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ABSTRACT from existing ones. Thus, the distortion that affects those synthe-
Video representations that support view synthesis based osized views due to lossy encoding of depth is fundamentally differ-
depth maps, such as multiview plus depth (MVD), have been reent from the distortion affecting luminance or chrominance data in
cently proposed, raising interest in efficient tools for depth mapstandard video. More specifically, errors in depth values at a given
coding. In this paper, we derive a new distortion metric that takegixel position, affect th@ositionin the intermediate view where this
into consideration camera parameters and global video characte@ixel will be used for interpolation. Thus, even small errors in depth
istics in order to quantify the effect of lossy coding of depth mapscan lead to significant errors in interpolated pixel intensity.
on synthesized view quality. In addition, a new skip mode selection ~ Note that modern video encoders, e.g., those based on H.264/AVC
method is proposed based on local video characteristics. Experime[l-1] make extensive use of rate-distortion characteristics for mode
tal results with the proposed mode selection scheme show codirgcision, rate control, etc., thus using such a coder to encode a se-
gains of up to 2 dB for the synthesized views, as well as bettegluence of depth maps may lead to suboptimal results if the distortion
subjective quality. metric is simply the mean squared error (MSE) in the reconstructed
depth map. Instead, we proposedevelop new distortion metrics
that aim to capture the effect of depth map distortion on the final
quality of the synthesized viewBased on this distortion metric, we
propose a mode selection scheme that optimizes the bitrate of depth
L. INTRODUCTION map and the quality of the synthesized views. We achieve about
Efficient multiview video systems can be a significant step towards & dB gain on average and clear subjective quality improvements,
more realistic multimedia experience, e.g., with applications such a&s flickering artifacts are significantly reduced in the synthesized
three dimensional (3-D) video and free viewpoint video [1, 2]. Givenviews.
the data volumes associated with multiview video systems, design- This paper is organized as follows. The problem of depth map
ing efficient compression techniques remains an important challengzoding is addressed in Section 2, where the effect of depth map dis-
to make these application reality. A promising compression aptortion on a synthesized views is examined. The proposed solution
proach is based on view synthesis [3, 4] using depth maps. This hasing the new distortion metric and mode selection scheme is pre-
led to recent research into multiview plus depth (MVD), efficient ap-sented in Section 3. Experiments are performed using MVD se-
proaches to encode and transmit a depth map along with each viegyences, and the results are discussed in Section 4. The conclusion
so that at the decoder new intermediate views can be synthesizégigiven in Section 5.
using the neighboring views and their depth maps.
A depth map can be thought of as a gray scale image, and the 2. CHALLENGES IN DEPTH MAP CODING
corresponding temporal sequence of depth maps can be treated a

a standard video sequence. Thus, as a first approach to encodm%ﬂgeo data. First, while the distortion in a video directly changes the

depth map sequence one could make use of standard video COOIireO{:onstructed level of luminance or chrominance, depth map distor-
techniques. However, we note that depth map sequences have chat- » dep P

acteristics that are very different from those of standard video. Fodgz \f\‘/gi(rit-:tsi:t]:r Sc))llnattr:js'ziigIglz\r/éslc?cyaf:éjisrlwnt%:g enrtrr(n)éslirf(:b?\;iews
example, depth images rarely contain any texture and are predom| P P y )

nantly flat with sharp edges marking the boundary between objec loreover, the magnitude of this position error depends primarily on
at different depths parameters associated to the depth map acquisition procedure. For

To exploit depth map specific characteristics for Compressionexample, in case of stereo matching this error depends on camera set-

various methods have been proposed. These include flat region cot 198 Srl:.Ch. as positions gf cameras and opjegts, %amera focal !engtlfw,
ing with edge preservation [5], dynamic range reshaping [6], 3-D°C This is .|mportant, ecause an error in ept recons@ructlon 0
motion estimation [7], warping based inter-view prediction [8], re-Same magnltuc_i(_a may have very different impact depending on the
use of video motion information to reduce encoding complexity [9],a.Ctuall composition of the scene and the camera parameters. As a
and sparsity-based in-loop filtering [10]. simple example, if we use a fixed number of bits (e.g., 8 bits) to

