
Time-Multiplexed Online Checking: A Feasibility Study
Ming Gao, Hsiu-Ming (Sherman) Chang, Peter Lisherness, and Kwang-Ting (Tim) Cheng

Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106, U.S.A.

{mgao, sherman, peter, timcheng}@ece.ucsb.edu

Abstract – There is growing demand for online hardware
checking capability to cope with increasing in-field
failures resulting from variability and reliability
problems. While many online checking schemes have been
proposed, their area overhead remains too high for cost-
sensitive applications. We introduce a time-multiplexed
online checking scheme using embedded field-
programmable blocks for checker implementation, which
enables various system parts to be checked dynamically
in-field in a time-multiplexed fashion. This incurs less area
overhead, and could maintain fault coverage similar to
traditional checkers. The test quality is studied using a
probabilistic model. The implementation feasibility using a
Field-Programmable Gate Array (FPGA) is demonstrated.

Keywords – Fault Detection, Online Testing, Dynamic
Checker, Low-cost Checker, Availability

1. Introduction

Semiconductor technology continues to progress toward
greater speed and density, but designers have not managed
to address the increasing variability and reliability of future
nano-scale devices. Moreover, increasing design complexity
as well as costly production testing and burn-in make it more
difficult to ensure the shipment of failure-free chips.
Additional in-field failure sources such as infant mortality,
soft errors, and silicon aging contribute to chip failures as well.

To increase in-field chip availability, online checking
followed by a fault circumvention process could be a
promising direction. One possible scheme could monitor the
chip using an online checker and, after error detection, enable
self-repairing and failure recovery in the field. Such a solution
would result in increased system availability and, in turn, a
lower product return rate and service cost.

Although substantial efforts have been devoted to
optimizing checking schemes and checker implementations
for lower cost and greater fault coverage, the area overhead
and performance penalties of existing approaches are still very
significant. For combinational circuits, for example, a single
parity bit checker – which works only for an odd number of bit
errors – could incur an average area overhead of 77% and a
performance penalty of 19% in an FPGA-implemented circuit
for those benchmark circuits reported in [1]. The area
overhead of an optimized online checker for a sequential
circuit could exceed 100 percent [2]. Thus, these online

checking solutions would not be suitable for cost-sensitive
applications such as most consumer electronics.

To reduce hardware overhead, roving emulation -- a time-
sharing method for offline fault detection -- was discussed in
[3]. Probabilistic models were provided for estimating the fault
detection latency of permanent faults using this offline method.
No details regarding the hardware implementation of the
method were reported. A concurrent fault detection method for
combinational logic was described in [4], in which a roving
type of checking scheme was mentioned for sharing the
checker among identical Circuits Under Test (CUTs).

In this paper, we investigate an online checking scheme,
Time-Multiplexed Online Checking (TMOC), which offers
sufficient fault coverage with less overhead at the cost of
increased fault detection latency. In TMOC, a design is
partitioned into modules, each of which has its own TMOC
checker. One or more embedded, field-reprogrammable
blocks are used as shared checker spaces. Several TMOC
checkers for different modules are sequentially and
periodically mapped into a shared field-reprogrammable
checker space in a time interleaved fashion. Utilizing this
TMOC principle, different checker schemes, such as duplex
checkers [5] or Error Detection Code (EDC) [6], can be
chosen for different modules.

Current field-reprogrammable technology enables the
time-interleaved implementation of TMOC checkers without
disturbing normal system operation. The TMOC scheme can
be applied to systems that can tolerate a certain level of fault
detection latency and implemented either in FPGA or in
SoC/SiP with embedded field-reprogrammable blocks.

In the next section, we propose an online checking scheme
suitable for cost-sensitive designs that can be implemented in
currently available fabrics. Section 3 presents detailed benefits
and design trade-offs analyses. We propose a probabilistic
model to estimate the fault detection latency and probability of
fault detection of this scheme for permanent, transient, and
intermittent faults. In Section 4, we show the implementation
feasibility of the TMOC scheme. Solutions to the state
synchronization problem for applying TMOC to sequential
circuits are addressed. A case study based on applying TMOC
to a JPEG encoder is presented in Section 5 to demonstrate the
feasibility, benefits, and tradeoffs of employing TMOC in
complex designs. Finally, we offer concluding remarks and
discuss potential future work in Section 6.

