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Abstract

This paper examines characteristics of urban land-use and
land-cover (LULC) classes using spectral mixture analysis
(SMA), and develops a conceptual model for characterizing
urban LULC patterns. A Landsat Enhanced Thematic Mapper
Plus (ETM+) image of Indianapolis City was used in this re-
search and a minimum noise fraction (MNF) transform was
employed to convert the ETM+ image into principal compo-
nents. Five image endmembers (shade, green vegetation, im-
pervious surface, dry soil, and dark soil) were selected, and
an unconstrained least-squares solution was used to un-mix
the MNF components into fraction images. Different combina-
tions of three or four endmembers were evaluated. The best
fraction images were chosen to classify LULC classes based on
a hybrid procedure that combined maximum-likelihood and
decision-tree algorithms. The results indicate that the SMA-
based approach significantly improved classification accuracy
as compared to the maximume-likelihood classifier. The frac-
tion images were found to be effective for characterizing the
urban landscape patterns.

Introduction

Urban landscapes are typically composed of features that are
smaller than the spatial resolution of the sensors, a complex
combination of buildings, roads, grass, trees, soil, water, and
so on. Strahler, et al. (1986) described H- and L-resolution
scene models based on the relationships between the size of
the scene elements and the resolution cell of the sensor. The
scene elements in the H-resolution model are larger than the
resolution cell and can, therefore, be directly detected. In con-
trast, the elements in the L-resolution model are smaller than
the resolution cells, and are not detectable. When the objects
in the scene become increasingly smaller relative to the reso-
lution cell size, they may be no longer regarded as objects
individually. Hence, the reflectance measured by the sensor
can be treated as a sum of interactions among various classes
of scene elements as weighted by their relative proportions
(Strahler, et al., 1986). Landsat Thematic Mapper (TM) or
Enhanced Thematic Mapper Plus (ETM+) images with a nomi-
nal 30 meter spatial resolution are attributed to L-resolution
model. These data are often considered too coarse for map-
ping the components of urban environments. As the spatial
resolution interacts with the fabric of urban landscapes, a spe-
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cial problem of mixed pixels is created, where several land-
use and land-cover (LULC) types are contained in one pixel.
Such a mixture becomes especially prevalent in residential
areas where buildings, trees, lawns, concrete, and asphalt can
all occur within a pixel. Mixed pixels have been recognized as
a problem affecting the effective use of remotely sensed data
in LULC classification and change detection (Fisher, 1997;
Cracknell, 1998). Fisher (1997) summarized four causes of the
mixed pixel problem, i.e., (1) boundaries between two or more
mapping units, (2) the intergrade between central concepts

of mappable phenomena, (3) linear sub-pixel objects, and

(4) small sub-pixel objects. When mixed pixels occur, pure
spectral responses of specific features are confused with the
pure responses of other features, leading to the problem of
composite signatures (Campbell, 2002).

The low accuracy of LULC classification in urban areas is
largely attributed to the mixed pixel problem. For example, the
traditional per-pixel classifiers, such as maximum-likelihood
classifier (MLC), cannot effectively handle complex urban land-
scapes and the mixed pixel problem. When unsupervised
classification is applied to densely populated suburban metro-
politan areas, the mixed pixel problem becomes exaggerated.
Trees on lawns are confused with forest classes. Lawns are
similar to pasture and recreation, and pavement is common
in high-density residential and commercial/industrial areas
(Epstein, et al., 2002). In practice, accurate classification re-
sults are a prerequisite for many environmental and socioeco-
nomic applications, such as urban change detection (Chen,
et al., 2000; Ward, et al., 2000), urban heat islands (Lo, et al.,
1997; Quattrochi, et al., 2000; Weng, 2001), and estimation
of biophysical, demographic, and socioeconomic variables
(Lo, 1995; Thomson and Hardin, 2000). Improving LULC clas-
sification accuracy has been an important theme in remote
sensing literature.

