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Abstract—Remote sensing estimation of impervious surface is
significant in monitoring urban development and determining the
overall environmental health of a watershed, and it has therefore
attracted more interest recently in the remote sensing community.
The main objective of this paper is to examine and compare the ef-
fectiveness of two advanced algorithms for estimating impervious
surfaces from medium spatial resolution satellite images, namely,
linear spectral mixture analysis (LSMA) and artificial neural
network (ANN). Terra’s Advanced Spaceborne Thermal Emission
and Reflection Radiometer [(ASTER); acquired on June 16, 2001]
and a Landsat Enhanced Thematic Mapper Plus (ETM+) image
(acquired on June 22, 2000) of Indianapolis, IN, were used for
the analysis. The LSMA was employed to generate high- and
low-albedo, vegetation, and soil fraction images (endmembers),
and an image of impervious surfaces was then estimated by
adding high- and low-albedo fraction images. Furthermore, an
ANN model, specifically the multilayer-perceptron feedforward
network with the back-propagation learning algorithm, was em-
ployed as a subpixel image classifier to estimate impervious
surfaces. Accuracy assessment was performed against a high-
resolution digital orthophoto. The results show that ANN was
more effective than LSMA in generating impervious surfaces
with high statistical accuracy. For the ASTER image, the
root-mean-square error (RMSE) of the impervious surface map
with the ANN model was 12.3%, and the one that resulted from
LSMA was 13.2%. For the ETM+ image, the RMSE with the
ANN model was 16.7%, and the one from LSMA was 18.9%.
The better performance of ANN over LSMA is mainly attribut-
able to the ANN’s capability of handling the nonlinear mixing
of image spectrum. In order to test the seasonal sensitivity of
satellite images for estimating impervious surfaces, LSMA was
applied to two additional ASTER images of the same area, which
are acquired on April 5, 2004, and October 3, 2000, respectively.
The results were then compared with the ASTER image acquired
in June in terms of RMSE. The June image had the highest
accuracy, whereas the October image was better than the one in
April. Plant phenology caused changes in the variance partitioning
and impacted the mixing-space characterization, leading to a less
accurate estimation of impervious surfaces.

Index Terms—Artificial neural network (ANN), impervious
surface estimation, linear spectral mixture analysis (LSMA),
medium-resolution satellite images.
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I. INTRODUCTION

IMPERVIOUS surfaces are anthropogenic features through
which water cannot infiltrate into the soil, such as roads,

driveways, sidewalks, parking lots, rooftops, and so on, and
they are made of materials such as concrete, asphalt, plastics,
stone, brick, metal, etc. In recent years, impervious surface has
emerged not only as an indicator of the degree of urbaniza-
tion but also a major indicator of environmental quality [1].
Therefore, estimating and mapping impervious surfaces are
valuable not only for environmental management, e.g., water
quality assessment, and storm water taxation, but also for urban
planning, e.g., building infrastructure, and sustainable urban
growth.

Estimation and mapping impervious surfaces from remotely
sensed images are challenging tasks due to the complex land-
scape types in urban areas and the limitation in the spatial
and spectral resolutions of remote sensing images. Moreover,
some land cover types have similar reflectance signatures with
impervious surfaces. For instance, dry soil and bright impervi-
ous surfaces may be similar in spectral response, whereas the
reflectance characteristics of water, shades, and dark impervi-
ous surfaces are alike. As a result, these materials are easy to
be confused with impervious surfaces. Separating impervious
surfaces from nonimpervious surfaces is necessary but hard
to achieve. Many methods have been developed to estimate
and map impervious surfaces. For example, impervious sur-
face information can be measured directly from aerial photos
by digitizing the boundaries of impervious surface areas, by
overlaying a grid with aerial photographs and further counting
the number of intersections, by image classification, or by
calculating the percentage of urbanization in an urban area
[2]. Recently, more and more digital remote sensing methods
have been developed, such as per-pixel classification, subpixel
classification, decision tree, and linear regression.

