
0 Of(x,y,t)

With At = 1, we can approximate (17) as

~ flay,t) + [c(w,y,w

flo,y,t+1) - df (x, y, t)}

dx
df (x,y,t)
dy

and denote f(z,y,t + 1), f(z,y,t) and c(z,y,t) as f(a:,y),

d
+d—y [C($7Z!7t) } (18)

f(z,y) and c¢(z,y), respectively, for briefness. Letting
p(z,y) =1 — c(x,y), (18) can be rewritten as
r3 de(x,y> de(x,y>
flay) = fley) + — 75—+ 0
d dj d df (=,

- [p(x,y)%] -5 [p(x,y) ffy y)} . (19
The Fourier transform of (19) is
> ~ 1 ~
Flu )= (1= =)o) | 5 i0) = (jufo) |

T

o |geitu ) (jeftw)| . @0

Letting Ay Ay =1—-w2 =% B =ju; D = —ju; E = ju;
F = —jvand p = (1/27)p(u,v), and substituting into (20),
we have
Fu,v) = Ao - Av - f(u,0) + D~ (p+ (B f(u,v)))

oy (ﬁ* (E-f(u,v))). 1)
We note that (21) has the same format as (14). In addition

z‘il'z‘i2+B~lA)+EA’-F:1

which satisfies the filter requirement expressed in (15). Finally,
the inverse Fourier transform of (21) is

Fl@,y) = (f(z,y) * A1) * Ay + (p(z,y) - (f(x,y) * B)) * D
+ (@) (f(z,y) « E) « F. (22)
Equation (22) indicates that the image f(z,y) is first decom-

posed with the lowpass filter A; and the highpass filters B and
E. 1t is then regularized with p(z,y), and finally reconstructed
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Wi f [pa] Wif
wif (pa] wif

S1f

wis—{ps-Wif
S ftW3 f— p3-W3 f182f

Fig. 1. Scheme for 3-level wavelet diffusion. S ;f and ﬁj‘i f denote the filtered
wavelet coefficients at scale 27.

with the corresponding lowpass filter A5 and the highpass filters
D and F.

From the derivation (see (19)), the diffusion coefficient ¢(-)
has its correspondence with p(+) in the wavelet domain. Similar
to ¢(-) in (1), the diffusion behavior of p(-) is also determined
by the edge map 7 and the diffusivity function g(-). Therefore,
wavelet diffusion coefficient is given by

p(nl)=1-g(nl)- (23)

To achieve edge-preservation and intra-region smoothing, g(-)
in (23) also has to be a nonnegative monotonically decreasing
function. In this sense, most diffusivity functions [18], which
have already been developed in the nonlinear diffusion, can be
used in wavelet diffusion. Another important factor controlling
the effect of the diffusion is the selection of the edge map 7. For a
general denoising problem (e.g., additive Gaussian noise), either
wavelet coefficients or wavelet modulus can be used as the edge
map. However, from (7), the similarity of the gradient operator
and the wavelet modulus suggests that the wavelet modulus may
be more appropriate.

The advantages of wavelet-based diffusion over spatial non-
linear diffusion are obvious: the edges detected by the wavelet
coefficients/modulus are more accurate than the ones estimated
by the gradient operator. Moreover, multiscale analysis provides
powerful denoising scheme for the treatment of complicated
noise, including speckle. Similar to the wavelet shrinkage [19],
the denoising scheme of wavelet diffusion is implemented by
three steps: 1) the noisy image f is decomposed into the coarse
scale approximation S; f (j > 1) and detail images Wj‘»lf (d=
1,2) by 2-D MZ-DWT; 2) wavelet coefficients W f are regu-
larized as

Wit =p(nl) Wi'f. (24)
3) the denoised image is reconstructed by taking the inverse
MZ-DWT. To achieve a satisfactory denoising result, wavelet
diffusion is often performed iteratively [13]. For instance, a
three-level wavelet diffusion scheme is shown in Fig. 1.

III. SPECKLE SUPPRESSION WITH WAVELET DIFFUSION

Wavelet diffusion can be considered as a special case of non-
linear diffusion which is employed within the framework of the
dyadic wavelet transform. In denoising applications, the key
issue of wavelet diffusion is to find an accurate edge estimation
method. For the image corrupted with additive Gaussian noise,
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wavelet coefficients (or wavelet modulus) can precisely distin-
guish the edge-related components from noise-related compo-
nents relying on the difference of their magnitude. However,
when an image is contaminated with multiplicative noise, use
of the wavelet coefficient as an edge estimator experiences diffi-
culty in efficiently detecting edges, since the noise-related com-
ponents may indeed be larger than the edge-related components
[20]. A similar problem occurs when the nonlinear diffusion
technique is employed in speckle suppression. For that problem,
Yu and Acton [8] proposed a method which cast the spatial adap-
tive filtering technique into the nonlinear diffusion algorithm.
The conceptual similarity between the nonlinear diffusion and
wavelet diffusion techniques encourages us to examine their so-
lution more closely at the beginning of this section. Later in this
section, we propose our edge-detection scheme and diffusion
threshold estimator in the framework of wavelet diffusion.

