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Abstract—This paper employs a high resolution quantization
framework to study the effects of finite-rate feedback of the
channel state information (CSI) on the performance of mul-
tiple-input–multiple-output (MIMO) systems over independently
and identically distributed (i.i.d.) Rayleigh flat fading channels.
The contributions of this paper are twofold. First, we extend
the general distortion analysis of vector quantizers to deal with
complex source variables. Necessary and sufficient conditions
that guarantee a concise high-resolution distortion analysis in
the complex domain is presented. Second, as an application of
the proposed complex distortion analysis, tight lower bounds on
the capacity loss due to the finite-rate channel quantization are
provided for MIMO systems employing a fixed number of equal
power spatial beams. Based on the obtained closed-form analytical
results, it is shown that the system capacity loss decreases expo-
nentially as the ratio of the quantization rate to the total degrees
of freedom of the channel state information to be quantized.
Moreover, MIMO CSI-quantizers using mismatched codebooks
that are only optimized for high-signal-to-noise ratio (SNR) and
low-SNR regimes are also investigated to quantify the penalties
incurred by the use of mismatched codebooks. In addition, the
analysis is extended to deal with MIMO systems using multi-mode
spatial multiplexing transmission schemes with finite-rate CSI
feedback. Finally, numerical and simulation results are presented
which confirm the tightness of the derived theoretical distortion
bounds.

Index Terms—Bennetts integral, capacity analysis, channel
quantization, channel state information (CSI) feedback, com-
plex distortion analysis, constrained source, finite-rate feedback,
high-resolution quantization theory, imperfect CSIT, mismatched
channel quantizer, multiple-input multiple-output (MIMO),
transmit precoding, vector quantization.

I. INTRODUCTION

THIS PAPER considers multiple-input–multiple-output
(MIMO) systems with partial channel state information

(CSI) conveyed to the transmitter by the receiver through a
finite-rate feedback link. Recently, several interesting papers
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have appeared proposing design algorithms as well as analyt-
ical results quantifying the performance of finite-rate feedback
multiple antenna systems [1]–[7], [8]–[19], [20]. The analysis
is quite involved and several approaches have been developed
for this purpose in these papers.

By utilizing the geometrical properties of the channel space
(vector space of the channel state information), Mukkavilli
et al. [1] approximated the channel quantization regions and
derived a universal lower bound on the outage probability of
quantized multiple-input–single-output (MISO) beamforming
systems with arbitrary number of transmit antennas over in-
dependently and identically distributed (i.i.d.) Rayleigh fading
channels. The approach taken by Love et al. in [2]–[4] is based
on relating the problem to that of Grassmannian line packing
[5]. By utilizing the results on the density of Grassmannian
line packings, the authors developed bounds on the codebook
size given a capacity or signal-to-noise ratio (SNR) loss for
both MISO and MIMO systems. Dai et al. [6] took a similar
approach and derived a closed-form formula for the volume
of a Grassmannian metric ball, which is defined as a closed
region of points whose chordal distance with respect to (w.r.t.)
the center point is smaller than its radius. Tight lower and
upper bounds of the distortion rate tradeoff were established
and applied to derive the capacity of a MIMO system with
finite-rate CSI feedback. Love et al. also investigated in [7] the
problem of quantizing the beamforming vector in the context
of equal gain transmission, i.e., beamforming under a per-an-
tenna power constraint. The problem of quantized equal gain
transmission was recently revisited by Murthy et al. wherein
a VQ approach was suggested for codebook design [8] and a
closed-form capacity loss analysis was conducted.

Another approach is based on identifying and approximating
the statistical distribution of the key random variable that char-
acterizes the system performance. This approach was used by
Xia et al. in [9] and [10], by Zhou et al. in [11], and by Roh
et al. in [12], where the authors first derived an (weighted) inner
product criterion and used the Lloyd algorithm [13] to generate
the codebook. These works analyzed the performance of MISO
systems with limited rate-feedback in the case of i.i.d. Rayleigh
fading channels, and obtained closed-form expressions of the
capacity loss (or SNR loss) in terms of feedback rate and an-
tenna size . In [14] and [15], the results were extended from
MISO channels to the case of MIMO systems with quantized
feedback. Another analysis approach adopted by Narula et al.
in [16] is based on relating the quantization problem to rate dis-
tortion theory. An approximation of the expected loss of the re-
ceived SNR due to finite-rate quantization of the beamforming
vectors is derived in an MISO system with a large number of
antennas .
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Despite recent progress, the analysis of finite-rate feedback
systems has proven to be difficult and many open issues remain.
All the previously described works are case specific, limited to
i.i.d. channels, mainly MISO channels, and are difficult to ex-
tend to more general scenarios. Recently, in our work [21], a
general framework for the analysis of quantized feedback mul-
tiple antenna systems was developed using a source coding per-
spective by leveraging the considerable work that exists in this
area, particularly high resolution quantization theory. Specifi-
cally, the channel quantization was formulated as a general fi-
nite-rate vector quantization problem with attributes tailored to
meet the general issues that arise in feedback based commu-
nication systems, including encoder side information, source
vectors with constrained parameterizations, and general non-
mean-squared distortion functions. Asymptotic distortion anal-
ysis of the proposed general quantization problem was provided
by extending Bennett’s classic analysis [22] as well as its cor-
responding vector extensions [23], [24]. By using the proposed
general framework, performance analysis of a feedback-based
MISO beamforming system over i.i.d. and correlated Rayleigh
flat fading channels was provided in [25]. Moreover, as extended
applications of the proposed framework, suboptimal CSI quan-
tizers using mismatched codebooks and transformed codebooks
were also investigated in [26]. Related analytical approach from
the source coding perspective was also investigated by Mondal
et al. in [27], where the problem of quantization in an Euclidean
space with constraints is converted into an unconstrained quan-
tization problem on an appropriate manifold. By using the pro-
posed lower bound of the distortion rate function, capacity anal-
ysis of MISO systems with finite-rate CSI feedback was pro-
vided in [27], which is consistent with the results obtained in
[12] and [21]. In this paper, by building upon the results from
[21] and [25], we further extend the capacity (or capacity loss)
analysis from MISO systems to MIMO systems with finite-rate
CSI feedback. The material of this paper was partly presented
in conference [28].