Most previous research works for extraction of impervi-
ous surfaces in urban areas are by the use of medium spa-
tial resolution (10–100 m) images, such as Landsat Thematic
Mapper (TM)/Enhanced TM Plus (ETM+) [3]–[5], Terra’s
Advanced Spaceborne Thermal Emission and Reflection Ra-
diometer (ASTER) [6], and EO-1 Advanced Land Imager (ALI)
and Hyperion images [7]. However, both spatial and spectral
resolutions are regarded as too coarse for use in urban environ-
ments because of the heterogeneity and complexity of urban
impervious surface materials. The mixed-pixel problem in the
urban landscapes has been recognized as a major problem,
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affecting the use of remotely sensed data in thematic infor-
mation extraction [8], [9]. Previous research has demonstrated
the effectiveness of linear spectral mixture analysis (LSMA)
in handling mixed pixels [3], [5]. However, the LSMA-based
methods have a common problem, i.e., the impervious surface
tends to be overestimated in the areas with small amount
of impervious surface, but it is underestimated in the areas
with large amount of impervious surface [5]. This problem is
complicated by the assumption of LSMA, in which the spectral
reflectance of a pixel is regarded as the linear combination of
the spectral reflectance of the land cover types within the pixel.
However, in reality, there are a lot of examples of nonlinear
spectral mixing [10], [11]. The other problem with LSMA is
the difficulty in endmember selection, which is caused by the
within-class spectral variability [12]. A single material class
(e.g., impervious surface) may be represented in several differ-
ent locations in the feature space [13]. Urban areas may have
substantially distinct types and amount of impervious surfaces.
As a result, the traditional way of selecting image endmembers
from the vertices of the triangle in the feature space may be
problematic.

Artificial neural networks (ANN) have been used in remote
sensing for many aspects. The most common application is
for image classification [13]. Whereas the majority of previous
research works have employed ANN as a per-pixel classifier
[14]–[17], ANN has also been applied to estimate subpixel
impervious surfaces from satellite images [18]–[20]. Further-
more, various algorithms of nonlinear models for subpixel
classification have been compared [21], which indicate that
multilayer perceptron (MLP) with back-propagation (BP) algo-
rithm yielded the best result. The advantages of an ANN model
include its capability of solving nonlinear relationships and no
underlying assumption about the data [13]. Moreover, ANN
requires fewer training samples [22]. Given these strengths of
ANN, a comparison is justified between LSMA and ANN for
estimating subpixel impervious surfaces. The main objective of
this paper is to employ LSMA and ANN to estimate impervious
surfaces from medium spatial resolution images (i.e., ASTER
and Landsat ETM+ images) and compare the results in terms of
statistical accuracy. Three research questions will be addressed:
1) Which technique, LSMA or ANN (in particular, MLP
feedforward network), is relatively more effective for subpixel
impervious surface estimation? 2) How do satellite images
of different sensors affect the impervious surface estimation?
3) How do images acquired in different seasons impact the
estimation of impervious surfaces?

II. STUDY AREA AND DATA SETS

Indianapolis/Marion County, IN, was chosen as the study
area. The city is located on a flat plain and is relatively
symmetrical, having possibilities of expansion in all directions.
Similar to many other American cities, Indianapolis is rapidly
increasing in population and area. The areal expansion occurs
through the encroachment into the adjacent agricultural and
nonurban land. Certain decision-making forces, such as density
of population, distance to work, property value, and income
structure, encourage some sectors of metropolitan Indianapolis

to expand faster than others. Extracting information of imper-
vious surface from satellite images allows one to monitor urban
changes over time and integrate imperviousness data with other
spatial and nonspatial data for environmental management and
urban planning activities.

Terra’s ASTER and a Landsat ETM+ images of Marion
County, IN, both of which were acquired in June, were used in
this paper for comparison in order to minimize the difference in
vegetation phenology. The ASTER image (June 16, 2001) had
14 bands with different spatial resolutions, two visible bands,
and one near infrared (NIR) band with the spatial resolution
of 15 m, six short wavelength IR (SWIR) bands with 30-m
resolution, and five thermal IR (TIR) bands with the resolution
of 90 m, but only the visible and near IR (VNIR) and SWIR
bands were used in this paper. The ETM+ image (June 22,
2000) had one panchromatic band with 15-m spatial resolution,
six reflective bands with 30-m resolution, and one TIR band
with 60-m spatial resolution, but only the reflective bands
were employed in this paper. A geometric correction with
the nearest-neighbor resampling algorithm was conducted on
both images. The root-mean-square error (RMSE) of less than
0.5 pixel was obtained from each geocorrection. The images
were rectified to a Universal Transverse Mercator (UTM) coor-
dinate system, with the pixel size of 30 m for both the ASTER
and ETM+ images. A digital aerial photograph of Marion
County (acquired in 2003) with a spatial resolution of 2 ft
(0.61 m) was used for accuracy assessment. All the images and
the aerial photo were resampled to the same projection (i.e.,
UTM, Zone 16, and Datum World Geodetic System 84).