A. Related Work

As a typical spatial adaptive filter, the Lee filter assumes
signal reflectivity r as a stationary random variable, and a linear
minimum mean square error estimator is used to eliminate
speckle, given by [1]

2

C’U
Ts = s + <1 - 02> (fs _IU’S)'

Here, p, is the mean value of image f for a moving window s,
C? = 02 /4?2 is the normalized noisy signal variance, and C? =
02 /2 is the normalized noise variance for the homogenous
region .

SRAD is derived by casting the spatial adaptive filter into the
variational framework. A SRAD diffusivity function is defined
as

(25)

1

9(q) = ,
)
G

(26)

where ¢ is instantaneous coefficient of variation (ICOV), and qq
is diffusion threshold. The speckle reduction of SRAD can be
understood from the relationship of ¢ and gg with their corre-
spondence in the spatial adaptive filter. In fact, ¢ in (26) is a vari-
ational expression of C of (25) in terms of the gradient operator,
whereas qq is exactly same as C', [8]. On another hand, the sim-
ilarity observed between the nonlinear diffusivity function (3)
and SRAD diffusivity function (26) indicates the roles of ¢ and
qo in the speckle diffusion: ¢ plays a role as the speckle edge
detector in the same manner as the edge detector 7 in nonlinear
diffusion, whereas gq acts as the diffusion threshold A. The con-
ceptual correspondence of different denoising techniques is il-
lustrated in Table 1.

In the spatial nonlinear diffusion scheme, the solution pro-
posed by SRAD for the despeckling problem is: to estimate
the edge map with the normalized noisy signal variance, and to
compute the diffusion threshold from the homogenous speckle
region. With this strategy, the signal mean is removed during the
edge estimation, and the edge-related components can be easily
separated from the noise-related components by the magnitude
difference. Therefore, it suggests that, the wavelet diffusion can
be also successfully employed for speckle suppression as long
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TABLE 1
CORRESPONDENCE BETWEEN CONCEPTS USED IN DIFFERENT DENOISING TECHNIQUES

[[ Spatial Adaptive Filter |

Nonlinear Diffusion | Wavelet Diffusion

Diffusion coefficient i

I () | p()

Additive Gaussian noise

Edge map () Vf W;if or M; f
Threshold (A) or Constant or histogram- Constant
noise estimation based estimation [5] [13]
Multiplicative speckle

Edge map (n) Cs q Ny f
Threshold (X\) or Cu qo Homogenous region-
noise estimation [1] [8] based estimation

as one can find an appropriate edge detector to represent the in-
trinsic signal/noise relationship in the wavelet domain, and iden-
tify the homogenous speckle region for the diffusion threshold
estimation.

B. Edge Detection With Normalized Modulus

Two types of ultrasound images are generally used. One is the
envelope-detected speckle image, which can be generated from
the recorded RF signals; whereas the other is the displayed ultra-
sonic image, which is commonly used in medical applications.
The latter is generally considered the logarithmic compressed
envelope-detected image (e.g., fo = Dln f; + G, where D
is the compression coefficient, and G is the linear gain). This
kind of nonlinear compression totally changes the statistics of
the envelope-detected signals, and a different compression co-
efficient also leads to different statistical distribution of signals
[21]. To avoid conversion between image types, we propose two
different edge detectors corresponding to image type. The ad-
vantage of such direct processing is the avoidance of perfor-
mance instability caused by inaccurate estimation of the com-
pression coefficient.

1) Envelope-Detected Speckle Image: Statistical studies
show that envelope-detected signal can be generally represented
in terms of a multiplicative noise model [20]

f(@) = pR(z)n(x)

where p is the average amplitude of the target, and R(x) is the
intrinsic signal with mean one, and n(z) is Rayleigh distributed
speckle noise with mean one. By definition (4), the wavelet co-
efficients are [20]

27

Wasrf(0) =n [ Bon(us(o)s. 28)
For a homogenous region, R(z) is set to one to analyze the noise
contribution, and the wavelet coefficients are proportional to the
mean amplitude 4 of the signal. Since n(z) has finite energy
and jj;: Yap(z)dz = 0, the integral of (28) at scale a will
be a nonvanishing function of translation b. Therefore, noise
contribution to the wavelet coefficients depends on the signal
mean.