2. Time-Multiplexed Online Checking

17th Asian Test Symposium

1081-7735/08 $25.00 © 2008 IEEE

DOI 10.1109/ATS.2008.23

369

17th Asian Test Symposium

1081-7735/08 $25.00 © 2008 IEEE

DOI 10.1109/ATS.2008.23

371

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 17, 2008 at 18:40 from IEEE Xplore. Restrictions apply.

2.1. Operating Principles
 The TMOC scheme starts by partitioning a design into

several modules, each of which has a TMOC checker. One or
more field-programmable blocks, called checker space(s), are
used. Each checker is placed into a checker space in a time-
interleaved fashion and each module is checked sequentially
and periodically in a time-multiplexed fashion.
 The TMOC scheme is illustrated in Figure 1. Here, the
design is partitioned into two modules: A and B. Checkers Ack
and Bck are the online checkers designated for modules A and
B. The two checkers are time-multiplexed in the shared field-
reprogrammable checker space X, Necessary interfaces isolate
the signal and clock domains between the checker space X and
the circuit. When checker space X is configured as checker Ack,
errors occurring in module A will be detected. Similarly, when
this checker space X is configured as checker Bck, it starts to
monitor module B, and errors in module B could be detected.
Checker space X will be periodically re-configured between
checker Ack and checker Bck throughout the system operation,
as shown in Figure 1. The design should operate without
interruption even during re-configuration.

2.2. Design Parameters and Design Flow

Three primary design parameters – partition policy,
checker scheme, and time division and distribution – should be
considered when employing TMOC. A typical design flow
shown in Figure 2, explores these design parameters.

Partition policy not only provides the information about
the way a circuit is divided into modules, but also specifies the
checker space’s placement and use. Finer partitioning creates
smaller module sizes and also increases the flexibility of the
checker space assignment. The more modules that share the
same time-multiplexed checker space, the less area overhead.
However, having a large number of modules sharing a single
checker space would require very complex routing and incur
extra overhead for additional wiring. The number of partitions,
the number and placement of checker spaces, and the mapping
of modules to checker spaces must all be considered to
effectively minimize area overhead and performance penalties.

The size of each module need not necessarily be the same.
In general, it is beneficial to map similar sized checkers to the
same space. This helps minimize area overhead since a shared

checker space must be sufficiently large to accommodate the
largest checker. The checker designated for each module need
not be the same. Depending upon the fault coverage
requirements and area overhead constraints, different checker
schemes can be employed. Parity-based checking techniques
[2] incur less implementation complexity and area overhead,
but they also provide less fault coverage than the EDC-based
checking techniques [6]. While incurring less area overhead
than diverse duplex checking techniques [5], identical duplex
checking techniques [7] are vulnerable to Common Mode
Failures (CMF) [8]. Without loss of generality, we employ
identical duplex checking as an exemplar checking scheme in
this paper. The proposed method is not tied to any specific
checking scheme and other checking schemes can be
employed interchangeably.

While the previous two parameters are determined during
the design phase, time division and distribution are adjustable
in the field. Thus, the fault detection latency can be
dynamically adjusted even after the placement and routing of
system. Here, time division refers to the minimum granularity
of each user-defined time slot in which a checker continues
monitoring a module. Time distribution is the time slot
assignment policy among modules.

These specific design parameter choices are design - and
implementation-dependent. In Section 3, we illustrate how the
number of partitions and the test window of each partition
affect the test quality. A complete analysis involving all
parameters and existing design constraints is beyond the scope
of this paper and will require further research.