III. METHODOLOGY

A. LSMA Approach

1) Concept of LSMA: LSMA is a physically based image
processing method. It assumes that the spectrum measured by a
sensor is a linear combination of the spectra of all components
within the pixel [23], [24]. The mathematical model of LSMA
can be expressed as

Ri =
n∑

k=1

fkRik + ERi (1)

where i = 1, . . . , m (number of spectral bands), k = 1, . . . , n
(number of endmembers), Ri is the spectral reflectance of
band i of a pixel which contains one or more endmembers, fk

is the proportion of endmember k within the pixel, Rik is the
known spectral reflectance of endmember k within the pixel
of band i, and ERi is the error for band i. To solve fk, the
following conditions must be satisfied: 1) Selected endmembers
should be independent of each other; 2) the number of endmem-
bers should be less than or equal to the spectral bands used; and
3) selected spectral bands should not be highly correlated.

The estimation of endmember fraction images with LSMA
involves image processing, endmember selection, unmixing
solution, and the evaluation of fraction images. Of these steps,
selecting suitable endmembers is the most critical one in the
development of high-quality fraction images. Many methods
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have been developed to select endmembers. The image-based
method is more commonly used due to its ease of use and
the spectra of the endmembers derived at the same scale as
the original image. Because of the large dimension of original
data sets and the high correlations among the spectral bands,
a minimum noise fraction (MNF) transformation was applied
to the Landsat and ASTER images. The MNF transformation
may be considered as cascaded principal component (PC) trans-
formation with the following steps: 1) a PC transformation;
2) the noise covariance conversion; and 3) a second PC trans-
formation [25]. Instead of ordering the components according
to the variance for a PC analysis transformation, the MNF
transformation orders the components in terms of the signal-
to-noise ratios [26]. As a result, most information is contained
in the first few components. In this paper, the first three MNF
components were used to select endmembers due to the fact that
most information of the original images was contained in these
components. Fig. 1 shows the MNF components extracted from
ASTER and ETM+ images.
2) Endmember Selection and Spectral Unmixing: Endmem-

bers were initially identified from the ETM+ and ASTER im-
ages based on high-resolution aerial photographs. Four types of
endmembers were selected: green vegetation (vegetation), soils
(including dry and dark soils), low albedo (asphalt, water, etc.),
and high-albedo surfaces (concrete, sand, etc.). The vegetation
was selected from the areas of dense grass and pasture. The
different types of impervious surfaces were selected from build-
ing roofs, airport runway, highway intersections, etc. The soils
were selected from the bare grounds in agricultural lands. Next,
these initial endmembers were compared with those endmem-
bers selected from the image scatter plots. The endmembers
with similar PC spectra located at the extreme vertices of the
scatter plots were finally selected. To find the best quality
fraction images for the estimation of impervious surfaces, the
different combinations of endmembers were examined and
compared.

The visualization of fraction images, the analysis of frac-
tional spectral properties of representative land cover types, and
the assessment of error images were conducted to determine
which combination provided the best fractions for each image.
Because this paper was interested in estimating impervious sur-
faces in urban areas, the criteria for selecting suitable fraction
images were as follows: 1) high-quality fraction images for the
urban landscape; 2) low error; and 3) the distinction among
typical land-use and land cover types in the study area.