Generally, the normalized variance on wavelet coefficients
ow, f /s is used to characterize the intrinsic signal variance
[10]. Here, us = (>~ f)/N is the local mean for a window s
with NV pixels, and 012%_ ;= (32, W;f?)/N is the local variance
of the wavelet coefficients. If considering the variance over all

sub-bands, we find that this total variation equals to the variance
of modulus, i.e.

1 1
oy = 3 M) = 5 > (Wi + i),

Therefore, the normalized variance on wavelet modulus
oM, f /s can also characterize the intrinsic signal variation.

Prior to using the normalized modulus as an edge map, two
adjustments are made to improve its denoising performance.
First, the size of window for the mean estimation is scale-depen-
dent, specifically, D; = 2/=1(Dg—1)+1, where Dy is original
window. Second, noise variance estimation occurs at the current
pixel, rather than by local window estimation. Although this ad-
justment sacrifices the spatial-correlation resistance provided by
window estimation, a better edge resolution is achieved. More-
over, the spatial-correlation caused by speckle can be easily
solved via the diffusion process. Finally, we propose the fol-
lowing edge detector for the envelope-detected image diffusion:

M].f'/ .j:1727"
s

Using the modulus (rather than the wavelet coefficients) to
characterize the noisy signal is well-suited to the purposes of
image segmentation. After removal of the signal mean, the edge-
related M; f has a large value, whereas the noise and texture
have a small value of modulus. Consequently, an edge-enhanced
diffusion process leads to modulus-maximization at edges and
piece-wise smoothing within the homogenous regions. Such a
result is suitable for the applications of classification and seg-
mentation.

2) Displayed Ultrasonic Image: The medical ultrasonic im-
ages (B-Scan images) generated from clinical imaging systems
have different properties compared with an envelope-detected
image. The signal processing stages contained within the
scanner (logarithmic compression, low-pass filtering, interpo-
lation) modify the statistics of the original signal. Experimental
measurements [22] show that displayed ultrasonic images can
be modeled as

M;f = i (29)

f(z) = pR(z) + / pR(x)n(z) (30)

where n(z) is a zero-mean Gaussian noise with mean one. Al-
though this model does not involve logarithmic transformation,
it is still referred to as “log-compressed” model by convention.
Assuming that a uniform area is scanned (i.e., R(z) = 1), it
can be easily shown that the mean of log-compressed image is
proportional to the variance rather than the standard deviation
of the image.
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(b)

image.

Fig. 2. (a) Simulated envelope-detected (b) Real

echocardiographic image.

speckle

Similar to (28), the wavelet coefficient are given as

Waunf(x) :u/R(w)¢a,b($)dx+\/ﬁ/\/R(w)n(.r)d)a’b(x)dx.

(3D
Considering the noise contribution at homogenous regions
(R(z) = 1), we find that the wavelet coefficients are pro-

portional to /p. To characterize the intrinsic signal/noise
variation, the edge detector for the log-compressed ultrasound
image is constructed as

M, f
Vs
Comparing (29) and (32), the effect of normalization is to re-
move the signal mean during the edge estimation, and the only
difference is the contribution of signal mean to the signal/noise
characterization.

3) Statistical Model of Normalized Modulus: The distribu-
tion of the speckle-related modulus depends on the statistical
model of the wavelet coefficients. Several models have been
proposed for characterizing speckle, including the mixture
Gaussian distribution [12] for the uncompressed speckle image,
and the normal inverse Gaussian distribution [23] for the log-
arithmic compressed speckle image. Except for the Gaussian
distribution, most models are analytically too complicated to
yield a practical model for the normalized wavelet modulus. To
simplify the estimation, we assume that both of speckle-related
and edge-related normalized wavelet coefficients are Gaussian
distributed. Consequently, the speckle-related normalized mod-
ulus M; f can be modeled by the Rayleigh distribution

. T z?
p(x|noise) = o exp <—m>
where = denotes the Rayleigh random variable, o, is the stan-
dard deviation of the normalized wavelet coefficients. Similarly,
p(z|edge) for edge-related M ;[ has the same form as (33) with
the edge-related standard deviation o.. Overall, the normalized
wavelet modulus M ; f is given by the Rayleigh mixture model

(34)

We demonstrate the performance of the Rayleigh mixture
model in matching the distribution of normalized modulus for
both envelop-detected and log-compressed ultrasonic images.
As shown in Fig. 2, the envelope-detected image [Fig. 2(a)] is
simulated by (27) (see Section IV for details), whereas Fig. 2(b)

M;f =

J=1,2,...,J. 32)

(33)

p(x) = wap(elnoise) + (1 — w,)p(aledge).
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Fig. 3. Histograms and the Rayleigh mixture model fitting of the normalized
modulus at scale 22 for the simulated envelope-detected speckle image (top) and
real echocardiographic image (bottom), shown in Fig. 2(a),(b), respectively.

is a real echocardiographic image (four chamber view). Both of
images are decomposed by MZ-DWT. The histograms of nor-
malized modulus and their corresponding Rayleigh mixture fit-
ting at the resolution of 22 are shown in Fig. 3. The results in-
dicate that the Rayleigh mixture model can well characterize
the statistics of the normalized wavelet modulus for both en-
velop-detected and log-compressed ultrasonic images.