3. Analysis

3.1. Area Overhead

Consider a circuit that is partitioned into N modules of
equal size and the size of the checker for each module –
including the interfaces, extra routing and control circuits – is
β times the size of the module. In practice, β is often
greater than one, especially for duplex checkers. Let U denote
the size of the original design. Thus, U/N is the size of each
module and β×U/N is the area overhead incurred by each

Design
Specification Partition Policy

Checker
Scheme
Choice

Time Division
& Time

Distribution
Implementations

1. Functional Partition vs. Structural Partition
2. Number of Partitions
3. Number of Checker Spaces
4. Placement & Routing of Blocks

1. Trade-off concerns
- Area Overhead vs. Detection Latency

2. Checker Schemes
- Parity, Error Detection Code, Duplex, etc.

Circuit

Figure 2: TMOC design flow.

Figure 1: TMOC operating principles.

370372

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 17, 2008 at 18:40 from IEEE Xplore. Restrictions apply.

checker. If these modules share M checker spaces and each
checker space is used to check the same number of modules,
the area overhead AO would be:

N

UMAO β×= (1)

 Equation (1) indicates that given a fixed number of
checker spaces, more partitions yield less area overhead as
more checkers share a checker space; however, when the ratio
of checker spaces to partitions, M/N, decreases, the β factor
will increase. β cannot be accurately estimated since it is
platform and design dependent.

Assuming all checker spaces and circuit partitions are the
same sized, Equation (2) shows a first-order estimation of AO,
in which Sif denotes the size of interfaces and extra routing
circuitry for each checker space, and Sck is the size of each
checker space.

 SS ckif
MNAO ∗+∗= (2)

3.2. Test Quality
In this section, we propose a probabilistic model to

estimate the test quality achieved by TMOC for three classes
of faults -- permanent, transient and intermittent. Our analysis
offers the following unique aspects:
1. Besides permanent faults [3], our analysis addresses the

detection of transient faults and randomly repeatable
intermittent faults.

2. In contrast to the previous intermittent fault detection
models [4][9], we model an intermittent fault as a series of
independent transient faults separated by random intervals.
Two independent random variables -- Active-Period (TAP)
and Time-Between-Active-Periods (TBA) -- are defined to
characterize the intermittent faults.

3. To quantify the test quality of a checker design employing
TMOC, we examine two primary metrics, probability of
fault detection and fault detection latency.

3.2.1. Parameters

1. TMOC design parameters
N: The number of design modules sharing one checker

space. N = 1 means a dedicated checker is employed
for each module.

TTW: The time duration of one test window for each
module. Assuming a round-robin checking scheme is
implemented among the N modules, the test window
for a given module will recur with a period of N*TTW.

TOV: Time overhead incurred due to checker
reconfiguration and synchronization.

m: The number of clock cycles that the module-under-
checking is really been checked during one test
window. Note that m is proportional to (TTW - TOV).

2. Random variables for fault characteristics
We model an intermittent fault as a series of independent

transient faults, each of which is characterized by its active

period and successive occurrences are separated by a random
interval.
TAP(i): The time duration of the ith active period of an

intermittent fault. Note that transient faults are a
special case of intermittent faults with only one
active period. Thus, TAP is used in place of TAP(i).
Similarly, permanent faults are a special case for
which the active period TAP is infinity.

TBA(i): The period between the ith and (i+1)th active periods
of an intermittent fault.

3. Detectability of input patterns
q: The probability that an input vector detects the fault

during on-line checking, given that the module is
faulty.

The outputs of our fault detection analysis are:
DL: Fault detection latency which is defined as the time

interval between the occurrence of a fault and its
detection.

PD: Fault detection probability which is defined as the
probability of detecting a fault before the fault
vanishes, given that the fault exists in the system.

3.2.2. Probabilistic Model

In the following analysis, we focus on quantifying TMOC
with respect to the increase in fault detection latency (DL) and
the probability of missing a fault (1-PD), in comparison with a
dedicated checker.