A constrained least-squares solution was applied to unmix
the six Landsat ETM+ reflective bands and nine ASTER,
VNIR, and SWIR bands into fraction images. Fig. 2 shows
the fraction images from the ASTER and ETM+ images. The
high-albedo fractions were mainly associated with the objects
with very high reflectance values, such as bright building roofs
or construction materials. The low-albedo fractions mainly
corresponded to the objects with very low reflectance, such as
water, canopy shadow, tall-building shadows, or dark impervi-
ous surface materials. It is assumed that, in the central business
district (CBD), low-albedo fraction image can be considered
directly as impervious surface. For the residential and suburban
areas, water and shade information contained in the low-albedo

Fig. 1. MNF component images extracted from ASTER and ETM+ images.

fractions needs to be removed in the process of impervious
surface estimation.
3) Impervious Surface Estimation and Refinement: Imper-

vious surface was estimated by basing on the relationship
between the reflectance of two endmembers (high and low
albedos) and the reflectance of the impervious areas. By ex-
amining the relationships between impervious surfaces and the
four endmembers, Wu and Murray found that the impervi-
ous surfaces were located on or near the line connecting the
low- and high-albedo endmembers in the feature space [3].
An estimation procedure was thus developed by basing on
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Fig. 2. Fraction images of high and low albedos, vegetation, and soil.

this relationship by adding the fractions of high- and low-
albedo endmembers. The impervious surface image can be
computed as

Rimp,b = flowRlow,b + fhighRhigh,b + eb (2)

where Rimp,b denotes the reflectance spectra of impervious
surfaces for band b, flow and fhigh are the fractions of low
and high albedos, respectively, Rlow,b and Rhigh,b are the

reflectance spectra of low and high albedos for band b, and eb

is the unmodeled residual. The fitness of this two-endmember
linear spectral mixture model has been demonstrated by Wu
and Murray for the CBD of Columbus, OH. This model was
tested in the central part of our study area, which is the CBD
of Indianapolis, and found an excellent fit with a mean RMSE
value of less than 0.02 for all images.

Nevertheless, other materials existed in the high- and low-
albedo fraction images, such as dry soils, water, shades, etc.
These materials had similar reflectance characteristics with
impervious surfaces, and they must be removed. Otherwise,
the accuracy of estimation would be greatly impacted. There-
fore, a refinement protocol using image masks was applied
to minimize the impacts from low-reflectance (mainly water
and shade) and high-reflectance materials (mainly dry soils and
sand). Green vegetation and soil endmembers were considered
not to contribute to the amount of impervious surface. After
removing these pixels, pure impervious surfaces were estimated
with the addition of low- and high-albedo endmembers by a
fully constrained linear mixture model. Figs. 3 and 4 show the
impervious surface images generated from ASTER and ETM+
images, respectively.

B. ANN Approach

1) Concept of MLP Feedforward Network: The MLP feed-
forward network is one of the most widely used ANN
models [27]. The MLP network is structured with three types
of layers: input, hidden, and output layers. Each layer contains
one or more nodes, which are interconnected to each other. In
remote sensing digital-image applications, an MLP is usually
comprised of one input layer, one or two hidden layers, and
one output layer. Whereas the input-layer nodes correspond
to image bands, the output-layer nodes represent the desired
land use, land cover, or surface material classes. Various image
processing algorithms and procedures are contained in the
hidden layer. The learning algorithm is a key to the success
of an ANN model. The BP learning algorithm, which is also
known as the generalized delta rule, is a popular approach.
During the BP training process, initial weights are initialized
and assigned to each node, while training samples are inputted
into the model. The results are generated and then compared
to testing samples. If the accuracy level is higher than the
initialized threshold value, the weights would be modified to
minimize the difference between the actual and desired outputs.
The process would be repeated until the predefined accuracy
level is achieved.

The design of a successful ANN model is not straightforward
because the effectiveness of a model is impacted by many
factors, including the number of hidden layers, the hidden-layer
nodes, the learning rate, the momentum factor, etc. The learning
rate determines the size of the step to find the global minimum.
The momentum factor helps one to find the global minimum.
The estimation of these parameters may take some trial and
error. In addition, a suitable number of training sites must be
appropriately selected. In this paper, an MLP network with the
BP learning algorithm was applied to estimate the percentage
of impervious surfaces within each pixel. The ANN classifier
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Fig. 3. Impervious surface images generated from the ASTER image by using LSMA and ANN.