The key observation in this paper is that depth data is encodet present depth (or In practice, dlsparlty)_, the same error in recon-
ructed depth will have a much greater impact if the scene covers

but not displayed; it is only used to synthesize intermediate V|ew§1 wide range of depths (in contrast with, say, an indoor scene). In

*This work is supported by Thomson Corporate Research. (@uatithor ~ summary, for depth encoding to be optimized for view synthesis it
information: Send correspondence to wooshik.kim@usc.edu) will be necessary to introduce a new distortion metric that can take
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Sthis paper we address two main differences between depth and




these factors into account. 3. PROPOSED TECHNIQUES FOR DEPTH MAP CODING

Second, it is worth noting that in case of a video, if sensor NOIS&4 address the challenges introduced in the previous section we now

is negligible, the distortion at the decoder is mainly due to quan; ropose a new distortion metric and modified mode selection tech-
tization. In contrast, in case of a depth map estimated from Vide&ique to improve depth map coding

data (i.e., not captured directly with special devices such as range
cameras), the estimated depth itself can be very noisy. For examplg,1 New distortion metric using global parameters

using stereo matching to obtain depth will lead to more significant s discussed earlier, distortion in a depth map results in a position
errors in the boundaries of near objects, as compared to the bacﬁ- ; - ) . pur P positi
ror in the synthesized views. This position error can be quantified

ground area. This is due to large differences in projection angleir . ;

between left and right cameras for near objects, which leads to lar camera parameters are known, as described n (10]. Under the

occlusion. Moreover, for areas in the scene that are predominantl ssumption of a parallel camera _setltlng, the position elBrcan

flat and contain limited amounts of texture, it will be difficult to find e written as a horizontal translation:

matching points between left and right views, which will make the AD gepin (2, ) 1 1

depth information less reliable. In addition, if the depth maps are AP=a-b;- 255 (Z T Z ) ) @)

estimated on a frame by frame basis, i.e., depth / video information ear “or

from other timestamps are not considered, unreliable estimates @fherea is the focal length of the camera in the horizontal direction

depth are more likely to lead to stronger temporal variations, i.e.with the unit of pixelsg,, is the distance between two cameras (hor-

depth estimates may vary even when the “ground truth” does not. izontal), andZ,,... andZ;,, are the nearest and the farthest depth
Fig. 1 helps illustrate these issues. From Fig. 1 (b) and (dyalues, which correspond to the values of 255 and 0 in the depth map,

(where the absolute value of the temporal differences is scaled bgspectively. This reveals that there is a linear relationship between

5 and inverted for easier visualization), it can be easily noticed thaihe depth map distortiod D zep:r. (2, y) at pixel position(z, y) and

temporal variation in the depth map is very significant, even thougtthe translation error in the synthesized view, i.e.,

there is practically no motion in this video. Most of these changes

in the depth map can be attributed to errors in the stereo matching AP = k1 - ADadcptn, @

process. Note in particular that more errors can be observed aroug\%erek can be calculated as

object boundaries and in the flat regions with less texture, where !

the stereo matching suffers due to occlusion and lack of matching 1 1 1

features, respectively. This temporal variation in the depth map not ki =a-ds- 255 Znear  Zfar

only increases the coding bitrate but also deteriorates the subjective

quality of the synthesized views by creating flickering artifacts inthe ~ Now, given the position error, we would like to estimate the re-

flat region. However, as will be seen next, because these temporalilting distortion in the synthesized view. Clearly this distortion will

variations in depth estimates do not correspond to changes in actua¢ content dependent. For example, position errors will have min-

depth, efficient coding of depth can be achieved (e.g., by not codingnal effect in regions of constant intensity. Conversely, in regions

many of these estimated depth changes), without significant impagtith significant edge/texture information small changes in position

on interpolated view quality. Even though it would be possible tocan lead to significant changes in intensity.

improve depth map quality using more advanced systems such as We propose to capture the content-dependent nature of synthe-

range cameras, it will be still useful for algorithms to be robust tosized view distortion by estimating a siméobal frame parame-

errors in depth map acquisition, which could be inherent to manyer. Define the functiodssp(.) as the sum of squared differences

acquisition systems. (SSD) between the original video frame and its horizontal translation

by t, pixels:

dssp(tz) = Z Z (Vo) = Vie—ta) > )
z oy

): ®)

whereV, . is the pixel value of the original video at pixel posi-
tion (z,y), and(z — ¢z, y) is the horizontally translated pixel po-
sition. Experimentally we observe thétsp(t.) varies linearly as

a function oft, as shown in Fig. 2 (in particular for small displace-
ments). In Fig. 2 the first frame of each sequence is used to compute
dssp(ts) for t, varying from 1 to 30 in unit increments. Hence the
scale factor betweetss p and translation,, can be found using the
least square fit as