Different approaches have been used to improve urban
LULC classification or change detection accuracies. These ap-
proaches include incorporation of geographic data (Harris and
Ventura, 1995), census data (Mesev, 1998), texture features
(Myint, 2001; Shaban and Dikshit, 2001), and structure or
contextual information (Gong and Howarth, 1990; Stuckens,
et al., 2000) into remote sensing spectral data, use of expert
systems (Stefanov, et al., 2001; Hung and Ridd, 2002) and
fuzzy classification (Zhang and Foody, 2001), use of multi-
sensor data such as merged radar and ™™ data (Haack, et al.,
2002), merged SPOT and TM data (Gluch, 2002), and merged
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TABLE 1. A SUMMARY OF PREVIOUS METHODS USED FOR IMPROVING URBAN LULC CLASSIFICATION ACCURACY

No. Category

Datasets Used

Study Area

References

1 Use of advanced classifiers

2 Use of sub-pixel information

3 Incorporation of spectral
and spatial information

4 Incorporation of ancillary
data

5 Use of multisensor data

6 Use of normalized difference
built-up index
7 Use of expert system

8 Reclassification

(1) T™™ (fuzzy)

(2) TM (ECHO)

(3) ASTER (support vector
machine-based algorithm)

(1) TM and aerial photographs

(2) IRS-1C multispectral and
panchromatic image

(1) TM, zoning data, and
housing densities

(2) TM image and road density

(3) SPOT HRV(XS), TM, census
data

(1) TM and RADARSAT C-band
(2) TM and SPOT-P band
(3) AVIRIS and radar

™

™

SPOT-1 HRV

(1) Edinburgh
(2) Minneapolis, St. Paul, Minnesota
(3) Beer Sheva, Israel

(1) Southeast Queensland, Australia
(2) Metropolitan area of Cairo, Egypt

(1) Town of Arkham, northeastern
Toronto, Canada

Lucknow, Uttar Pradesh, India
Minneapolis, St. Paul, Minnesota
Baton Rouge, Louisiana

Beaver Dam, Wisconsin
Beijing, China

Four medium-sized settlements
in United Kingdom: Bristol,
Swindon, Norwich,

and Peterborough

(1) Kathmandu Valley, Nepal
(2) Wasatch Front, Utah
(3) Park City, Utah

Nanjing, China

(2)
(3)
(4)
(1)
(2
(3)

(1) Phoenix metropolitan area,
Arizona

(2) Salt Lake City, Utah
Southeast London, England

(1) Zhang and Foody, 2001
(2) Stuckens et al., 2000
(3) Zhu and Blumberg, 2002

(1) Phinn et al., 2002
(2) Rashed et al., 2001

Gong and Howarth, 1990
Shaban and Dikshot, 2001
Stuckens et al., 2000
Myint, 2001

NN

(1
(2
(3
(4

(1) Harris and Ventura, 1995
(2) Zhang et al., 2002
(3) Mesev, 1998

(1) Haack et al., 2002
(2) Gluch, 2002
(3) Chen et al., 2003

Zha et al., 2003

(1) Stefanov et al., 2001
(2) Hung and Ridd, 2002

Barnsley and Barr, 1996

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and
radar data (Chen, et al., 2003). Table 1 summarizes some re-
search efforts to improve urban LULC classification accuracies.
One of the major advances in urban LULC analysis is
Ridd’s (1995) vegetation—impervious surface—soil (v-1-S)
model (Figure 1). It assumes that land cover in urban environ-
ments is a linear combination of three components: vegeta-
tion, impervious surface, and soil. This model provides a
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Figure 1. The V-I-S (Vegetation—Impervious surface—Soil)
model illustrating the characteristics of urban landscapes
(Ridd, 1995).
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guideline for decomposing urban landscapes and a link for
these components to remote sensing spectral characteristics.
Several studies have adopted this model as a basis for under-
standing the urban environment. Ward, et al. (2000) used a hi-
erarchical unsupervised classification scheme to classify four
classes (water, forest, cleared, and urban) on a per-pixel basis
and applied the approach to a TM image in southeast Queens-
land, Australia, based on the v-I-S model. An adjusted overall
accuracy of 83 percent was achieved. Madhavan, et al. (2001)
used an unsupervised classifier (ISODATA) to classify T™ im-
ages into seven classes in the Bangkok Metropolitan area,
Thailand. The v-1-s model proved to be useful for the classifi-
cation, although the classification accuracy was not as high
as expected due to the complexity of the study area. Rashed,
et al. (2001) conducted spectral mixture analysis (SMA) of IRs-
1C multispectral image to describe the anatomy of the Greater
Cairo Region, Egypt, based on four image endmembers: vege-
tation, impervious surface, soil, and shade. A decision tree
classifier (DTC) was then applied to the fraction images. The
classification accuracy was found to be higher than the accu-
racy achieved using MLC and minimum distance classifiers.
Phinn, et al. (2002) compared traditional image classification,
interpretation of aerial photographs, and constrained linear
SMA using a TM image in southeast Queensland, Australia, and
found that the V-I-S fraction images derived from SMA pro-
vided better classification results than per-pixel classification
and aggregated aerial photo interpretation. Wu and Murray
(2003) used sMA to analyze impervious surface distribution in
the metropolitan area of Columbus, Ohio, USA, and found
that impervious surface can be estimated using a linear regres-
sion model of low and high albedo endmember fractions.
Although the v-I-s model has demonstrated usefulness for
identifying and characterizing urban land cover patterns, its
use in practice is constrained due to the following factors.
First, the v-1-s model cannot explain all land cover types such
as water and wetlands. Second, impervious surface in the v-1-3
model cannot be easily identified as an endmember based on
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remote sensing images (Wu and Murray, 2003) because imper-
vious surface is a complex mixture of different materials, in-
cluding concrete, asphalt, metals, plastic, and soils (Jensen,
2000). Finally, the v-1-s model excludes an important compo-
nent in the mixed pixels, i.e., the shade. Shade, caused by tall
buildings or trees, is an important factor affecting the spectral
response patterns of urban landscapes and should be an es-
sential consideration in analyzing urban landscapes. For
medium-spatial resolution remotely sensed data, such as
TM/ETM+, the central business district, light/heavy industry,
high/medium density residential, and bare soils are difficult
to differentiate using traditional digital image processing tech-
niques. Recently SMA has attracted increasing interests in
urban studies and has shown the potential for estimating im-
pervious surface and vegetation abundance, and for improv-
ing urban land-cover classification (Rashed, et al., 2001;
Small, 2001; Phinn, et al., 2002; Small, 2002; Wu and Murray,
2003). This paper evaluates the potential of SMA for character-
izing an urban environment and for improving urban LULC
classification accuracy.