Fig. 4. Impervious surface images generated from the Landsat ETM+ image by using LSMA and ANN.
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Fig. 5. Illustration of the three-layer neural-network structure used in this paper.

used the following algorithm to calculate the input that a single
node j received:

netj =
∑

i

wijIi (3)

where netj refers to the input that a single node j receives, wij

denotes the weights between nodes i and j, and Ii is the output
from node i of a sender layer (input or hidden layer). The output
from a node j was calculated as

Oj = f(netj). (4)

The function f is usually a nonlinear sigmoidal function known
as activation function.
2) Neural Network Structure: For the ASTER image, in the

input layer, nine nodes represented nine reflective bands of
the ASTER image. For the ETM+ image, in the input layer,
six nodes were used to represent six reflective bands of the
ETM+ image. The number of nodes of the output layer was
determined by the number of land cover classes. In this paper,
four training surface material classes were selected, i.e., high
and low albedos, vegetation, and soil. The number of hidden
layer and nodes represents the complexity and power of an
ANN model [27]. In general, one hidden layer is sufficient for
most image classifications [28]. The number of nodes in the
hidden layer could be estimated as follows [29]:

Nh = INT
√

Ni × No (5)

where Nh, Ni, and No are the number of nodes of the hidden,
input, and output layers, respectively. In this paper, only one
hidden layer was used, and the number of hidden-layer nodes
was four in both cases. In addition, several parameters were
crucial in the ANN model, such as learning rate, sigmoid
function constant, momentum factor, etc. The various values
of these parameters were tested in order to achieve the highest
accuracy. Fig. 5 shows the neural network structure used in
this paper.

In a soft classification conducted in this paper, the final
results were activation-level maps. The activation-level maps
were groups of images in which the value of each pixel ex-
presses the degree that the pixel belongs to a certain class. The
pixel values were between zero and one. However, the sum of
the values of a certain pixel from all the land cover classes
was not necessarily equal to one, because the outputs were
obtained by fuzzying the signals into values in the range of
zero to one with the activation function. Four activation-level
maps, corresponding to high and low albedos, vegetation, and
soil fractions, were eventually generated for the ASTER and
ETM+ images, respectively.
3) Training and Testing Samples: The number of training

samples has a significant impact on the effectiveness of the
ANN model. Too few samples are not sufficient, whereas too
large samples could lead to an overfit. However, larger samples
were usually better than smaller samples [27]. Moreover, the
characteristics and the distribution of samples were also sig-
nificant. The samples should contain all the possible different
spectral signatures within each class.

In this paper, 30 fields were selected for each surface cover
class (i.e., high and low albedos, vegetation, and soil) from the
original images. The samples were evenly distributed in each
image. From all samples, 100 pixels were randomly selected
for each class to be used as training pixels. Meanwhile, another
100 pixels were chosen as testing pixels. Both iteration and
accuracy rate were used. The accuracy rate was set to 95%
because a better result can be produced with less iterations at
the accuracy level. When 95% accuracy rate cannot be reached,
a predefined iteration (10 000 times in this case) would stop the
training process.

C. Accuracy Assessment of Impervious Surface Maps

The accuracy assessment of impervious surface images was
regarded as an important aspect of our method. Selecting a
sufficient number of reference data through a proper sampling
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Fig. 6. Illustration of the design of sample plots and the method for obtaining reference data by digitizing impervious polygons within selected samples.

method is crucial. A total of 400 samples were selected by
using a stratified random-sampling scheme. The size of each
sample had a ground dimension of 90 by 90 m. For each
sample, impervious surface was digitized on the corresponding
Digital Ortho Quarter Quadrangles using ArcGIS. After the
digitization, the proportion of impervious surface area was
computed by dividing the area of impervious surface by the
sampling area. Fig. 6 shows the design of sample plots and the
method for obtaining reference data by digitizing impervious
surface polygons within selected samples. The RMSE and the
correlation coefficient (R2) were then calculated to indicate
the accuracy of the impervious surface estimation, which are
expressed as follows:

RMSE =

√√√√√
N∑

i=1

(Îi − Ii)2

N
(6)

R2 =

N∑
i=1

(Îi − Ī)

N∑
i=1

(Ii − Ī)2
(7)

where Îi is the estimated impervious surface fraction for
sample i, Ii is the impervious surface proportion computed
from the aerial photo, Ī is the mean value of the samples, and
N is the number of samples.