C. Diffusion Threshold

1) Estimation Based on the Homogenous Speckle Re-
gion: The diffusion threshold should reflect the noise variation
in the multiscale wavelet modulus. The traditional threshold
estimation, such as using a constant value or histogram-based
estimation (90% integral of histogram, suggested in [5]), is
usually difficult to control in producing a satisfactory result.
Extended from the concept of C, in the spatial case, the
diffusion threshold can be estimated by the noise variation
present in the homogenous speckle region of the image. This
has been pointed out by Yu and Acton [8]. However, due to the
difficulty of automatic selection of a homogenous region, they
simplified the threshold estimation by using a constant with the
predesigned exponential decay function. Such an estimation
becomes less flexible with a more complicated image.

We pursue the concept of threshold estimation based on the
homogenous region. First, we study the relationship between the
estimated threshold and the resolution scales, using a manual
selection method. When the image is decomposed into multi-
scale, the modulus in the coarser scale (j > 2) tends to be much
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Fig.4. Diffusion thresholds A; (j = 1,2, 3) estimated from the homogenous
region in Fig. 2(b).

smoother than that for the finer scale. Therefore, we reduce the
threshold of coarser scale to encourage edge preservation. The
homogenous-region based threshold for the multiscale wavelet
diffusion is proposed as

(35)

where M ; fu represents the mean normalized modulus for the
homogenous region u, and 5’ is the scale factor. Empirically,
weuse j =0forj =1and j’ = jforj > 2.

In our experiments, the proposed threshold estimator per-
forms well for various speckle images with different noise
levels. As an example, Fig. 4 shows an homogenous-region
estimated threshold A;, which is estimated by the manually
selected homogenous region (e.g., cavity of right ventricle) of
Fig. 2(b). With this threshold, we are able to generate a result
similar to the one shown in Fig. 10(d). After removal of the
signal mean, the noise-related M; f in the homogenous region
can generally represent the intrinsic noise level for the whole
image. With iterative diffusion, the noise, which is originally
Rayleigh distributed, gradually becomes Gaussian distributed.
As shown in Fig. 4, the estimated threshold decays quickly
from a large initial value to a small constant. Therefore, such a
threshold would resist the boundary oversmoothing associated
with the diffusion process. The homogenous region estimation
method can be adapted well to complicated speckle images.
However, manual selection of the homogenous region is al-
ways laborious and unstable for practical application. Hence, a
scheme for the automatic determination of homogenous regions
within an image would be very desirable.

2) Speckle Image Classification: We use likelihood classi-
fication and cross-scale edge consistence to separate the ho-
mogenous speckle regions from others. For the classification
model, we assume that the image consists with three classes:
edges, speckle and background. The background commonly ex-
ists in the medical ultrasound image, e.g., the region outside
scanning region. Background removal is necessary to reduce the
estimation error and increase speed. Due to its constant value,

the background can be easily removed with intensity thresh-
olding. The problem then becomes binary classification: specif-
ically, classification of the edge-related and the speckle-related
components in the normalized modulus. From assumption (34),
the normalized modulus is modeled as a Rayleigh mixture dis-
tribution. We use the expectation-maximization (EM) method
[24] to estimate the parameters w,,, o, and . of (34). Typi-
cally, the number of noise-related coefficients is much larger
than those related to edges, and the peak of the normalized mod-
ulus histogram is most likely due to noise-related coefficients.
Therefore, the initial value of o,, is estimated by the regression
method, o,, = \/7/2max(h;), where h; is the segment of his-
togram. Involved computation is reduced with such initializa-
tion. With the estimated parameters, the image is segmented by
likelihood classification [25], and the classification threshold is
given by

2 (o8 55 + 1727

T = : (36)

p
UII

1
3
UE

To achieve a stable classification, we rely on the persistence
of the edge-related normalized modulus across resolution
scale. In particular, for an image with background removed, a
coarse-to-fine classification method [3] can be used to deter-
mine the homogenous region U;

1,
U: = )

Here, K is a tunable parameter that controls the region of in-
terest, and (1 — U. ]'J,_l)M i+1f represents the edge-related com-
ponents of normalized modulus at scale j+1. For coarsest scale,
we assume M ; f contains only edges of the image, with U; = 0.
In Fig. 5, we demonstrate the performance of the coarse-to-fine
classification for the two test images (Fig. 2). For both test im-
ages, K = 1, and the classified homogenous speckle-related
M ; f at different resolutions are shown in white. It is clearly
shown that the identified speckle-related components decrease
with an increase in decomposition level, whereas edge-related
components increase.