The contributions of this paper are twofold. First, we ex-
tend the general distortion analysis of vector quantizers to deal
with complex source variables. Necessary and sufficient condi-
tions that guarantee a concise high-resolution distortion analysis
in the complex domain are presented. Second, as an applica-
tion of the proposed complex distortion analysis, this paper in-
vestigates the effects of finite-rate CSI quantization on MIMO
systems over i.i.d. Rayleigh flat fading channels. More specif-
ically, tight lower bounds of the average asymptotic distortion,
which is defined as the system capacity loss due to the finite-
rate channel quantization, are provided for MIMO systems em-
ploying a fixed number of equal power spatial beams. Based
on the obtained closed-form analytical results, it is shown that
the system capacity loss decreases as , where

is the number of feedback bits, is the number of transmit
antennas, and is number of active spatial beams used by the
precoder. This result reveals an interesting fact that the expo-
nential decreasing rate of the system capacity loss is two times
the ratio of the quantization rate to the total degrees of freedom
of the channel state information to be quantized, which is

. MIMO CSI-quantizers with mismatched codebooks that

are only optimized for high-SNR and low-SNR regimes are also
investigated and the performance analysis quantifies the penal-
ties incurred by the mismatched CSI-quantizers. As an exten-
sion of the distortion analysis, the performance of MIMO sys-
tems using the more general multi-mode spatial multiplexing
transmission schemes with finite-rate CSI feedback is also pro-
vided. Finally, numerical and simulation results are presented
which confirm the tightness of the theoretical distortion bounds.

II. DISTORTION ANALYSIS OF THE GENERALIZED

COMPLEX VECTOR QUANTIZER

Multiple antenna systems with finite-rate feedback were for-
mulated in [21] as a generalized vector quantization problem
with additional attributes such as encoder side information, con-
strained quantization variable and non-mean-squared distortion
measures. High resolution tools commonly used in classical
vector quantizations were extended to deal with this general-
ized problem [21], [25]. The proposed distortion analysis was
initially developed for source variables in the real domain. How-
ever, in most communication systems, the CSI to be quantized
is usually represented as a complex vector or complex matrix.
Therefore, in order to apply the asymptotic distortion analysis
provided in [21] to these situations, one always has to trans-
form complex sources into real vectors by expanding their real
and imaginary parts. However, this makes the analysis cumber-
some and more importantly valuable insight is lost as the struc-
ture inherent in the problem is obfuscated. An analysis directly
using complex variables is beneficial based on experience from
other areas, e.g., adaptive filtering. Fortunately, under certain
necessary and sufficient conditions, it is shown that the proposed
distortion analysis can be performed in the complex domain
directly without increasing the vector size (due to the transfor-
mation) significantly reducing the complexity of the analysis.
Utilizing the general framework in [21], we extend the asymp-
totic distortion analysis of the generalized vector quantizer for
complex source variables. Due to space limitations, we only
summarize some of the important results in this section (please
refer to [29] for more details). The obtained distortion analysis is
then utilized to investigate MIMO systems with finite-rate CSI
feedback in Section IV.

A. Problem Formulation

It is assumed that the source variable is a two-vector tuple
denoted as , where is a complex vector
of size representing the actual quantization variable (of

real degrees of freedom) and is the additional side
information. The side information is available at the encoder
(receiver) but not at the decoder (transmitter). The concept of
side information is important especially for channel feedback
problems because not all the channel parameters need to be
quantized. For example, consider a MISO system using
quantized maximum ratio transmission (MRT) scheme. The op-
timal beamforming vector is the channel directional vector

[30], where is vector representing the channel
response. In this case, the gain of the MISO channel is not
quantized, but can be utilized as side information at the quan-
tizer to improve the quantization performance.
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Quantization variable and side information have joint
probability density function1 given by and a fixed-rate
( bits) quantizer with quantization levels is consid-
ered. Based on a particular source realization , the encoder (or
the quantizer) represents complex vector by one of the vec-
tors , which form the codebook. The encoding
or the quantization process is denoted as . The av-
erage distortion of a finite-rate quantizer is defined as

(1)

where is a general non-mean-squared distortion
function between and that is parameterized by . The dis-
tortion function is assumed to be a real function
and so is not analytic calling for the use of Wirtinger Calculus
[31]. It is assumed to have continuous second-order derivatives
w.r.t. to the real and imaginary components of . By utilizing
Wirtinger Calculus together with the local minima assumption
of w.r.t. at point , we have and its first-order
derivative evaluated at being zero leading to the fol-
lowing second-order Taylor series approximation of the distor-
tion function [32]:

(2)

where are complex Hessian ma-
trices with the th element given by

(3)

with representing the complex conjugate of . After some
manipulations, one can show that the Hessian matrix
equals to zero, if the following conditions are true:

(4)

where and are real and imaginary parts of . Intu-
itively speaking, the condition described in (4) characterizes the
second-order symmetric dependency of the distortion function

w.r.t. the real and imaginary parts of , i.e., they are in-
variant under the operation of switching the real and imaginary
parts of the input variables. Fortunately enough, most commu-
nication related functions, including the particular example con-
sidered in this paper (in Sections III and IV) satisfy this prop-
erty, e.g., MIMO capacity, the mean square estimation error of
the transmitted symbols as a function of the channel response.
Therefore, the symmetric dependence condition given by (4) is

1p (y; z) is an abuse of notation, which represents the joint probability den-
sity function of four real vectors (real and imaginary parts of y and z). The
multi-dimensional integration (w.r.t. to vectors y and z) in (6) is also over these
four real vectors.

assumed in the rest of this paper, unless specified otherwise. In
these cases, the distortion function has a simplified Taylor
series expansion given by

(5)

where is called the complex sensitivity matrix.