IV. RESULTS

LSMA and ANN were applied to both the ASTER and
ETM+ images. Impervious surface fraction image was ex-
tracted from each image. For the ASTER image, the RMSE
of the result using the ANN model was 12.3%, and the one
that resulted from LSMA was 13.2%. For the ETM+ image, the
RMSE of the result from ANN was 16.7%, and the one from
LSMA was 18.9%. Fig. 7 shows the scatter plots of the accu-
racy assessment results. These results indicate that, with both
images, ANN performed better than LSMA. As a nonlinear
model, the ANN model accounted better the energy interactions
in the environment. The reflected energy was very complicated,
and nonlinear spectral mixing prevailed. The LSMA model was
based on an assumption that the spectrum of a pixel was a
linear combination of the spectra of endmembers, which was
not true in reality. The LSMA, as a simplified model, could still
be an appropriate technique to estimate impervious surfaces,
if we considered that the RMSE was just 1%–2% lower than
the one that resulted from the ANN model. In contrast, ANN
simulated how human brains processed spatial data and used
nonlinear sigmoidal function to convert the inputs into desired
outputs. The BP learning algorithm adjusted the weight for each
artificial neuron to make sure that the outputs were close to a
predefined accuracy level.

Although there were technical difficulties associated with
ANN model, such as the hidden layers, learning rates, momen-
tum factor, computing time, etc., in general, the ANN model
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Fig. 7. Scatter plots of the accuracy assessment results.

appeared more appropriate to estimate subpixel impervious
surfaces from medium-resolution images. This conclusion sug-
gests that ANN had a better capability to handle mixed pixels
than LSMA.

In order to test the seasonal sensitivity of satellite images
for estimating impervious surfaces, LSMA was conducted with
two additional ASTER images of the same area, which were
acquired on April 5, 2004, and October 3, 2000, respectively.
The results were then compared in terms of RMSE. The June
image had the highest accuracy, whereas the October image was
better than the one in April. The October image possessed an
RMSE of 19.8%, whereas the April image yielded an RMSE
of 21.1%. This comparison indicates that the season effect had
a fundamental impact on impervious surface estimation. The
image acquired in the summer time was more appropriate for
impervious surface estimation. Those acquired in the spring and
fall tended to produce less accurate results. Our fieldwork in
the study area suggests that the seasonal effect was due largely
to plant phenology, specifically the changes that occurred in
forestland, grassland, cropland, and pasture. Although there
were other types of land use and land cover, changes took place
in the study area, for example, the expansion of urban and built-
up uses; these three images were acquired within three and

a half years. Our fieldwork showed that urbanization-related
changes had little impact on the accuracy assessment of im-
pervious surface maps. To a large extent, mapping impervious
surfaces was the reverse of mapping vegetation abundance. This
is because vegetation had a very different spectral signature
from impervious surfaces. Thus, it was easy to differentiate
them. When tree leaves fell off, remote sensors tended to sense
the energy from tree trunks and twigs. Moreover, when crops
were harvested, the bare soil is exposed. The spectral signature
of dry soils was similar to that of bright impervious surfaces.
This confusion would lead to a less accurate estimation of
impervious surfaces inevitably. This is why the June image
achieved a better result than the ones in April and October. In
Indiana, in June 16, the grass had already grown up, the tree
canopies had been fully developed, and the crops had started
to grow. The vegetation abundance was very high at this time,
probably among the highest during the year. Nevertheless, in
April 5, the tree canopy had not appeared yet. The grass and
pasture were in their very early stage, while there was no
crop. The soils in the fields were sometimes mixed with crop
stems, and at other times, they were exposed. In October 3,
although the grass and the tree canopies began to degrade, most
of them were still there with good conditions. The crops had
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been harvested or turned into yellow. In the October image,
croplands were clearly identifiable due to the change in their
spectral signatures. The vegetation abundance in October was
in between April and June. The change of vegetation abundance
and the associated changes in its spectral signature had an
obvious impact on image analysis in general and in impervious
surface estimation and mapping in particular.