With the detected homogenous regions at different scales, the
diffusion threshold is computed as

_ Mean(U; M; f)

Nei
From (37) and (38), the parameter K of (38) plays a tuning role
in determining the diffusion threshold, and further controls the
denoising result. When K = 0, all coefficients are related to
edges. Consequently, A\; = 0, and no filtering needs to be per-
formed. When K is extremely large, all coefficients are related
to noise. As a consequence, J; is proportional to the mean of
normalized modulus. In general, when K increases, more coef-
ficients close to edges are contributed to the threshold calcula-
tion. Since these coefficients generally have large values, a large
value of K would lead to a large diffusion threshold. On another
hand, a small value of K leads to a small threshold. Later in
Section IV, we further study the influence of K in controlling
the diffusion performance. Briefly, we show that a reasonable
value of K always produces a stable performance improvement

[(1-[G+4)A2}+1f]ﬂhkf < K*TiTjp
elsewhere

(37

Y (38)
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Fig. 5. Classified homogenous speckle regions (white) at scale 2, 22, 23
(from top to bottom) for the simulated envelop-detected speckle image (left
column) and real echocardiographic image (right column).

with iteration. In fact, the selection of K is determined by the
particular application. As an example of a low-speckle image,
ultrasonic brain imaging requires tiny structure detection. Con-
sequently, a small value (e.g., K = 0.5) can produce a satis-
factory despeckling result without destroying weak edges. On
another hand, for large boundary detection, such as the cardiac
structure in echocardiographic image, a large value of K (e.g.,
K = 2) will reduce most speckle and eliminate the texture of
objects. This can reduce the computational cost and improve the
accuracy of a segmentation method.
In summary, we generalize our algorithm as the following.

1) Decompose the noisy image f(z,y) into S;f and WJ(’ f
by 2-D MZ-DWT. ~

2) Compute the normalized modulus M; f using (29) or (32)
according to the image type.

3) For a background removed image, estimate the Rayleigh
mixture parameters using EM-estimator, and compute
the likelihood classification threshold using (36) for each
scale.
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4) Determine the homogenous region using coarse-to-fine
classification rule (37).

5) Compute the diffusion threshold with (38).

6) Compute the wavelet diffusion coefficient p(M; f) using
(23) with a selected diffusivity function.

7) Regularize wavelet coefficients WJ‘»l f using (24).

8) Reconstruct the image by taking the inverse 2-D
MZ-DWT.

The homogenous region classification (steps 3 and 4) is per-
formed on the initial iteration. As part of an iterative filtering
algorithm, the other steps are repeated until a desired result is
produced.

IV. EXPERIMENTS AND RESULTS

We tested our proposed normalized modulus-based NMWD
speckle suppression algorithm on both of the synthetic and
real ultrasonic images. With the synthetic envelope-detected
and log-compressed images, despeckling performance in terms
of image quality indices is compared with other established
despeckling methods. With real ultrasonic images, performance
improvement is demonstrated for both visualization and seg-
mentation purposes. In our experiments, the Weickert filter
[6] was used as the diffusivity function g(n) in (23) for its
robustness regarding boundary preservation

1, n<0
l—exp[ﬂ}, n>0"

(3)"
A suitable choice for the smoothing function #(x, y) in (5) was a
cubic spline with compact support [15]. Therefore, in our imple-
mentation, quadratic spline wavelet filters were used for decom-
position and reconstruction. A three-level NMWD is employed
on all test images (see Fig. 1).

g(n) = (39)

A. Denoising Results for the Simulated Image

To quantitatively evaluate the despeckling performance of
the proposed algorithm, we first experimented with the syn-
thetic speckle images. We generated spatial correlated speckle
noise by lowpass filtering a complex Gaussian random field and
taking the magnitude of the filtered output [3], [26], [27]. To
better mimic the appearance of the real image, we controlled
the correlation length of speckle by appropriately setting the
size of the kernel. The ground truth image [Fig. 6(a)] was con-
structed by using seven elliptic targets with different intensities
on a dark background. As shown in Fig. 2(a), the envelope-de-
tected ultrasound image was simulated by corrupting the ground
truth image with full speckle noise using (27). For the log-com-
pressed image, the noise was generated so as to have both the
appearance of speckle and the norm distribution. The image was
simulated using (30), and the result is shown in Fig. 7(a).