B. Asymptotic Distortion Integral

In order to obtain the distortion analysis of a finite-rate quan-
tized -dimensional complex source, a transformation from the
complex domain into the real domain (by expanding the real
and imaginary parts of the source vector) is performed first.
Appropriate real dimensionality (which is ) and other cor-
responding quantities are then substituted into the real distor-
tion analysis provided in [21, Sec. II]. Due to the imposed sym-
metricity of the distortion functions given by (5), the asymptotic
distortion of complex sources can still be represented in the fol-
lowing concise format:2

(6)

where denotes the asymptotic projected Voronoi cell cen-
tered at with side information . It is an infinitesimal region
that captures the shape attribute of the quantization cell in the
asymptotic sense . In (6), is a function repre-
senting the relative density of the codepoints (or the Voronoi cell
centers), also referred to as the point density, such that
is approximately the fraction of quantization points in a small
neighborhood of . Function is the normalized
inertial profile that represents the asymptotic normalized distor-
tion of the quantizer at position conditioned on side infor-
mation with Voronoi shape . It is defined as3

(7)

Intuitively speaking, the inertial profile represents the average
distortion, which corresponds to the second term on the right-
hand side of (7), of an infinitesimal region with proper normal-
ization. The purpose of the normalization w.r.t. the cell volume,
which corresponds to the first term on the right-hand side of (7),
is to make sure the inertial profile is invariant under arbitrary
scalings of the cell. Therefore, the inertial profile depends only
on the cell shape and the sensitivity matrix at a specific location,
but not the cell size. It characterizes the local (or finer) quality

2Having a concise distortion analysis directly applicable in the complex do-
main is especially important for source variables with large dimensions, for ex-
ample finite-rate quantization of MIMO channels. This is because the analysis
becomes more cumbersome and much more complicated when the dimension-
ality is doubled (performing analysis in the real domain after expanding).

3Compared with the distortion analysis of real source variables provided in
[21], the integrations w.r.t.y andy in (6) and (7) are over regions and (y)
with 2k real dimensions respectively.
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of a high resolution quantizer, in terms of relative distortion, at
different locations and with different cell shapes.

Finally, note that the point density function and the nor-
malized inertial profile are the key functions that
describe the behavior of a specific quantizer. Hence, given a
vector quantizer, the problem reduces to finding these two func-
tions and the average system distortion can be obtained by sub-
stituting them into the distortion integral given by (6) [21].

C. Characterizing the Normalized Inertial Profile

The normalized inertial profile of an optimal quantizer is de-
fined as the minimum inertia of all admissible regions ,
i.e.,

(8)

where represents the set of all admissible tessellating poly-
topes that can tile the quantization space with real di-
mensions. It is known that finding the optimal Voronoi region as
well as characterizing the exact optimal inertial profile is hard.
However, similar to the case of real source variables, the in-
ertial profile of any complex Voronoi shape , including
the optimal inertial profile, can be tightly lower bounded by
using a complex “M-shaped” hyper-ellipsoidal Voronoi shape.
A complex hyper-ellipsoid4 can be defined as the
following form:

(9)

where represents matrix determinant and represents the
volume (or area) of the hyper-ellipsoid. Positive definite matrix

in (9) is called the coordinate matrix of the hyper-ellipsoid
whose eigen-decomposition gives the lengths (the eigen-values)
of the principal axes and their orientations (the rotation specified
by the eigen-vectors). It was shown in [24] that among all pos-
sible hyper-ellipsoids, the one with coordinate matrix equal
to the complex sensitivity matrix achieves the minimal
inertial profile. Therefore, by setting and sub-
stituting the definition of the hyper-ellipsoid (9) into the iner-
tial profile definition given by (7), a tight lower bound [24],

4The complex hyper-ellipsoid is a straightforward extension of the concept
of real hyper-ellipsoid [33]. To be specific, complex hyper-ellipsoid T (y 2

;M; v) is equivalent to real hyper-ellipsoid T (�y 2 ;M ; v )
with �y = [y ;y ] and

M =
M �M

M M

where y ;y ;M ;M are the real and imaginary parts of y and M,
respectively.

[34] of the complex inertial profile can be obtained after some
manipulations:5

(10)

D. Asymptotic Distortion Bounds

Under high resolution assumptions, the average distortion of
a generalized finite-rate quantization system for complex source
variables can be lower bounded by the following form:

(11)
where is the average optimal inertial profile defined as

(12)

Equation (11) can be obtained from (6) by using given
above and selecting the point density function optimally to min-
imize the asymptotic system distortion, i.e., [21]

(13)
Moreover, by substituting the tight lower bound (10) of the
inertial profile into (11), one can obtain corresponding tight
lower bounds of the average inertial profile , point
density , as well as asymptotic distortion bounds ,
respectively.6

E. Distortion Analysis of Constrained Source

Compared with conventional source coding problems, where
the input source variables are free random vectors, the quantized
variable in feedback wireless systems are often constrained. For
example, consider a MISO quantized MRT beamforming
system, the beamforming vector to be quantized is con-
strained to be unit-norm and hence lies on the unit hyper-sphere
or manifold, whereas the channel instantiation is a general
vector in space. For the quantized MIMO precoding problem
discussed in this paper, the precoding matrix to be quantized
is also constrained to be unitary matrices. Therefore, it is both of
great importance and also very interesting to study the finite-rate
quantization of source variables subject to a multi-dimensional

5The derivation of the complex inertial profile lower bound is a straightfor-
ward extension of the lower bound for real source variables. It can be obtained
by first converting the dimensionality from k (complex) into 2k (real) and
using a real coordinate matrix given by

W (ŷ) �W (ŷ)

W (ŷ) W (ŷ)

according to discussion given by footnote 4.
6This replacement can be extended to other variables and definitions. In the

rest of this paper, we will directly use ~a to represent a quantity that is obtained
by replacing I with ~I when a is a function of I , i.e., a = a(I ).
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real constraint function . To be specific, suppose the
constraint function is of size and can be
partitioned into the following form under proper orderings7

It is shown in [21] that the asymptotic distortion analysis derived
for unconstrained source vectors is still valid for constrained
sources with appropriate modifications. The following propo-
sition states the necessary and sufficient condition for the iner-
tial profile of the complex constrained source to have a concise
format similar to the real case.