Spectral Mixture Analysis

The linear SMA approach assumes that the spectrum measured
by a sensor is a linear combination of the spectra of all com-
ponents within the pixel (Adams, et al., 1995; Roberts, et al.,
1998a). The mathematical model can be expressed as

R, = kaHik + g
=1

where i is the number of spectral bands used; k=1,...,n
(number of endmembers); R; is the spectral reflectance of band
i of a pixel, which contains one or more endmembers; f; is the
proportion of endmember k within the pixel; R, is known as
the spectral reflectance of endmember k within the pixel on
band i, and ¢, is the error for band i. To solve fi, the following
conditions must be satisfied: (1) selected endmembers should
be independent of each other, (2) the number of endmembers
should be less than or equal to the spectral bands used, and
(3) selected spectral bands should not be highly correlated.

It is well recognized that remotely sensed data, such as
visible bands in Landsat TM/ETM+ data, are highly correlated
between the adjacent spectral wavebands (Barnsley, 1999).
Several techniques have been used to transform the data from
highly correlated bands to an orthogonal subset. Principal
component analysis (PCA) and minimum noise fraction (MNF)
are the two most common transformations (Green, et al., 1988;
Boardman and Kruse, 1994; Jensen, 1996). The MNF transform
contains two steps (ENVI, 2000): (1) de-correlation and rescal-
ing of the noise in the data based on an estimated noise co-
variance matrix, producing transformed data in which the
noise has unit variance and no band-to-band correlations; and
(2) implementation of a standard PCA of the noise-whitened
data. The result of MNF is a two-part dataset, one part associ-
ated with large eigenvalues and coherent eigenimages, and a
complementary part with near-unity eigenvalues and noise-
dominated images (ENVI, 2000). In the MNF transform, the
noise is separated from the data by using only the coherent
portions, thus improving spectral processing results. Previous
studies have shown that use of MNF transform can improve
the quality of fraction images (van der Meer and de Jong, 2000;
Small, 2001; Lu, et al., 2002; Small, 2002; Wu and Murray,
2003), and thus the MNF transform was used in this study.