We compared the performance of our speckle suppression al-
gorithm with that of other speckle reduction techniques: namely,
the speckle reducing anisotropic diffusion (SRAD) technique
[8], and the wavelet generalized likelihood ratio filtering method
(GenLik) [3]. Although both algorithms are designed to reduce
speckle and preserve the edges of objects, the differences are:
1) SRAD emphasizes edge-enhancement more than visualiza-
tion improvement, whereas GenLik focuses to a greater extent
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Fig. 6. Denoising results for the simulated envelope-detected ultrasonic image [Fig. 2(a)]. (a) Echogeneity map. Results filtered by (b) GenLik, (c) SRAD, and

(d) NMWD, respectively.

on visualization improvement. 2) SRAD is a nonlinear diffu-
sion based method, whereas GenLik is a multiscale wavelet de-
noising method. 3) SRAD takes the envelope-detected image as
its input, whereas GenLik prefers the log-compressed image. In
addition, Yu and Acton [8] have demonstrated the performance
superiority of SRAD over Perona—Malik nonlinear diffusion,
the Lee and Frost filters; whereas Pizuriaca et al. [3] have shown
that GenLik outperforms the homomorphic Wiener filter. Thus,
we consider that a performance comparison between our algo-
rithm and these two despeckling filters, represents an adequate
demonstration that the proposed algorithm fulfills the denoising
design requirements.

A first comparison was made using the envelope-detected
full speckle image [Fig. 2(a)]. In SRAD implementation, ¢
in (26) is reduced exponentially with iteration, such as with
qo0(t) = qo(0) exp(—1/6). Here, qo(0) equals to y/1/L for in-
tensity images and /(4/m — 1)/L for amplitude images, and
L is the look number. Therefore, for the envelope detected ul-
trasound image, we used ¢o(0) = 0.5227 (L = 1) in the test.
The time step was set as At = 0.05, and the number of itera-
tions was 300. The diffusivity function was chosen as (26), and
the result is shown in Fig. 6(c). The GenLik method was evalu-
ated using the original implementation, which is available in the
author’s website (http://telin.rug.ac.be/~sanja/). For best perfor-
mance, the test image was first log-transformed prior to being

filtered by the GenLik method. The filtered result was recov-
ered by the exponential function. The edge-detection threshold
factor was chosen as 5 with a window size 5 x 5, and the result
is shown in Fig. 6(b). In our algorithm, the parameter K in (37)
was set to 3. The window size for estimation of the mean is 3 x
3 at the first scale. The image was processed with 30 iterations,
and the output is shown in Fig. 6(d).

We further compared the denoising performance of all three
filters on the synthetic log-compressed image [Fig. 7(a)]. Since
SRAD takes an envelope-detected image as input, the test image
was first decompressed by taking the exponential of the image
divided by a compression coefficient prior to being processed
by SRAD. The compression coefficient, D, is estimated em-
pirically to achieve the best performance. Specifically, D =
50 for this test image. The other parameters were the same as
those used in the first experiment. For the GenLik method, the
test image was directly used as the input. The edge-detection
threshold factor was chosen as 5 with window size 5 X 5. In
our algorithm, the parameter K was set to 2, the despeckling
process ran adaptively with 30 iterations. The denoised images
recovered by the GenLik, SRAD and proposed algorithm are
shown in Fig. 7(b)—(d).

Since speckle in the ultrasound image is modeled as the mul-
tiplicative noise, a linear image fidelity criterion, such as MSE
or SNR, is not always an accurate measure of speckle suppres-
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(©)

(d)

Fig. 7. Denoising results for the simulated log-compressed ultrasonic image. (a) Original image. Results filtered by (b) GenLik, (c) SRAD, and (d) NMWD,

respectively.

sion in images. In our studies, the denoising algorithm perfor-
mance is quantified by using two quality indices: a noisy sup-
pression quality index p [26], [28], an edge preservation index,
called figure of merit (FOM) [8], [29]. Speckle suppression is
evaluated by comparing the structure similarity between de-
noised image and noise-free image. A correlation-based struc-
ture similarity measure is given by [26], [28]

> (@(i,5) — pa) ((4,5) — py)

P= = .. 2 .. 2 (40)
2 @00) =)™ X (W(d,5) — py)
2, €W 1,JEW

where p, and p, are mean values of interested region w in
the noise-free image x and denoised image y, respectively. The
FOM is defined as

1 = 1
max(ng, n,) ; 1+ ~d?
where 7,4 is the number of detected edge pixels in the test noisy
image, n,. is the number of reference edge pixels in the noise-
free image, d; is the Euclidean distance between the ith detected
edge pixel and the nearest reference edge pixel, and + is a con-
stant typically set to 0.11. We use the Laplacian of Gaussian
method to detect the edges. If the measured image is close to
the reference image, the values of p and FOM should be close
to 1.