(a) Video frame (b) Temporal difference
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Fig. 1. Example of temporal variation in depth map. (a) frame in L 00—~
the ‘Door Flowers’ video sequence, (b) difference between the firs 0+ ‘ ‘ 0 ‘
and second frame of the video, (c) corresponding depth map, and (¢ 0 5 4 10 15 0 5 L 10 15

difference between the depth maps of the first and second frames.
Fig. 2. Relationship between translation and distortion.



since there is no motion in video, these differences in depth are very

_ Sspta ©) likely to be due to unreliable depth estimation, and therefore can be
tTt, ’ ignored.
wheredssp andt, are the vectors formed by aggregating multi-  In this way, better coding efficiency can be achieved by taking

p|e values OdeSD(tz) and te, respective|y’ and T denotes vector into consideration depth map Unreliability. Flickering artifacts due
transpose operand. For a given position erkd?, this parametes to temporal variation in depth map are also reduced, leading to over-
provides an estimation of the resulting distortion in the interpolatech!l improvements in perceptual quality. In addition, with this strat-
view. Note that better accuracy can be achieved if smaller area B9y one can select temporal skip in depth automatically, whenever
used to reflect local video characteristics. For example, the paramé&mporal skip in video has been chosen, so that no skip mode in-
ter can be calculated for each blcok in order to obtain a more precidérmation needs to be inserted in the depth bitstream. This leads to
result, but computationally expensive. Therefore, we use a globdfduction in not only bitrate but also encoding complexity since it
parameter as a Compromise between accuracy and Comp|exity. |& pOSSible to Sk|p parts of the motion estimation and mode decision
would be appropriate to update the parameter whenever there isPAOCESSES.
scene change.

Since the synthesis process typically uses multiple views, this 4. EXPERIMENTAL RESULTS
factor can be scaled using the same weight the synthesis process

t . . . . .
on the view. For example, if the synthesis process applies a weight 1€ new distortion metric and the skip mode selection scheme are
. as simulated using several multiview test sequences. For each sequence

both video and depth map are encoded for two selected views. The
Vaynth = @+ Viest + (1 — @) - Veighe, (6) decoded video and depth map are used to synthesize an intermediate
view between the two views using the software developed by Nagoya
University [13].
First, the scale factok; is calculated using the camera setting
parameters for each sequence. Thienjs found as described in
ks = - s. @ Section 3.1, i.e., by estimating the effect of displacements in the
first frame of the sequence. The result is given in Table 1. Note
Using the two parameters found above, the new distortion metrighat each multiview sequence is acquired in a different camera set-
can be derived as ting, which would affect the amount of geometry error differently,
2 and this difference is well reflected in. For the outdoor scene se-
ADsynin = k2 - AP = k2 - k1 - ADaepin, ®) quencesZ;,, is large, thusZ,,.. is dominant parameter to decide
where AD?,,,, denotes the quadratic error in the synthesizedk; when the camera distance and focal length are similar. This can
frame. This new distortion metric can be used in the rate distortiome seen in ‘Lovebird 1’ and ‘Lovebird 2’ cases, where the former
optimized mode selection process using the Lagrangian optimizatiogaptures nearer object, thus the position error becomes more sensi-

whereVies:, Veighe, andViynen are the pixel values in the left, right,
and synthesized view, respectively, then the scale faktoto rep-
resent the global characteristic for. ;» can be calculated as