Development of high-quality fraction images depends
greatly on the selection of suitable endmembers. A variety of
methods have been developed to determine endmembers. For
example, endmembers can be obtained from (1) a spectral li-
brary, or field reflectance measurements; (2) the image itself
(Quarmby, et al., 1992; Settle and Drake, 1993) or high-order
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PCA eigenvectors (Boardman, 1993); (3) spectrally pure pixels
identified using the Pixel Purity Index (ppI) (Boardman, ef al.,
1995), which are selected manually by visualizing the PPI re-
sults in an N-dimensional visualizer with ENvI (ENVI, 2000);
(4) manual endmember selection (Bateson and Curtiss, 1996),
which is a multidimensional visualization technique for inter-
actively exploring the mixing space in search of spectra to
designate as endmembers; and (5) the combination of image
and reference endmember selection methods. The combina-
tion approach involves a spectral alignment between image
endmembers and reference endmembers, and a calibration to
relate image endmembers to reference endmembers (Smith,

et al., 1990; Roberts, et al., 1993). For most SMA applications,
image endmembers are utilized because they can be easily ob-
tained and can represent spectra measured at the same scale
as the image data (Roberts, et al., 1998a). The endmembers are
regarded as the extremes in the triangles of an image scatter-
gram. Hence, the image endmembers can be identified from
the scatterplots of two spectral bands.

Study Area

The City of Indianapolis, located in Marion County, Indiana,
with a population of over 800,000, was chosen as the study
area (Figure 2). It is a key center of manufacturing, warehous-
ing, distribution, and transportation. Situated in the middle of
the country, Indianapolis possesses several other advantages
that make it an appropriate choice. It has a single central city,
and other large urban areas in the vicinity have not influenced
its growth. The city is located on a flat plain and is relatively
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Figure 2. The study area—Marion County, Indiana, USA.
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symmetrical, having possibilities of expansion in all direc-
tions. Like most American cities, Indianapolis is increasing

in population and in area. The areal expansion is through en-
croachment into the adjacent agricultural and non-urban land.
Certain decision-making forces, such as density of population,
distance to work, property value, and income structure, en-
courage some sectors of metropolitan Indianapolis to expand
faster than others. Analyzing the urban landscape structure
and monitoring urban expansion and its environmental im-
pacts in metropolitan Indianapolis is significant to understand,
control, and plan its future development.

Method

The Landsat ETM+ image (L1G product of path 21, row 32)
used in this study was acquired on 22 June 2000, under clear
sky conditions. The data were radiometrically converted to
at-sensor reflectance using image-based correction method
(Markham and Barker, 1987). Although the L1G ETM+ data
were geometrically corrected, its geometrical accuracy

was not high enough for combining them with other high-
resolution data sets. Hence, the image was further rectified to
a common Universal Transverse Mercator coordinate system
based on 1:24000 scale topographic maps and was resampled
to a pixel size of 30 m by 30 m using the nearest-neighbor al-
gorithm. A root mean square error of less than 0.5 pixels was
obtained in the rectification. Following georectification, the
MNF was applied to transform the ETM+ at-sensor reflectance
data into a new coordinate set. The first four MNF components
were used for spectral mixture analysis, and the last two were
discarded due to their high proportion of noise contents.

Four types of endmembers were selected: shade, green
vegetation (GV), impervious surfaces (such as building roofs
and roads), and soils (including dry soil and dark soil). End-
members were initially identified from the ETM+ image based
on high-spatial resolution aerial photographs. The shade end-
member was identified from the areas of clear and deep water,
while GV was selected from the areas of dense grass and cover
crops. Different types of impervious surfaces were selected
from building roofs, airport runways, and highway intersec-
tions. Soils were selected from bare grounds in agricultural
lands. Next, these initial endmembers were compared with
those endmembers selected from the scatterplots of MNF1 and
MNF2, and of MNF1 and MNF3. The endmembers with similar
MNF spectra located at the extreme vertices of the scatterplots
were selected. These endmembers were shade, GV, impervious
surface, dry soil, and dark soil. An unconstrained least-squares
regression solution was used to unmix the MNF components
into fraction images.

To find the best quality of fraction images, different com-
binations of endmembers were tested. The combinations
were: (1) four endmembers with shade, Gv, impervious sur-
face, and dark soil; (2) three endmembers with shade, Gv, and
impervious surface; (3) three endmembers with shade, Gv, and
dry soil; and (4) three endmembers with shade, Gv, and dark
soil. Visualization of fraction images, analysis of fraction
characteristics of representative land cover types, and assess-
ment of error images were conducted to determine which
combination provided the best fractions for the study area.

High-spatial resolution aerial photographs were used to
identify LULC sample plots. A total of 156 sample plots were
identified, covering ten land-cover types: commercial and in-
dustrial urban area (hereafter, urban), high-intensity residen-
tial, low-intensity residential, bare soil, crop, grass, pasture,
forest, wetland, and water. On average, 10 to 16 sample plots
for each class were selected. A window size of three by three
was applied to extract the fraction value for each plot. The
average value and standard deviation were then calculated for
each land cover class. A graph showing the fraction character-
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istics of selected LULC types was created to examine their dif-
ferent features in proportional compositions.