FOM =

(41)

TABLE 1I
PERFORMANCE COMPARISON FOR DIFFERENT DENOISING TECHNIQUES

Speckle Image Log-Speckle Image
Method p | FOM p | FOM
Noisy image || 0.7583 | 0.2281 0.9113 0.2245
GenLik 0.9272 | 0.4953 || 0.9741 0.5297
SRAD 0.9533 | 0.6121 0.9773 0.6661
NMWD 0.9717 | 0.7566 || 0.9886 0.9071

The performance quality of two experiments, in terms of p
and FOM, are listed in Table II. In comparing the denoising re-
sults, we found that all of the speckle reduction methods can
eliminate speckle in most homogenous regions. However, only
the proposed method can significantly reduce speckle in both
high and low intensity regions, as well as preserve both high-
contrast and low-contrast edges. We also iteratively applied the
GenLik method on the test images, however, no significant per-
formance improvement was observed. For example, after the
log-compressed image was processed by GenLik for 30 itera-
tions, FOM = 0.5816, and p = 0.9776. This indicates that
nonlinear diffusion-based methods have a significant advantage
in being able to suppress speckle, while preserving edges.

We also studied the stability of the parameter K in the pro-
posed algorithm. The test images were processed with different
value of K, specifically, 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0. For each
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Fig. 8. Image quality indices p (top) and FOM (bottom), after the simulated
envelope-detected image is filtered by NMWD with different values of .

value, the image was processed with 100 iterations. Figs. 8 and 9
demonstrate the effect of K on controlling the denoising perfor-
mance of the proposed algorithm. When K is within a threshold,
(e.g., K = 3 for the enveloped-detected image, K = 2 for
the log-compressed image), both p and FOM do not decrease
with iteration. Above this value, however, these quality indices
decrease with iteration. Such variation is within expectation.
A large value of K indicates more coefficients close to edges
are counted in the diffusion threshold estimation. If the diffu-
sion threshold is overestimated, edge smearing occurs, and the
quality indices decrease with iteration. This becomes evident,
when K = 5. In that case, the diffusion threshold is equivalent
to the mean of normalized modulus at the current scale. How-
ever, for a value below threshold, the role of K always improves
the image quality with iteration in a stable fashion. The exper-
iments also illustrate the effect of the number of iterations on
performance. For a given value of K, NMWD fast approaches
reasonable performance within 20 to 40 iterations. After that,
only small improvements are observed. It suggests that diffu-
sion with 20 to 40 iterations has the highest computational effi-
ciency.

The computational complexity of proposed algorithm can
be analyzed from two stand points: the main procedures
(excluding EM estimation) and the EM algorithm. Given N
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Fig. 9. Image quality indices p (top) and FOM (bottom), after the simulated
log-compressed image is filtered by NMWD with different values of .

pixels, the complexity of EM estimation for two-Rayleigh
mixture is O(i x N), where 4 is the iteration number. In
the main procedures, wavelet decomposition and reconstruc-
tion exhibit the largest complexity, O(N log N). Overall,
the computational complexity of the complete algorithm is
O(i x N 4+ j x NlogN), where j is the iteration number of
wavelet diffusion. In practice, NMWD was implemented in
Matlab (Mathworks, Natick, MA), where the main procedures
achieved a processing rate of 0.19 s/scale/iteration for a 256 x
256 image on a PC with a Pentium 4 (2.4 GHz) processor.

B. Real Image

In the first in vivo image experiment, we examined the
image quality improvement of the proposed algorithm for both
visualization and auto-segmentation. Fig. 10(a) [also Fig. 2(b)]
shows an echocardiographic image of the human heart, in
four-chamber view. The data was acquired using a HDI5S000
ultrasound scanner manufactured by ATL, a Philips Medical
Systems Company. Two experiments with two different values
of K were performed on the test image. Specifically, a small
value of K = 0.5 was used to test visualization improvement,
whereas a large value K = 1.5 was used for segmentation
improvement. The wavelet diffusion was performed for 30
iterations for both experiments, and the denoising results are
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Fig. 10. Denoising results for the echocardiographic image. (a) Original image. Results filtered by (b) the GenLik method, (¢) NMWD (R = 0.5), (d) SRAD,
and (¢) NMWD (K = 1.5), respectively. The profiles along the highlight line of the original image (a) are shown in their following row.

shown in Fig. 10(c),(e). For clear illustration, the profiles, along
the highlight line in the original image, are also compared.
The test image was also filtered by two subject algorithms. We
used the GenLik method for the comparison on visualization
im-provement. The edge-detection threshold factor of GenLik

was chosen as 5 with window size 5 x 5. To examine the
visual improvements, we focused on speckle reduction within
the cavity and at the wall of right ventricle (indicated by the
highlight line). We also focused on structure enhancement at
the moderator band near the apex of the right ventricle. As
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Fig. 11. Denoising results for a liver image. (a) Original image. Results filtered by (b) the GenLik method, (c) SRAD, and (d) NMWD, respectively. The profiles
along the highlight line of the original image (a) are shown in their following row.