During a given TAP, the average number of clock cycles
when a module is indeed checked can be expressed as:

T
m

N
Tk

TW

AP ∗= , (3)

Assuming the fault is detected during this TAP, the
average clock cycles required for fault detection would be:

 ()

()∑ −

∑ −∗
=

=

−

=

−

k

n

n

k

n

n

qq

qqn
r

1

1

1

1

1

1 , (4)

Based on these parameters, the detection latency can be
expressed as the average time to detect a fault (D) plus the
average waiting time before checking begins (W):

() TNTN
m
rWDDL TWTW ∗−∗+∗∗=+= 1

2
1 (5)

In the expression of D, the term r/m can be interpreted as
the average number of the test windows required for fault
detection, and the term N*TTW is the interval between two
successive test windows for checking a module. In the
expression of W, (N-1)*TTW is the worst case initial waiting
time for a module. The initial waiting time is the interval
between the occurrence of a fault and the beginning of the
following TTW.

We made the following assumptions in our analysis. (a)
There are only single-faults. No multiple faults occur
simultaneously in the circuit. (b) TAP(i)’s are independent

371373

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 17, 2008 at 18:40 from IEEE Xplore. Restrictions apply.

and identically-distributed (i.i.d.) random variables. We
denote its expected value as E(TAP(i))=CAP. Similarly,
TBA(i)’s are i.i.d. and the expected value E(TBA(i)) is denoted
as CBA. Also, TAP(i) and TBA(j) are independent, for any pair
of i and j. (c) Round-robin scheduling is used as the time
interleaving policy for the TMOC checker space.

For permanent faults, TAP = ∞, TBA = 0, and k = ∞.
Therefore, we can conclude that:

22
11 TTN

qm
DL TW

TW −∗∗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= (6)

 ()∑ =−=
=

−

∞→

k

n

n

k
qqPD

1

1 11lim (7)

For transient faults, TAP < ∞ and TBA = ∞. Let ()xfap

denote the probability density function of TAP, i.e.,
() { }xTPxf APap == . Note that the expected value of DL is

derived under the condition that such a transient fault will
be detected before it vanishes.
 () ()∑ ⎥

⎦

⎤
⎢
⎣

⎡
∗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∗∗⎟

⎠
⎞

⎜
⎝
⎛ +=

∞

=1 22
1

x
ap

TW
TW xfTTN

m
rDLE (8)

 () ()() ()[]∑ ∗−−=
∞

=1
11

x
ap

k xfqPDE (9)

 For intermittent faults, TAP < ∞; TBA < ∞. Let DLi
denote the fault detection latency of the ith active period of an
intermittent fault. Since DLi’s have the same mean value (from
assumption (b) mentioned earlier), we denote E(DL1) =
E(DL2) = E(DL3) = …=CDL. Similarly, let PDi denote the
probability that the fault detection occurs during the ith active
period of an intermittent fault. We denote E(PD1) = E(PD2) =
…=CPD. The total expected PD and DL for an intermittent
fault are:
 () () 1

1

11 =⎥⎦
⎤

⎢⎣
⎡=∑ −∗

∞

=

−

n

n

PD CC PDPDE (10)

() () () ()[]{ }∑ +−∗+∗−∗=
∞

=

−

1

1 11
n

DLBAAP
n

PDPD CnCCCCDLE (11)

3.2.3. Parameter Sensitivity Analysis
 By varying the values of various design and fault

parameters defined earlier, we could evaluate the impact of
these parameters on test quality.

Figure 3 shows the area overhead (AO from Equation 2)
and the average DL for a permanent fault as functions of N,
assuming all the partitions share one checker space (i.e. M =
1). When N is small, increasing N reduces the size of the
checker space. However, when N becomes sufficiently large,
the checker interfaces and required extra routing circuitry will
offset the checker size reduction benefit. This causes AO to
level out or even increase. The effect of N on DL is more
direct: DL increases linearly as N increases. These two trends
can be used to determine a suitable value of N. As an example,
N=3 in this figure shows a design striking the best balance for
meeting both area overhead and fault detection latency
constraints from the design specification.

In addition to increasing DL, the curves in Figure 4 show
that increasing N reduces the PD of transient faults. As TTW
approaches infinity, the PD approaches a constant as shown in
Equation (12). TTW is always infinite with a dedicated checker
(N=1). The fault detection probability is limited by the
probability of a fault being activated and observed.