The MLC was applied to classify the fraction images into
ten classes producing a classified image and a distance image.
The distance image represents the result of the Mahalanobis
distance between the measurement vector of the pixel and the
mean vector of the pixel’s class. Higher values in the distance
image indicate greater spectral distances from the signature
means for the classes to which they are assigned, i.e., more
likely to be misclassified. A distance threshold was selected
for each class to screen out the pixels that probably do not be-
long to that class, and was determined by examining interac-
tively the histogram of each class in the distance image. Pixels
with a distance value greater than the threshold were assigned
a class value of zero in the thematic image.

The MLC is a parametric classifier that assumes normal or
near normal spectral distribution for each feature of interest
associated with an equal prior probability among the classes.
Hence, training samples insufficient in number or non-
representative of features of interest or having multimode
distributions often lead to poor classification results because of
inaccurate estimation of the mean vector and covariance ma-
trix used in the MLC algorithm. In this situation, a non-para-
metric classifier, such as the DTC, is more suitable to use be-
cause no assumption is required. Therefore, the DTC approach
was applied to reclassify the pixels that were set to zero based
on the distance image. One critical step in using the DTC was to
develop the threshold for each LULC type (Lu, et al., 2003).
These thresholds were identified based on the mean and stan-
dard deviation from the sample plots for each class. As a com-
parison, conventional supervised classification with MLC was
also performed to classify the ETM+ image into the same cate-
gories of LULC classes using the same training sample data.

In urban landscape analysis, land use data are often more
useful than land cover data because of their pertinence to plan-
ning and environmental management issues. Further deriva-
tion of land use data from a classified land cover image is often
desirable. Having considered LULC characteristics and applica-
tions of the study area, the classified LULC image was finally
merged into six classes: urban, residential, pasture and agricul-
tural lands, grass, forest, and water. Pasture and cropland were
combined since they have similar spectral responses and frac-
tions. The wetland areas were very limited in extent, and were
therefore merged into either forest or water depending on their
characteristics. To improve the classification results between
grass, pasture, and crops, the following rules were applied to
the classified images developed using the SMA-based and MLC
approaches, respectively: (1) when grasses were confused with
pasture or crops in urban or residential areas, these pasture or
crops were re-grouped as grass, and (2) when pasture or crops
were misclassified as grass in the agricultural areas, they were
merged into pasture-agricultural lands.

Accuracy assessment is considered an important part in
LULC classification (Foody, 2002). The meaning and calcula-
tion for overall accuracy, producer’s accuracy, user’s accuracy,
and kappa coefficient have been described extensively in the
literature (Congalton and Mead, 1983; Hudson and Ramm,
1987; Congalton, 1991; Janssen and van der Wel, 1994;
Kalkhan, et al., 1997; Smits, et al., 1999; Foody, 2002). The
error matrix is the most frequently used method for quantita-
tively analyzing LULC classification accuracy and was used in
this paper. The accuracies of the classified images were
checked with a stratified random sampling method using a
total of 150 samples. The reference data were collected from
large-scale aerial photographs. Overall accuracy, producer’s
accuracy, and user’s accuracy were calculated based on the
error matrices for both classification results, as well as the
KHAT statistic, kappa variance, and Z statistic.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



Results

Fraction images derived from different combinations of end-
members were evaluated with visual interpretation and the
error extent and distribution in the error fraction image. Be-
cause this study is more interested in characterizing urban
LULC patterns than non-urban regions, the criteria to identify
the best suitable fraction images are based on (1) high-quality
fraction images in urban regions, (2) relatively low errors in
the urban regions, and (3) the distinction among typical LULC
types. Results indicated that a three-endmember combination
of shade/Gv/impervious surface provided a satisfactory result
in urban areas, but a relatively poor performance for agricul-
tural lands, especially for bare soils and pasture. In contrast,
the combination of shade/Gv/dark soil did not provide a satis-
factory result for urban and residential areas but was suitable
for agricultural areas. Four endmembers with shade/Gv/im-
pervious surface/dark soil or dry soil did not provide a satis-
factory fraction result either, especially for urban and residen-
tial areas. The best combination of fractions was three
endmembers with shade/Gv/dry soil, which showed the best
results for both urban areas and agricultural lands. Therefore,
the fraction images derived from these three endmembers
were used for LULC classification and were further examined
in the following text.