indicated by the profiles, our algorithm produces a better result
for the purpose of visualization. For the segmentation-purposed
comparison, we used SRAD for its edge enhancement feature.
Specifically, the compression coefficient D = 35 was used, and
the other parameters were identical to those used in the previous

experiment. In this case, we compared speckle suppression and
texture removal in the wall region, and the structure enhance-
ment of all ventricular walls. Comparing Fig. 10(d) and (e),
we found that the proposed algorithm achieved better speckle
removal and edge enhancement than the SRAD method.
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For a real ultrasound image, criterion used in evaluating the
denoising result may be quite subjective to the specific objec-
tives of the observers. Consequently, the proposed algorithm has
to be flexible so that it can be readily adapted to the require-
ments of different applications. With a small value of K, the
proposed algorithm can preserve the textured region, as well as
the formation of uniform area in the filtered image. In the sense
of visualization improvement, such a filtered result would be vi-
sually favored in clinical diagnosis. However, for auto-segmen-
tation applications, the very same result may cause the active
contour to be trapped by the retained textured region and gran-
ular boundaries. To improve auto-segmentation, we recommend
using a large value of K, so as to remove speckle texture in the
homogenous region and enhance the edges of structure.

In general, for a nonlinear diffusion method, the balance
between noise suppression and edge preservation often makes
threshold selection difficult. A large diffusion threshold often
leads to the significant tiny structure smearing with noise,
whereas a small threshold will produce unsatisfactory noise
suppression for boundary tracking. In the next example, we
demonstrate that the algorithm can achieve speckle suppres-
sion and tiny structure preservation simultaneously. The test
image is an ultrasound scan of human liver and kidney region
[Fig. 11(a)], which is obtained from public medical image
database, MedPix (http://rad.usuhs.mil/medpix/medpix.html).
In this test, we focus on evaluating speckle removal in the
uniform region of the liver, and the edge enhancement of the
nodular structure of the liver parenchyma. The denoised results
are shown in Fig. 11(b)—(d). These results were also compared
via the profiles, along the highlight line in the original image.
As the results show, the proposed algorithm outperforms the
other two filters by clearly outlining the noduli on the liver sur-
face, while suppressing most of speckle in the liver and kidney
regions. Our result [Fig. 11(d)] suggests that the proposed
method could lead to reliable and efficient nodule detection in
the diagnosis of cirrhosis of the liver.

V. CONCLUSION

This paper introduces a novel multiscale normalized mod-
ulus-based wavelet diffusion method for speckle suppression
and edge enhancement in ultrasound images. In our approach,
speckle image is iteratively filtered by the nonlinear diffusivity
function via the framework of the dyadic wavelet transform.
In each iteration, the noisy image is processed with three-step
wavelet shrinkage-like procedures: decomposition, regulariza-
tion and reconstruction. Considering the statistical behavior of
speckle, successful employment of nonlinear wavelet diffusion
in a speckle suppression task, requires three appropriately de-
signed components: an edge detector, a diffusion threshold and
a diffusivity function. Since most diffusivity functions devel-
oped from spatial nonlinear diffusion have been shown to sat-
isfy the denoising requirement, our work mainly focuses on the
design of the first two components above. We use the normal-
ized wavelet modulus as the edge detector to characterize the
intrinsic signal/noise variation. The significant feature provided
by this edge detector is its versatility for images of different
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types. Thus, our algorithm can deal directly with either enve-
lope-detected speckle image or log-compressed medical ultra-
sonic image without any pretransform. To adapt the noise varia-
tion with iteration, the diffusion threshold is estimated from the
normalized modulus in the homogenous speckle regions. The
automatic identification of homogenous regions is implemented
using a two-stage classification. First, the normalized modulus
at each scale is classified using the likelihood method based on
the Rayleigh mixture model. Second, the homogenous speckle
region is identified by a coarse-to-fine classification utilizing the
edge persistence across scale. In this procedure, a tuning param-
eter (K) is introduced to adjust the diffusion threshold, and it
further controls the final denoising result. Relying on this fea-
ture, the proposed algorithm is highly flexible in producing a
desired result for a specific application.

Using synthetic envelope-detected images, we have shown
that the proposed algorithm is a versatile speckle reduction tech-
nique for both envelope-detected and log-compressed speckle
images. We also have demonstrated the performance superiority
of the proposed algorithm over the SRAD and GenLik methods
in terms of speckle suppression and edge preservation indices.
With real ultrasonic images, we have shown that the proposed
algorithm is quite robust in producing a desired result either for
visualization enhancement or for auto-segmentation improve-
ment. In summary, by combining the sparsity and multi-reso-
lution properties of wavelets, with the edge preservation and
enhancement features of the nonlinear diffusion, our algorithm
provides very significant speckle suppression and edge enhance-
ment for the purposes of visualization and automatic structure
detection.
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