Proposition 1: The normalized inertial profile of the con-
strained complex source can be represented by the following
form:

(14)
where is the Voronoi region (shape) that cor-
responds to code point with side information , and
represents the volume (or area) of this Voronoi cell. The con-
strained sensitivity matrix used in (14) can be repre-
sented as

(15)

with the unconstrained sensitivity matrix given by
(3) and matrix being an orthonormal matrix whose
columns constitute an orthonormal basis for the null space

, if and only if there exists a non-singular
matrix satisfying the following equation:

(16)

In this case, the constrained inertial profile can also be tightly
lower bounded by the following form:

(17)

Proof: Please see Appendix A.
Based upon the results established in Proposition 1, the

asymptotic distortion analysis provided in previous subsec-
tions for unconstrained source variables can be shown to be
valid for constrained sources with the following modification.

7The ordering of the constrained conditions (or the elements of vector g(y))
does not impact the system performance. However, certain orderings can lead to
concise complex distortion analysis, whose necessary and sufficient condition is
given by (16) in Proposition 1. Note from (16), there are more than one orderings
that can lead to concise analysis, i.e., permutations within g and g still satisfy
the condition and hence will also have concise distortion analysis.

First, the complex free dimensions of is reduced from to
. Next, the sensitivity matrix is replaced by its

constrained version given by (15) and the constrained
normalized inertial profile is defined as (14) and tightly lower
bounded by (17). Last, the multi-dimensional integrations used
in evaluating the average distortions are over the constrained
space . Finally, the average system distortion is lower
bounded by the following form:

(18)

F. Analysis of Quantizers With Mismatched Codebooks

In some cases, the quantizer is designed by using a distortion
measure that is different from the actual system distortion func-
tion in order to reduce the complexity of the codebook de-
sign algorithms. To be specific, the distortion function of interest
is denoted by and the distortion function used for designing
the quantizer is denoted by , whose complex sensitivity
matrix is given by . Codebook generated or trained
by the mismatched sensitivity matrix has a mismatched Voronoi
region , which further leads to a mismatched inertial
profile that can be closely approximated by

(19)

In addition, the mismatched sensitivity matrix also leads to a
mismatched point density function having the following form,
from (13):

(20)

where is the optimal average inertia profile of a
system with actual distortion function equal to . Finally,
by substituting the previous mismatched inertial profile (19) and
mismatched point density (20) into the distortion integral given
by (6), the average distortion of a quantizer with mismatched
distortion function can be obtained as

(21)
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III. SYSTEM MODEL OF MIMO SYSTEMS WITH

FINITE-RATE FEEDBACK

A. Fading Channel Model

We consider a MIMO system with transmit antennas and
receive antennas, signaling through a frequency flat Rayleigh

fading channel. The channel model can be represented as

(22)

where is the received signal, is the additive complex
Gaussian noise with distribution , and is the
MIMO channel response of size with each of its element
being independent, complex Gaussian distributed with zero
mean and unit variance. The transmitted signal vector is
normalized to have a power constraint given by ,
with representing the average SNR at each receive antenna.
With probability one, the MIMO channel matrix has rank

equal to the minimum number of the transmit and receive
antennas, i.e., . The singular value decompo-
sition (SVD) of matrix is denoted as ,
where and are orthonormal column
matrices and is a diagonal matrix
with representing the sorted nonzero
eigen-values of matrix .

B. Transmit Precoding Schemes With Quantized CSIT

The channel state information is assumed to be perfectly
available at the receiver but only partially known at the trans-
mitter through a finite-rate feedback link of bits per channel
update between the transmitter and the receiver. Moreover, for
a given transmission supporting spatial streams , a
precoding scheme using equal power allocation among the ac-
tive spatial streams is adopted [10], [14], [35] in this paper. To
be specific, a precoding matrix codebook is
exposed to both the receiver and the transmitter, whose elements
are of size and satisfy the condition: . Based
on the channel realization , the receiver selects the best code
point from the codebook and transmits the corresponding
index back to the transmitter. At the transmitter, the unit-norm
matrix is employed as the precoding matrix, and the resultant
received signal can be represented as

(23)

With perfect channel state information available at the trans-
mitter , it is optimal [35] to choose
(under the assumption of using unitary precoding matrix), where
matrix corresponds to the first dominant eigen-vectors of

(composed of the first columns of ). In this case, the
system capacity8 by using a -beam transmit precoding scheme
with equal power allocation is given by

(24)

8The system capacity here refers to the mutual information rate of a specific
setting. The actual capacity without the restriction of equal power allocation
among the spatial bemas is presumably larger than the aforementioned mutual
information rate.

where is an diagonal matrix whose diagonal ele-
ments are the first (largest) eigen-values of . When the
feedback link is restricted to a finite rate of bits per channel
update, the system capacity with finite-rate CSI feedback can be
represented as

(25)

where the quantized beamforming matrix is a function of the
current channel realization , i.e., . Therefore,
the performance of a CSI-feedback-based MIMO system can be
characterized by the system capacity loss , defined as the
expectation of the instantaneous capacity loss, i.e.,

(26)

where the instantaneous capacity loss is given by

(27)

This performance metric was also used in [14] and [15]. Fur-
thermore, notice that in practical systems, channel errors and
feedback delay also exist in the reverse link, which will im-
pact the overall system performance. However, this paper as-
sumes the feedback is error-free and delay-less, and focuses
solely on the effect of finite-rate quantization of the channel state
information.

IV. CAPACITY ANALYSIS OF MIMO PRECODERS WITH

FINITE-RATE CSI FEEDBACK

The performance analysis of a finite-rate CSI-feedback-based
MIMO system using transmit precoding schemes with equal
power allocation on multiple spatial beams is challenging be-
cause of the complicated nature of the loss function and the com-
plicated channel related random variables.