The fractions represent the areal proportions of the end-
members within a pixel. Each land cover type has a distinct
fraction composition. Figure 3 illustrates the three fraction
images: shade, Gv, and soil. As a comparison of fraction im-
ages and ETM+ image, the ETM+ panchromatic image was also
included. In the shade fraction image, water appears very

D: E TM+ panchromatic tand

C: Soil fradionimage
0 5 10 15

20 Kilometers n

A

Figure 3. Characteristics of three fraction images (shade,
green vegetation, and soil). The fractions were developed
using a spectral mixture model based on the minimum
noise transformed images and a comparison with the ETM+
panchromatic image.

bright due to its high shade fraction. This is because shade
endmember was selected from clear and deep water assuming
that shade had similar spectral characteristics with water.
Urban, residential, and forest have medium shade fraction
values as indicated by their grey tone. Grass, pasture, and
agricultural lands have a dark tone, indicative of the lowest
fraction of shade. In the GV fraction image, forest and dense
grass/pasture appear very bright, while residential areas and
agricultural lands appear grey. Urban areas, bare soils, and
water have a dark tone. The progression from areas of low

to high GV fraction is apparent in the transition from high-
density urban areas with minimal vegetation cover to low-
density urban areas with a large proportion of vegetation
cover. In the soil fraction image, the transition from urban to
high residential to low residential is consistent with the tone
change from white to bright grey to dark grey. Forest, water,
and areas of dense grass/pasture exhibit a dark tone in the soil
fraction image.

The fraction composition of each LULC type can be studied
based on Figures 4a and 4b. The errors were not included in
these figures due to their low values clustering near zero.
These diagrams were constructed after examining fractions of
10 to 16 plots (3 X 3 window size) for each LULC type. Water
possesses the highest shade fraction, but low Gv and soil
fractions. Forest and wetlands both have medium-high shade
fractions and a high Gv, but a low soil fraction. Residential
areas show a medium shade fraction and relatively low Gv and
soil fractions. Grass and pasture share a similar fraction com-
position. Both are low in shade and soil fractions, but are high
in the GV fraction. Croplands possess a relatively small shade
fraction as well as soil fraction, in contrast with a medium Gv
fraction. Urban areas show the highest soil fraction among the
LULC types. Bare soils in agricultural lands display a fraction
composition similar to urban areas, except that bare soils have
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Figure 4. Comparison of fraction features among different
land-use and land-cover types. 4a—Fraction compositions of
urban buildings, high- and low-residential areas, and bare
soil; 4b—Fraction compositions of cropland, grassland and
pasture, forest, wetland, and water.
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a bit higher shade and GV fractions. The soil fraction was the
highest in urban and bare soils showing intermediate values
in high- and low-intensity residential areas, low values for
crop and pasture/grass, and lowest values in forest, wetland,
and water. The shade fraction was highest for water, followed
by wetland, forest, high- and low-residential areas. Crops, bare
soils, and urban (buildings) all had a low shade fraction but
higher than grass/pasture. Because the GV fraction is associ-
ated with vegetation abundance and biomass, it registered

the highest value in grass/pasture/forest. Wetland/crops/

low residential areas showed a medium GV fraction, whereas
high-intensity residential/soil/water/urban (buildings) placed
at the lowest level.

Based on the analysis of fraction characteristics of differ-
ent LULC types, a conceptual model based on the V-I-S ternary
diagram of Ridd (1995) was constructed to explain the rela-
tionship among the LULC types with respect to the fraction
composition (Figure 5). Each land cover can be regarded as a
linear combination of three components: shade, Gv, and soil
or impervious surface. For example, soil or impervious sur-
face accounts for the majority of the bare soil or urban class.
The GV fraction accounts for the majority of the dense grass
and pasture. The shade fraction accounts for the majority
of water and wetlands. Therefore, urban/bare soils, grass/
pastures, and water/wetlands occupy the three vertices of the
triangle. Crops, forest, and residential areas are transitional in
the space of the fraction composition triangle, implying that
they are composed of different proportions of Gv, soil or im-
pervious surface, and shade fractions. The proportion of crops
depends largely on crop types and density, accounted for by
GV and soil. Forest consists mainly of Gv and shade fractions.
Vegetation stand structure, species composition, and tree den-
sity affect their fractions. In residential areas, the fractions
reflect the mixing result of their structure components, in-
cluding buildings, trees, grass, and pavement. Therefore, in
high residential areas, impervious surface and shade accounts
for most of its composition, while in low residential areas,

GV and shade fractions explain the majority of variation in the
fraction composition. This conceptual model would be valu-
able as a guideline for urban LULC analysis using remotely
sensed data.