V. DISCUSSIONS

Because of its effectiveness in handling the mixed-pixel
problem, LSMA, as a subpixel classifier, is gaining great inter-
est in the remote sensing community in recent years. As a phys-
ically based image-analysis procedure, it supports repeatable
and accurate extraction of quantitative subpixel information
[24]. The different methods of impervious surface extraction
based on the LSMA model have been developed. For example,
impervious surface may be extracted as one of the endmembers
in the standard SMA model [30]. Impervious surface estimation
can also be done by the addition of high- and low-albedo
fraction images, with both as the SMA endmembers [3]. More-
over, a multiple-endmember SMA method has been developed
[31], in which several impervious surface endmembers can be
extracted and combined. However, these SMA-based methods
have a common problem, i.e., the impervious surface tends to
be overestimated in the areas with small amount of impervious
surface, but it is underestimated in the areas with large amount
of impervious surface [5]. The low statistical accuracy of im-
pervious surface maps is due largely to the linear assumption of
SMA and the method of endmember selection.

To avoid these limitations in LSMA, ANN was introduced
as a subpixel classifier to see if it can improve the accuracy
of impervious surface estimation because ANN is not limited
by linear assumption, and there is no need to select end-
members from the feature space. Our results indicate that the
ANN model improved the statistical accuracy of impervious
surface estimation, whether ASTER or Landsat ETM+ image
was used. It is noted that, with our method, the selection of
training samples was an important step, which related directly
to the accuracy of the final result. Too many samples could
lead to overfit to the data, whereas too few samples were not
sufficient to have a good model. Samples should contain all
the spectral variations within each cover class, and they need
to be distributed evenly all over the image scene. Second, the
number of hidden layers and the number of hidden-layer nodes
were also significant. Although a lot of methods have been
developed to determine the number of the hidden-layer nodes,
it is impacted by many factors, including the number of input
and output nodes and the training samples. As a result, some
trials and errors need to be made to find the appropriate number
of hidden-layer nodes. Another issue with ANN is how to set
up the parameters properly. There are some parameters that
need to be set up by the analyst, for example, learning rate,
momentum factor, etc. Although there exist some heuristics in
the literature for designing and implementing the ANN, these
settings were not straightforward. For example, too large a
learning rate could make the model unstable, whereas too small
a learning rate could only find the local minimum and miss the

global minimum of function error. The image analysts had to
try different combinations of parameters in order to get the best
results.

VI. CONCLUSION

In this paper, both LSMA and ANN were conducted to ex-
tract impervious surfaces from an ASTER image and an ETM+
image of Indianapolis, IN, USA, which were acquired close
to the anniversary date in June. An accuracy assessment was
performed against a high-resolution digital orthophotograph,
which is based on 400 samples of 90 by 90 m. The results show
that both LSMA and ANN yielded reasonably good estimation
accuracy. With either image, ANN performed a little better than
LSMA. For the ASTER image, the error was 12.3% with ANN
and 13.2% with LSMA, whereas for the ETM+ image, the error
was 16.7% with ANN and 18.9% with LSMA. It is suggested
that ANN had better capability in handling the mixed-pixel
problem, which prevailed in the medium-resolution images
of the urban areas. The nonlinear mixing of image spectrum
and no need for endmember selection from a feature space
provided advantages to the ANN model for subpixel estimation
of impervious surfaces. However, whether this conclusion can
be applied to other images of medium resolution, such as ALI
images from EO-1, warrants a future study.

The seasonal effect on impervious surface estimation was
further analyzed with LSMA by comparing the ASTER image
acquired in June with two additional ASTER images acquired
in different seasons. Results show that the seasonal effect
had a fundamental impact on impervious surface estimation.
The June image was more effective for impervious surface
estimation than the one in October, which was, in turn, better
than the April image. The principle of LSMA is the variance
partitioning by PC transformation of multispectral imagery and
mixing-space characterization [32]. The June image was most
appropriate because there was full growth of vegetation, and the
mapping of impervious surfaces was more effective with con-
trasting spectral response from green vegetation. The mixing
space, which is based on the four endmembers, was perfectly
3-D. In contrast, there was significant amount of bare soils and
grounds and nonphotosynthesis vegetation in the April image
and, to a less extent, in the October image. Plant phenology
caused changes in the variance partitioning and impacted the
mixing-space characterization. These changes had a negative
impact on the estimation of impervious surfaces.
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