A. Formulating the MIMO CSI-Quantizer as a General Vector
Quantization Problem

In the MIMO context, the source variable to be quantized is
the right singular matrix of the fading channel response .
It is a complex matrix of size , which contains
complex ( real) dimensions. The system distortion function

is chosen to be the instantaneous capacity loss given by
(27). It is shown in Appendix B that (or ) can be approx-
imated by the following second-order Taylor series expansion:

(28)

It can be observed from (28) that the distortion function
between and is only parameterized by , under the
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second-order approximation. The diagonal elements of matrix
represent the first nonzero eigen-values of matrix .

Therefore, the encoder side information in this case can be de-
noted as with degrees of freedom.

In contrast to the conventional quantization problems, the
source variable to be quantized in this case is subject to con-
straints. First of all, according to the SVD definition, matrix
has orthonormal column vectors, i.e.,

(29)

which corresponds to real independent constrained equa-
tions. Furthermore, the distortion function can also be
rewritten in the following form after some manipulations:

(30)

From (30), it can be observed that the distortion function de-
pends only on the matrix product and the encoder side in-
formation . Hence, the distortion function can be denoted
as . Moreover, is invariant under any uni-
tary rotations on matrix at the right-hand side, i.e.,

(31)

where is an arbitrary unitary matrix. Suppose matrix
product has a unique R–Q decomposition given by the
following form:

(32)

where is a unitary matrix and is an upper triangle matrix
with real diagonal elements. Hence, for any realization of (or

), there always exists a unitary rotation , such that
is an upper triangle matrix. Therefore, without loss of gen-

erality, one can impose on matrix the following constraints,
such that for points in the small neighborhood of , matrix

is an upper triangle matrix with real diagonal elements, i.e.,

(33)

where is the th element of matrix . Note that the
previous constraints on , given in (33), account for another

real independent constrained equations.
According to the constraints given by (29) and (33), there are

total independent constrained conditions, and the
number of free complex dimensions of matrix reduces to be

, equivalent to free real dimensions. These con-
strained conditions can be further represented as the following
concise manner, which is denoted as a multi-dimensional real
function given by

(34)

where the element functions of matrices and
are given by the following form:

(35)

where and are the th column of matrices
and , respectively.

B. High-Resolution Distortion Analysis of Sub-Optimal
MIMO CSI Quantizer

According to the second-order Taylor series expansion given
by (28) (details provided in Appendix B), distortion function

can also be represented by the following form:

(36)

where , and the (com-
plex) unconstrained sensitivity matrix is given by

(37)

Moreover, it is also shown in Appendix C that the constrained
function given by (35) satisfies the necessary and suffi-
cient condition given by (16) (in Proposition 1), thereby leading
to a concise distortion analysis in the complex domain. The
(complex) constrained sensitivity matrix is hence derived in
Appendix C, and has the following form:

(38)

By substituting (38) into the complex hyper-ellipsoidal approxi-
mation given by (17) (in Proposition 1), the optimal inertial pro-
file is tightly lower bounded by

(39)

where is a constant given by

(40)

It can be observed from (38) and (39) that the constrained sen-
sitivity matrix as well as its corresponding normalized inertial
profile are independent of the location .

When the elements of the channel matrix are assumed to
have i.i.d. complex Gaussian distributions, the matrix is inde-
pendent of the side information [36]. Furthermore, has
a uniform distribution in the complex Stiefel manifold, which is
denoted as . Moreover, the
probability density function of the orthonormal matrix under
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constrained condition (35) is derived in Appendix D, and has
the following form:

for (41)

where we define . Therefore, the average normal-
ized inertial profile of the CSI-quantized MIMO system can be
obtained as

(42)

where the constant coefficient is given by

(43)

where are the largest eigenvalues of matrix .
Finally, from (11), the asymptotic distortion (or the system ca-
pacity loss) of a finite-rate CSI-quantized MIMO system with
spatially equal power allocated transmit beamforming scheme
is given by

(44)

Moreover, by substituting (41) and (42) into (13), the optimal
point density function that achieves the minimal system
distortion is a uniform distribution is given by

for (45)

C. Interesting Observations of the Distortion Lower Bounds

Based on the expressions of the average distortion lower
bound given by (44), the following observations can be
made.

1) MIMO systems using maximum ratio transmission (MRT)
schemes with finite-rate CSI feedback is a special case of
the analysis provided in Section IV-B. In this case,
and is the dominant eigenvector of . The
average system distortion can be lower bounded by

(46)

where is the largest eigenvalue of matrix . By uti-
lizing the statistical properties of the largest eigenvalues
of a central Wishart matrix given in [37], coefficient

can be expressed in closed form. Detailed derivations as
well as the closed-form analytical results are provided in
Appendix E. As a special case of a MIMO system
with is given by the following form:

(47)

where represents the gener-
alized hyper-geometric function [38].

2) MISO system with transmit antennas and a single receive
antenna is another special case, i.e., , where the
average system distortion reduces to be the following form:

(48)

This result is consistent with the analysis provided in [14]
and [21].

3) In high-SNR regimes, and the average system
distortion can be represented by

(49)

One can observe from (13) that in high-SNR regimes, the
average distortion (or system capacity loss) of a
MIMO system using a precoder with beams (with equal
power allocation) is exactly the same as that of the same
system using a precoder with beams. This means
that for a MIMO system with transmit antennas, quan-
tizing the first singular vectors of (matrix ) is equiv-
alent to quantizing the rest singular vectors of
(matrix ). In another word, quantizing the orthonormal
matrix under the constrained condition given by (35)
is the same as quantizing the projection matrix (or

) with complex degrees of freedom,
which is equivalent to real degrees of freedom.

4) The average system distortion decreases exponentially
with a factor of , where the exponential com-
ponent is inversely proportional to the (complex) degrees
of freedom of the source variable to be quantized, which
is equal to .