Green

Percent Soil or Impervious Surface
Vegetation

Impervious
Surface

Figure 5. Lu-Weng urban landscape model. The model
shows that the composition of an urban landscape is a
linear combination of three fractions, shade, green vegeta-
tion, and soil/impervious surface. Various urban land
cover types may be deciphered in terms of proportions of
shade, green vegetation, and soil/impervious surface.
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Plate 1 shows the resultant classification image from
using the procedures described above. The main urban area is
located in the center of the Marion County, while some small
towns and one airport are distributed around the main urban
area. Residential areas are distributed between the main urban
areas and small towns. Forest is mainly seen in the surround-
ing areas, especially around the Eagle Creek Reservoir, and
in Fort Harrison State Park along Fall Creek. Agricultural
lands are located in the southeastern and southwestern parts
of the study area. The overall accuracy of the LULC map was
determined to be 89 percent using the SMA-based approach
(Table 2). The classification performance of the SMA-based
approach was a significant improvement (at a 98 percent
confidence level) over MLC (overall accuracy: 80 percent).

The kappa coefficients for the two maps were 0.86 and 0.73
respectively. Clearly, the LULC data derived from the sMA pro-
cedure have reasonably high accuracy and are sufficient for
urban landscape analysis and growth detection. The main
misclassifications arise from: (1) roads within urban and resi-
dential areas where some roads were classified as urban areas
and others as residential depending on the road width and as-
sociated environmental conditions along the roads, (2) confu-
sion between urban and dry bare soils in pasture and agricul-
tural areas, and (3) confusion among grass, pasture, and some
crops.

Discussion and Conclusions

Urban landscapes are complex and often difficult to classify.
This study demonstrates that SMA is an effective approach for
characterizing urban landscape patterns and for classifying
urban LULC. Since many LULC types tend to occur as heteroge-
neous mixtures in the urban context, even when viewed at
very fine spatial scales, utilization of sMA for improving LULC
classification accuracy is especially valuable. This is particu-
larly true when considering the fact that substantial increase
in spatial resolution would produce compensating disadvan-
tages, including increased cost and spectral variation of LULC
types, which decreases the spectral separability of classes and
reduces classification accuracy (Cao and Lam, 1997).

In SMA, endmember selection is a crucial step. The selec-
tion of suitable endmembers often involves an iterative
process, i.e., selecting initial endmembers, refining these end-
members, evaluating fraction images, and then further refining
endmembers. Finally, selected endmembers should be inde-
pendent of each other. For a study area with complex land-
scape structures, such as those urban areas composed of resi-
dential, commercial and industrial uses, agricultural lands,
and forest, identification and selection of proper endmembers
for the whole study area is often not straightforward. Two pos-
sible approaches may be taken for effective derivation of end-
members in an intricate urban area: (1) stratification or (2) use
of multiple endmembers.

Stratification of the whole study area into smaller regions
of similar landscape structures may be necessary to facilitate
the derivation of high-quality fraction images. For example,
in a study area dominated by residential, commercial, and
industrial uses, possible endmembers may be Gv, shade, and
impervious surface, while in an agriculture-dominated region,
endmembers may be GV, shade, and soil. If an urban area
under investigation has a large proportion of forests, then Gv,
shade, and non-photosynthetic vegetation (NPV) could be the
most appropriate choices of endmembers for the forested
areas. However, if Gv, shade, impervious surface, soil, and
NPV are used for the entire study area without stratification,
the process for developing high-quality fraction images could
be lengthy and technically difficult due to potentially high
correlations among some endmembers, e.g., among impervi-
ous surfaces, soil, and NPv.
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TABLE 2. COMPARISON OF CLASSIFICATION ACCURACY ASSESSMENT RESULTS BETWEEN THE SMA-BASED CLASSIFIER AND MLC

Reference Data

Classified Ref. Class.  Number

Method Data Urban Res.* Forest Grass PS-AG® Water Totals Totals  Correct PA UA Kappa

SMA Urban 21 0 0 0 1 0 26 22 21 80.77% 95.45% 0.945
Residential 3 56 0 1 2 0 57 62 56 98.25% 90.32% 0.844
Forest 0 0 9 0 0 0 11 9 9 81.82% 100.00% 1.000
Grass 0 1 1 28 1 0 32 31 28 87.50% 90.32% 0.877
PS-AG 2 0 1 3 16 0 20 22 16 80.00% 72.73% 0.685
Water 0 0 0 0 0 4 4 4 4 100.00% 100.00% 1.000