[12], with Lagrangian cosf written as: tive to the depth distortion resulting in larger. In case of indoor
scene sequences, all parameters can affect the amount of the posi-
J = Z Z ADZyin(2,y) + ARaepen tion error caused by the depth distortin. For example, two indoor
z oy scene sequences ‘Ballet’ and ‘Dog’ have quite different value of

where the former has dense camera setting to capture near objects
kika ; > 1ADaepn (@, y)| + ARacpn,  (9) compared to the other. The second scale ?a(kt@ld:pend on theJ
image characteristics. Comparing ‘Champagne Tower’ and ‘Ballet’,
where(z, y) is a pixel position in the block) is the Lagrange mul- k2 is larger for the former which contains a lot of objects resulting
tiplier, and R is the bitrate consumed to code the depth map blockin large distortion in the synthesized view by position error.
Note that the quadratic error in the synthesized view is proportional  The video is coded using H.264/AVC (joint model reference

Y

to the absolute error in the depth map. software ver. 13.2), and the depth map is coded using H.264/AVC
with and without the proposed methods. To simplify test conditions,
3.2. Skip mode decision using local image characteristics same encoding settings are used for video and depth map including

We also propose to improve the mode decision process by consi(qje QP values of 24, 28, 3_2’ and 36, and the Lagrange multiplier
values, and only |- and P-slices are used to code 15 frames for each

ering local video characteristics. As described in Section 2, distor*:
tion can occur during depth map estimation. In particular, if there jg/1ew. . .
lack of features to perform stereo matching, the resulting depth map F9- 3 shows the rate-distortion curves to compare the cod-
can be noisy, so that it would not be efficient to spend more bits t§'d efficiency of the proposed methods against H.264/AVC, where
achieve an accurate representation of the depth map. _Method 1' is the _result with the new qllstortlon metrlp as given
To solve this problem, before encoding a block of depth datdn (9), ‘Method 2" is the result of the skip mode selection scheme
we take into account how the corresponding block of video dat&S described in Section 3.2, and ‘Method 1+2" is the result of the
was encoded. We note that limited motion regions are also regiorf®Mbined method, where the skip mode selection scheme is first
where depth information is unlikely to vary over time (in particular @PPliéd, and for non-skipped blocks mode selection using the new
if cameras remain fixed). Since limited motion blocks are likely todiStortion metric is performed. In the graphs, the x-axis is the bitrate
be encoded using skip mode, especially at low rates, we propose 8" dépth map coding of two views, and the y-axis is the PSNR of the
“force” skip mode in depth coding in those blocks for which skip synthesized view compared to the original viewable 1 contains

mode was chosen for the video data. Note that in those blocks; 1 ot oct diacent views i h that aft

. - . n our experiments we select non-aajacent views In each sequence so that arter
skip mode may not have _been Seleqted by the Convemlonfal_enCOle}gw synthesis we can measure the distortion between the synthesized etivean
methods, because the differences in depth are non-negligible. Buistual view included in the dataset.




the BD-PSNR [14] results for various test sequences with Method

1+2 compared to H.264/AVC. These results show the efficiency of

the proposed methods with maximum coding gain of 2.0 dB and

0.9 dB gain on average, which corresponds to 87% and 61% bitrate
reduction, respectively. Both Method 1 and Method 2 perform better o
than H.264/AVC, and for most of the sequences Method 2 performs ' A

better than Method 1. By combining the two methods, additional (a) H.264/AVC (b) Proposed methods
gain can be achieved as shown in Fig. 3.

In addition, subjective quality is improved because flickering ar-Fig. 4. Example of flickering artifact reduction: (a) H.264/AVC and
tifacts are reduced. The flickering artifacts occur in the synthesizegh) proposed method.

views due to the temporal variation in the depth map. By applying
the skip mode selection method, erroneous depth map information
is coded using the skip mode, and as a result the flickering arti- 5. CONCLUSION

factis reduced. To see the variation in the static background €919 epth map distortion causes position errors in the synthesized views,

the botiom right quarter of thg synthesized Ballet seéquence is tak?ﬂhich leads us to develop a new distortion metric for an optimized
from two temporally consecutive frames, and the difference image ifode selection scheme in depth map coding. Using the proposed

shown in Fig. 4 It can be easily noticed that the temporal Variatiorhistortion metric and skip mode selection scheme, the experimental

hgs bgen S|gn|f|cantly r.educed by the proposed method, leading Rsults show the coding gain of 0.9 dB or 61% bitrate reduction on

flickering artifact reduction. average with better subjective quality. In future work, we plan to
seek further improvements by joint optimization of video and depth
map coding using the proposed distortion metric along with other
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