5) For a MIMO system with transmit antennas, source vari-
able (under the constrained condition given by (34) and
(35)) has the maximum degrees of freedom when .
It is regarded as the worse-case scenario in terms of having
the largest capacity loss. However, it does not necessarily
mean leads to the smallest system capacity. This
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is because , and the reference ca-
pacities (capacity with ideal quantization of the
matrix) are different for different number of spatial streams

.
6) When (assuming ), is a square unitary ma-

trix. According to capacity loss analysis provided by (44),
the total degrees of freedom is zero, and hence .
Intuitively speaking, this is because the instantaneous ca-
pacity is invariant under any unitary rotations on matrix

at the right hand side. Therefore, all unitary precoding
matrices lead to the same instantaneous capacity . There
is no capacity loss due to finite-rate quantization of the pre-
coding matrix.

V. EXTENDED ANALYSIS OF MIMO SYSTEMS WITH

FINITE-RATE CSI FEEDBACK

Based on the closed-form analytical results of MIMO sys-
tems employing a fixed number of equal power spatial beams
obtained in Section IV, two important extensions are provided
in this section.

A. Analysis of CSI-Quantizers Using Mismatched High-SNR
and Low-SNR Codebooks

Codebook Design Criterions for Transmit Pre-coding Ma-
trices Revisited: In order to obtain an in-depth understanding
of MIMO CSI-quantizers using various codebooks, let us recall
some codebook design criterions proposed in [14]. First of all, a
generalized mean squared weighted inner product (MSwIP) cri-
terion was proposed in the context that it minimizes the system
capacity loss. This criterion can be represented by the following
form:

(50)

where the maximization is w.r.t. to both the codebook as well
as the encoding algorithm . It is not hard to show that the code-
book design criterion given by (50) is equivalent to the following
criterion:

(51)

which is directly related to the distortion function consid-
ered in this paper given by (28).

A drawback of the generalized MSwIP design method is that
the codebook is optimized for a particular system SNR . Mul-
tiple codebooks are needed for MIMO systems operating in an
environment with a wide SNR range. Therefore, two alternative
codebook design criterions were also proposed in [14], which
do not depend on the system SNR. The first design criterion is
called high-SNR criterion, where and . The
optimized high-SNR codebook is designed to maximize the fol-
lowing expectation:

(52)

which is related to the following high-SNR distortion function

(53)

Similarly, in the low-SNR regimes, and
. Hence, the low-SNR codebook design criterion is

given by

(54)

which is related to the following low-SNR distortion function:

(55)
Mismatched Analysis of High-SNR and Low-SNR Code-

books: By utilizing the mismatched analysis described in
Section II-F (provided in detail in [25]), we provide in
this subsection a distortion (or capacity) analysis of MIMO
CSI-quantizers using high-SNR and low-SNR codebooks. First,
by the extending the second-order Taylor series expansion re-
sults given by (38), the complex constrained sensitivity matrix

, which corresponds to distortion function
given by (53), has the following form in high-SNR

regimes:

(56)

By substituting the mismatched (high-SNR) sensitivity matrix
(56) into (19), the mismatched inertial profile of the high-SNR
codebook can be obtained as

(57)

Moreover, since the optimal point density given by (45) is a
uniform distribution that does not depend on the system SNR,
there is no point density mismatch for quantizers using the high
SNR codebook. Finally, by substituting (57) and (45) into the
distortion integral given by (21), the average system distortion
of a MIMO CSI quantizer using high-SNR codebook is given
by

(58)

where coefficient is given by

(59)
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By utilizing similar derivations, the low-SNR constrained
sensitivity matrix can also be obtained

(60)

which leads to the following mismatched inertial profile:

(61)

Once again, by substituting (61) and (45) into the distortion in-
tegral (21), the average system distortion of a MIMO CSI quan-
tizer using low-SNR codebook is given by

(62)

where coefficient is given by

(63)

As a direct results of the previous mismatched analysis,
MIMO CSI-quantizers using mismatched high-SNR and
low-SNR codebooks give rise to the following performance
losses:

(64)

The performance losses and defined in (64)
can be viewed as a capacity penalty for using the mismatched
high-SNR and low-SNR codebooks instead of the optimal
codebook designed to match a specific SNR point. Both losses
can be shown to be greater than one, i.e., ,
and are independent of the quantization resolution (feedback
rate) , which is shown by (64).

B. Analysis of MIMO Precoding Schemes With Multi-Mode
Spatial Multiplexing Strategy

In order to compensate for the loss due to the equal power
allocation among the spatial beams used by the transmit pre-
coder, a multi-mode spatial multiplexing (MMSM) scheme was
proposed in [14], where the number of active spatial beams em-
ployed by the transmitter is adjusted adaptively accordingly to
the current system SNR. As an example, we plot in Fig. 1 the
normalized capacity of a 4 3 MIMO system
over i.i.d. fading channels with finite-rate CSI feedback of

bits per channel update. The normalized MIMO capacity is

Fig. 1. Normalized system capacity of a 4� 3 MIMO system (t = 4; r = 3)
over i.i.d. Rayleigh fading channels with finite-rate CSI feedback (B = 8), and
using multi-mode spatial multiplexing transmission schemes.

defined to be the ratio of the system capacity with quantized
CSI to that of a system using optimal transmit precoder with
ideal CSIT. The proposed multi-mode transmission strategy is
employed for the system simulation, where the MIMO transmit
precoder used for each mode has active spatial beams with
equal power allocation. For this particular case, there are total

3 modes available for the current MIMO system,
i.e., . The codebooks of the CSI quantizer used
at each mode are generated by the generalized mean-squared
weighted inner-product (MSwIP) criterion proposed in [14]. It
can be observed from Fig. 1 that by switching the modes based
on the SNR, one can use the best mode and the system capacity
of using the MMSM scheme is the maximum of the capacity of
all the available modes.