Overall Classification Accuracy = 89.33% (i.e., 134/150), Overall Kappa Statistics = 0.8575

MLC Urban 19 1 0 0 1 0 26 21 19 73.08% 90.48% 0.885
Residential 7 56 0 7 2 0 57 72 56 98.25% 77.78% 0.642
Forest 0 0 8 0 0 0 11 8 8 72.73% 100.00% 1.000
Grass 0 0 3 18 2 0 32 23 18 56.25% 78.26% 0.724
PS-AG 0 0 0 7 15 0 20 22 15 75.00% 68.18% 0.633
Water 0 0 0 0 0 4 4 4 4 100.00% 100.00% 1.000

Overall Classification Accuracy = 80.00% (i.e., 120/150), Overall Kappa Statistics = 0.7284
Note Variance for SMA = 0.001115; Variance for MLC = 0.001923; Z statistics = 2.342654; Significant at 98% confidence level

Note: Res.*—Residential; PS-AGP—pasture and agricultural lands.
Ref.—Reference; Class.—Classified
PA and UA—producer’s accuracy and user’s accuracy, respectively.

Plate 1. Urban land-use and land-cover classification image of Marion County, Indiana, USA based
on a SMA-based approach.
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For most SMA studies, limited endmembers, i.e., three or
four endmembers, were used (Roberts, et al., 1998a; Small,
2001; Wu and Murray, 2003). However, in a complex land-
scape, a limited number of endmembers may not account for
the spectral variability of the landscape and cannot tackle the
mixed pixel problem. In urban regions, because of the com-
plexity of impervious surfaces, identifying suitable impervi-
ous surfaces as endmembers useful in SMA is often difficult,
and the impervious surfaces tend to be confused with soils,
although some previous research used impervious surface
as an endmember (Rashed, et al., 2001; Phinn, et al., 2002).
Moreover, different urban areas may have different impervi-
ous surface types. Hence, a possible method is to use multi-
ple endmember models (Roberts, et al., 1998b). The multiple
endmember SMA approach permits a large number of end-
members to be modeled across a scene and has shown a bet-
ter performance than the standard SMA approach (Painter,
et al., 1998; Roberts, et al., 1998b; Okin, et al. 2001). This
approach starts with a series of candidate two-endmember
models and then evaluates each model based on three crite-
ria of fraction values, root mean square error, and residual
threshold, and finally produces fraction images with the
lowest error (Roberts, et al., 1998b). The multiple-endmem-
ber SMA approach may be more suitable for use in urban
landscapes.

A comparison of the v-1-s model by Ridd (1995) and the
new conceptual model developed in this paper (Lu-Weng
Model) will give some insights into urban LULC patterns. In
the v-1-s model, vegetation, impervious surface, and soil are
regarded as three fundamental components, but in practice,
impervious surface is a complex combination of different ma-
terials, and is difficult to identify because it may vary greatly
in different locations. On the other hand, shade is an impor-
tant component captured by optical remote sensors. There-
fore, the shade component is included in the Lu-Weng model.
Impervious surface, shade, and vegetation are considered es-
sential components in the urban area; while in a non-urban
region, soil, vegetation, and shade can account for the spectral
variability. Given the importance of impervious surfaces in
urban landscapes and their confusion with soils, further re-
search efforts are necessary to examine the fractional charac-
teristics of soils and impervious surfaces.

Another important contribution SMA makes to image pro-
cessing techniques is that it provides a suitable model to de-
compose the spectral mixtures of L-resolution data such as
TM/ETM+. Thus, a more realistic representation of the true na-
ture of a surface is possible compared with that provided by
the assignment of a single dominant class to every pixel by
statistical models (Campbell, 2002). This research indicates
that SMA approach is suitable to solve the mixture problem in
the L-resolution data and provided better classification results
in the urban environments than traditional per-pixel based
maximum likelihood classifier. Fraction images may have
a great potential for improving classification quality when
combined with temperature and other GIS ancillary data, pop-
ulation, and other social-economic variables. This study re-
veals that although fraction images can be successfully used
for urban LULC classification, some confusions still exist. Fur-
ther studies should be encouraged by incorporation of fraction
images and some ancillary data such as census, or by a combi-
nation of fraction images with texture information, or by fu-
sion of multisensor data such as TM/ETM+ and radar imagery,
so classification accuracy should be improved.
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