() ()q
T

q T
T

T
PD

T
N

m
N

AP

TW

AP

TWTW

−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∗

∞→∞→
1111limlim (12)

Figure 3: AO and E(DL) versus N. Parameters: M=1, Sif=25,
Sck=1000, q=10-7, TTW=20 ms, TOV=10 ms.

Figure 4: E(PD) versus TTW (Transient Faults). Parameters: q
=10-5, TAP=2 ms, TOV=10 ms.

Figure 5: E(DL) versus TTW with different N. Parameters: q=10-7,

CAP=5 ms, CBA=400 ms, TOV=10 ms.

372374

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 17, 2008 at 18:40 from IEEE Xplore. Restrictions apply.

In Figure 5, these curves for intermittent faults can help
find a proper TTW to meet a certain DL constraint. The “elbow”
of each curve indicates a theoretically optimal TTW for
minimizing the DL for a given fault. When the TTW is small
and dominated by TOV, the average time to detect a fault (D)
dominates the DL. This makes the DL significantly increase
as the TTW decreases. However, as the TTW increases beyond
the optimal point, few test windows are required to detect a
fault and the average waiting time before checking begins
(W) will dominate the DL.

4. TMOC Implementation Feasibility

4.1. TMOC Implementation Platforms

The proposed TMOC scheme works for designs that are
capable of dynamic in-field reconfiguration –a SoC/SiP with
embedded field-reconfigurable blocks, an FPGA-based design,
or a heterogeneous multi-core system with spare or idle cores.

It becomes increasingly common to embed
reprogrammable blocks in a SoC design, or to embed an
FPGA die in an SiP. Examples include Triscend’s E5, IBM’s
Cu08 family, and Atmel’s FPSLIC. It has been illustrated that
such solutions can efficiently improve the quality of
manufacturing test [10], post-silicon validation [11], and
silicon debug [11]. Furthermore, after shipment, these blocks
can function as in-field reconfigurable blocks for other
purposes. By utilizing them as the checker spaces, we illustrate
that the TMOC scheme can perform in-field error detection
without incurring much extra hardware overhead. Similarly,
for multi-core SoCs, some cores can be used as spares to
improve the die yield [12]. Such spare cores, along with the
idle functional cores, could be reused to perform in-field
TMOC. Although our current experiments and the case study
were implemented on a pure FPGA platform, the TMOC
scheme could be employed for SoC/SiP designs with
embedded FPGAs and for both homogeneous and
heterogeneous mult-core chips.

For FPGA-based designs, Xilinx®’s Virtex series FPGA,
for example, supports an in-field reprogrammable feature
called Partial Reconfiguration (PR) [13]. In PR, portions of an
FPGA can be re-reprogrammed without interrupting the
functional operation of the rest of the FPGA. When a TMOC
scheme is implemented on an FPGA, the checker spaces are
defined as the dynamic regions [13] that can be in-field
reconfigured with pre-computed bit-streams. These checker
spaces are separated from the circuit modules with a specific
tri-state buffer called the bus macro and the inputs to a circuit
are fed into both the module-under-check and the checker
space. We have successfully demonstrated the TMOC scheme
on a set of arithmetic circuits on a Virtex II Pro/ML321 board.

4.2. Solutions to the State Synchronization Problem

State synchronization between a sequential design module
F and its checker Fck should be considered during the
reconfiguration of the TMOC checker spaces.

A means of synchronizing F and Fck is to directly copy the
value of the state registers from F to Fck if the initial values are
different. Such a mechanism is called state-copy. In our FPGA
experiments, this worked well for some simple FSM designs.

We propose a state-flush mechanism as another method to
synchronize F and Fck. In many applications, two successive
data units are state-independent. The synchronization could be
achieved automatically when input data stream into both
design module and its checker until they both reach the same
state. For example, in the following case study using JPEG
encoder, the processing unit is an eight-by-eight pixel matrix,
and two successive matrices are state-independent. A counter
was used to guarantee the synchronization by simply counting
input pixels and detecting whether enough matrices have
flushed the pipeline of checker.