As a direct result of the high-rate analysis obtained in
Section V-A, the system capacity of a MIMO system
with finite-rate CSI feedback of bits per channel update, and
using MMSM transmission scheme with high-SNR codebooks
can be represented by the following form:

(65)

where is a coefficient that depends on and , which is
given by

(66)

with given by (59). Consequently, for a particular operating
SNR of the system, which is assumed to change at a much
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Fig. 2. Capacity loss versus CSI feedback rate B of a 4� 2 MIMO system
(t = 4; r = 2, and n = 2) over i.i.d. Rayleigh fading channels and with SNR
� = �10, 0, and 20 dB.

slower rate than the channel itself, the best transmission mode
is given by

(67)

Based on the analytical result of the MMSM precoder given by
(65) and (67), the boundary points of the mode transitions (such
as and in Fig. 1) can be calculated analytically without
actual simulations.

VI. NUMERICAL AND SIMULATION RESULTS

A. High-Rate Capacity Analysis

Some numerical experiments are now presented to provide
a better feel for the utility of the distortion analysis. Fig. 2
shows the capacity loss due to the finite-rate quantization of
the CSI versus feedback rate for a 4 2 MIMO system

over i.i.d. Rayleigh flat fading channels under
different system SNRs at 10, 0, and 20 dB, respectively.
The transmit precoder used for the MIMO system has
spatial beams with equal power allocations. The codebook
of the CSI quantizer is generated by using the generalized
mean-squared weighted inner-product (MSwIP) criterion [14].
The distortion lower bounds given by (44) are also
included in the plot for comparisons. It can be observed from
the plot that the proposed distortion (or system capacity loss)
lower bounds are tight and predict very well the actual system
capacity loss obtained from Monte Carlo simulations.

B. Analysis of Mismatched High-SNR and Low-SNR
Codebooks

In order to understand the performance degradation caused by
the mismatched CSI-quantizers using high-SNR and low-SNR

Fig. 3. Performance losses (L - and L - ) versus SNR � of a 4� 3
MIMO system (t = 4; r = 3, and n = 2 over i.i.d. Rayleigh fading channels
with feedback rate B = 8 bits per channel update.

codebooks, we plot in Fig. 3 the performance losses
and versus the system SNR of a 4 3 MIMO system

with finite-rate CSI feedback of 8 bits
per channel update. The performance losses and
represent the ratio of the average system distortion of a mis-
matched quantizer to that of the optimal quantizer, whose def-
inition is given by (64). The transmit precoder used for the
MIMO system has spatial beams with equal power al-
locations. The codebook of the CSI quantizer is also generated
by using the generalized MSwIP criterion. For comparison pur-
pose, the ratios of the distortion bounds, i.e., and

, are also included in the plot. It can be observed
from Fig. 3 that the obtained performance losses (or system dis-
tortion ratios) agree well with the simulation results.

C. Performance of Multi-Mode Spatial Multiplexing Schemes

In order to see the utility of the proposed distortion analysis
to MIMO systems using multi-mode spatial multiplexing trans-
mission schemes, we demonstrate in Fig. 4 the normalized ca-
pacity of the same 4 3 MIMO system , which
is described in Section V-B, over i.i.d. Rayleigh fading chan-
nels with CSI feedback of 8 bits per channel update. The
MIMO precoder again employs the MMSM scheme, with total
three modes available . Both the capacity analysis
given by (65) as well as the results obtained from Monte Carlo
simulations are shown in Fig. 4. It can be observed from the plot
that the proposed capacity analysis closely matches the simula-
tion results.

We also demonstrate in Fig. 5, the analytical results of the
normalized system capacity of the same 4 3 MIMO system

using MMSM transmission schemes but with
different rate of CSI feedback of 1, 3, 5, 8 bits per channel
update. For the sake of comparison, we also include in the plot
the normalized capacity of MIMO system with no CSI feedback,
which corresponds to the case where no CSIT is available and
the MIMO transmitter sends independent data stream on each
of its antennas with equal power allocations. It can be observed
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Fig. 4. Normalized system capacity of a 4� 3 MIMO system (t = 4; r = 3)
over i.i.d. Rayleigh fading channels with feedback rate B = 8 bits per channel
update and using multi-mode spatial multiplexing (MMSM) transmission
schemes.

Fig. 5. Normalized system capacity of a 4� 3 MIMO system (t = 4; r = 3)
over i.i.d. Rayleigh fading channels using MMSM transmission scheme, and
with several different CSI feedback rate (B = 1, 3, 5, 8 bits per channel update).

from Fig. 5 that the system capacity improves significantly as
the feedback rate increases. To be specific, we can see that
with a feedback rate of 8 bits, a 4 3 MIMO system with
MMSM scheme can almost achieve 90% of the capacity of a
system with ideal CSIT. Compared with the total free dimen-
sions of the original CSI information , which is 24, only 1/3
bits per dimension is needed for a properly designed MIMO CSI
feedback scheme. This is very encouraging as the results sug-
gest that in order to achieve a performance in terms of capacity
close to that of systems with ideal CSIT, only limited CSI feed-
back rate per dimension is required.

VII. CONCLUSION

This paper analyzes the behavior of MIMO systems with lim-
ited feedback precoding matrices using high resolution quanti-
zation theory. To enhance the tractability of the analysis, the
distortion analysis of vector quantizers was first extended to
deal with complex source variables such that it is directly appli-
cable in the complex domain without having to first transform
into real vectors. This is especially important for source vari-
ables with large dimensions (i.e., MIMO systems with finite-rate
CSI feedback) because the analysis is more cumbersome if per-
formed in the real domain. Necessary and sufficient conditions
that guarantee a concise high-resolution distortion analysis in
the complex domain were also presented. The proposed com-
plex distortion analysis was then used to provide tight lower
bounds on the capacity loss of MIMO systems due to the fi-
nite-rate quantization of the transmit precoding matrices. In ad-
dition, exploiting the generality of high-resolution quantization
framework, MIMO CSI-quantizers with mismatched codebooks
that are only optimized for high-SNR and low-SNR regimes
were also analyzed to quantify the penalties caused by the mis-
matched codebooks. Capacity analysis of MIMO systems using
multi-mode spatial multiplexing schemes with finite-rate CSI
feedback was also provided. Numerical and simulation results
were provided which confirm the tightness of theoretical distor-
tion bounds.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: (Sufficient Condition:) According to the property of
the complex derivative provided in [32], the following equality
is valid:

(68)

where and are the real and imaginary part of . By sub-
stituting (16) into (68) and after some manipulations, we can
obtain the following relation:9

(69)

Since the column vectors of matrix span the null
space , it is evident that column vectors of
should span the null space of . Moreover, ac-
cording to (69), columns of matrix also span the null space

. By employing the same reasoning used in

9OperationA of a matrixA is defined to be

�A =
A A

�A A

whereA andA represents the real and imaginary part of matrixA.
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[21], one can obtain the following second-order Taylor series
expansion of the distortion function after some manipulations:

(70)

where vector is given by . Again,
by extending the same reasonings used in the analysis of real
vectors, the constrained complex inertial profile (14) as well as
its tight lower bound (17) can be obtained.

(Necessary Condition:) On the other hand, if the distortion
function has a concise second-order approximation given
by (70), which can further lead to a concise inertial profile
expression, the column vectors of matrix span the null
space . This means that the two range spaces

and are equivalent.
Moreover, it can be shown that the following equality is valid:

(71)

where “ ” represents the subspace summation. Similarly, one
can also obtain the following equality:

(72)

It is evident from (71) and (72) that the two range spaces
and are equivalent

and there exists a non-singular matrix such that

(73)

From (73), one can further obtain the following equality after
some manipulations:

(74)

Therefore, as long as the rows of two derivatives matrices
and span the same subspace,

the complex constrained inertial profile can be expressed in a
concise form.

APPENDIX B
SECOND ORDER TAYLOR SERIES EXPANSION OF THE

DISTORTION FUNCTION

It is noted that the distortion function (or the instanta-
neous capacity loss ) given by (27) is a real-valued function
of complex variable . We therefore utilize the Wirtinger cal-
culous [31] to obtain the complex derivative and complex Hes-
sian matrix of the distortion function with respect to .

Let us first consider a real-valued complex function
given by the following form:

(75)

where and are semi-definite complex Hessian matrices.
According to the definitions given in [32], the generalized com-
plex derivative of function can be obtained by the fol-
lowing form:

(76)

where . Furthermore, the complex Hessian ma-
trices of can also be obtained as

(77)

(78)

where (of size ) is a permutation matrix defined as

(79)

where (of size ) and (of size ) are elementary
matrices which have unity in the or position and
all other elements are zero.

The distortion function (or the instantaneous capacity
loss ) given by (27) can also be represented as the following
form:

(80)

After some manipulations, the complex derivative of function
can be obtained

(81)
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Moreover, according to (77) and (78), the Hessian matrices of
can also be obtained as

(82)

where matrix is given by

(83)

It is shown in [32] that a real-valued complex function has the
following second-order Taylor series expansion:

(84)

where vector and “ ” stands for higher
order terms. By substituting (81) and (82) into the Taylor series
expansion given by (84), one can obtain the following result:

(85)

It can be observed from (85) that (up to the second-order
approximation) is a function of and , parameterized only
by .

APPENDIX C
DERIVATIVE OF THE CONSTRAINED SENSITIVITY

MATRIX

First of all, it is clear that given in (35) is a multi-dimen-
sional real function of size . According to the method of
Wirtinger calculus [32], we can first obtain the following partial
derivative of function w.r.t. vector :

(86)

(87)

where is a sparse matrix with its elements given
by

for
otherwise

(88)

where and . After some manipula-
tions, the partial derivative of w.r.t. vector can also be
obtained, which is given by

(89)

(90)

Therefore, by defining and ,
the partial derivatives of function w.r.t. vectors and
can be obtained as the following form:

(91)

(92)

which satisfies the necessary and sufficient condition given by
(16) in Appendix A. According to Proposition 1, the constrained
sensitivity matrix of the CSI-quantized MIMO system is given
by

(93)

where matrix is the unconstrained sensitivity ma-
trix given by (37), and is an orthonormal matrix with its
columns constituting an orthonormal basis of the null space

, which is given by

(94)

with being an orthonormal matrix with its columns con-
stituting an orthonormal basis of the null space . After
some manipulations, it can be shown that the constrained sensi-
tivity matrix can be represented by the following form:

(95)
By substituting (95) into (17), the normalized inertia profile can
be obtained

(96)

APPENDIX D
DERIVATION OF THE PROBABILITY DENSITY FUNCTION

The statistical properties of matrix are discussed in this
section. First, the set of all complex matrices with
orthonormal columns is called the complex Stiefel manifold,
denoted as . The volume of the
complex Stiefel manifold is found in [39], which is given by

(97)
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where is the complex multivariate gamma function
given by . Therefore,
for random matrix uniformly distributed over , the joint
density function for is simply given by the following form:

(98)

Since we are interested in the case of constrained source vari-
ables, where is subject to constrained condition (35), the joint
density function given by (98) cannot be directly applied. If we
denote the constrained source space by , then the complex
Stiefel manifold can be represented by expanding space

under a unitary rotation , given by

(99)

Therefore, the probability density function of the constrained
source is given by

(100)

APPENDIX E
DERIVATION OF THE CLOSED FORM OF COEFFICIENT

When the elements of the channel matrix are i.i.d. com-
plex Gaussian distributed with zero mean and unit variance, it
was shown in [37] that the probability density function of the
maximum eigenvalue of the Wishart matrix is given
by the following form:

(101)

where and . Matrix is an
Hankel matrix with its element given by

, where the incomplete gamma function
for , and has the representation

(102)

The density function can be written as a finite linear
combination of elementary gamma pdfs, i.e.,

(103)

where is the coefficient of in front of term when ex-
panding the matrix determinant . By substituting the den-
sity function into the expectation of , one can obtain
the following result:

(104)
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