Generally speaking, the state-copy mechanism might be
costly for complex designs due to the wiring and routing
issues. Especially, for an encrypted commercial Intellectual
Property (IP) core whose implementation information is not
available, employing the state-flush mechanism would be a
good choice. However, this would incur some extra time
overhead - the result of flushing state registers

5. Case Study: JPEG Encoder

We apply TMOC to a modified open-source JPEG

encoder [14] to further evaluate the area overhead and the fault
detection latency in realistic designs. The implementations
were on a Xilinx Virtex II Pro FPGA on a BEE2 system [15].

Following the TMOC design flow in Figure 2, we first
functionally partition the design into five modules: Color
Conversion (CC), Discrete Cosine Transform (DCT),
Quantization (QT), Fist-In-First-Out (FIFO), and Huffman
Encoding (HE). A duplex checker was built for each module,
and the state-flush mechanism was employed. In
implementations J2 and J3, checker space CK1 was dedicated
to checking the DCT module. In J1, those small partitions
were grouped into one module for more balanced partitioning.

The important design metrics of each TMOC configuration
are summarized in Table 1. The third column shows the area
overhead caused by the checker circuits. The fourth column
shows the fault detection latency estimated using the analytical
model proposed in Section 3, with the following assumptions
(“w/o TMOC” means N = 1 and a dedicated checker is
employed.): (a) The detection probability q for intermittent
fault is 10-7, and TAP and TBA are geometrically distributed with
their mean values that CAP = 10ms, and CBA = 50ms; (b) TTW =
100ms, and TOV =5ms; (c) The system clock frequency is
100MHz. The fifth column shows, in percentage, the increase
in fault detection latency compared to a dedicated checker.

As seen in Table 1, when we applied a proper partitioning
policy, CK2 of J3 for instance, two duplex checkers sharing
one checker space incurred 54.17% area overhead -- less than
CED-based duplex checkers, which typically required more
than 110% area overhead [1][2]. However, the area overhead

373375

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 17, 2008 at 18:40 from IEEE Xplore. Restrictions apply.

of some non-dedicated checkers in Table 1 is still close to
100%, because the DCT module (1650 slices) dominates the
overall area of the JPEG encoder (2376 slices). The DCT IP
core cannot easily be further functionally partitioned. This is
common in designs with reused IP cores. For such cases,
structural partitioning should be employed for finer design
partitions granularity to help reduce area overhead. In J2, for
example, this technique can be applied as follows:

Step 1: Partition the DCT module (1650 slices) into four
modules. Each is smaller than the HE module (520 slices);

Step 2: Combine CC (66 slices), QT (78 slices), and FIFO
(13 slices) into a group G1 (66+78+13 = 157 slices);

Step 3: HE, G1, and the four modules from DCT share
one checker space CK1.

With this implementation, the overall area overhead can
be reduced to around 21.89% with an increase in the fault
detection latency by 519%，from 0.654 sec to 4.049 sec,
for the same intermittent fault.

6. Conclusion

We proposed a Time-Multiplexed Online Checking scheme

that could achieve fault coverage similar to that of
conventional online checking methods. Our method offers
significantly less area overhead at the cost of some increased
fault detection latency. Such an advantage makes TMOC a
prominent candidate for implementing online checking in
cost-sensitive electronics. To demonstrate the feasibility of
TMOC, we used field-reprogrammable blocks to implement
the online checkers and to periodically check the pre-
partitioned design modules. This online checking scheme can
capture all permanent and repeatable intermittent errors in a
circuit, but it may miss some transient or soft errors that occur
when the module is not monitored and that do not occur again
later when the module is monitored. The probability of having
such non-repeatable transient errors should be low, but further
validation is needed to justify this claim.

Our on-going research efforts include applying the
proposed online checking scheme to a modern complex design.
Using such a design as a driver, we will perform further
investigation regarding the physical implementation
constraints of TMOC, such as power consumptions,
partitioning policy, and performance penalty.

Acknowledgements

The authors acknowledge the valuable suggestions from
Professor Jin-Fu Li at the National Central University, Taiwan
(R.O.C), and Professor Ryan Kastner at the University of
California, San Diego, U.S.A.. The authors also acknowledge
the support of the Gigascale Systems Research Center (GSRC),
one of five research centers funded under the Focus Center
Research Program, a Semiconductor Research Corporation
program as well as GSRC BEE2 initiative program.

References
[1] M. K. Stojcev, G. L. Djordjevic, and T. R. Stankovic,

“Implementation of Self-checking Two-level Combinational
Logic on FPGA and CPLD Circuits," Microelectronics
Reliability, vol. 44, pp. 173-178, Jan. 2004.

[2] C. Zeng, N. Saxena, and E. J. McCluskey, “Finite State
Machine Synthesis with Concurrent Error Detection,”
Proceedings of the 1999 IEEE International Test Conference,
pp. 672-679, Oct. 1999.

[3] M. .A. Breuer and A. A. Ismaeel, “Roving emulation as a
fault detection mechanism,” IEEE Trans. Comput. C-35 (11):
933-939, 1986.

[4] R. Sharma and K. K. Saluja, “An implementation and
analysis of a concurrent built-in self-test technique,” in Fault
Tolerant Computing Symposium, 1988, pp. 164-169.

[5] S. Mitra and E. J. McCluskey, “Which Concurrent Error
Detection Scheme to Choose?,” Proceedings of 2000 IEEE
International Test Conference, pp.985-994, Oct. 2000.

[6] D. Das and N. A. Touba, “Synthesis of Circuits with Low-
Cost Concurrent Error Detection based on Bose-Lin codes,”
Proc. IEEE VLSI Test Symp., pp. 309-315, 1998.

[7] E. J. McCluskey, “Design Techniques for Testable
Embedded Error Checkers,” IEEE Computer, vol. 23, no. 7,
pp. 84-88, July 1990.

[8] J. H. Lala and R. E. Harper, “Architectural principles for
safety-critical real-time applications,” Proc. of the IEEE, vol.
82, pp. 25-40, 1994.

[9] A. A. Ismaeel and R. Bhamagar, "Test for detection &
location of intermittent faults in combinational Circuits,"
IEEE Trans. Reliability, Vo1.46, No.2, pp.269-274, 1997.

[10] G Zeng and H Ito, "Hybrid BIST for system-on-a-chip using
an embedded FPGA core," Proceedings of 22nd IEEE VLSI
Test Symposium, pp. 353-358 April 2004.

[11] DAFCA Inc., “In-Silicon Solutions for Silicon Debug,”
whitepaper, http://www.dafca.com/literature/whitepapers.php

[12] Electronic News, "Could 10-20% yields for Cell processors
lead to problems for Sony PS3?" interview of Tom Reeves,
http://www.edn.com/article/CA6350202.html, July 7, 2006

[13] Xilinx Inc., “XAPP290: Two Flows for Partial
Reconfiguration: Module Based or Difference Based,” v. 1.2,
Sept. 2004.

[14] V. Lorenzo, “JPEG Hardware Compressor,” OpenCores.org
Website, http://www.opencores.co.uk/projects.cgi/web/jpeg/,
July 2005.

[15] C. Chang, J. Wawrzynek, and R. W. Brodersen, “BEE2: A
High-end Reconfigurable Computing System,” IEEE Design
and Test of Computers, vol. 22, no.2, pp. 114-125, Mar.-Apr.
2005.

Table 1: Implementation Results of TMOC Using JPEG Encoder

Number of
modules

sharing one
checker

Area
Over-
-head

DL (ms)
(w/o) / (w/)

TMOC

Increase
of
DL

J1 CK1: 2 67.55% 654/1333 103.8%

J2 CK1: 1 100% 654/654 0%
CK2: 4 81% 654/2691 311.5%

J3
CK1: 1 100% 654/654 0%
CK2: 2 54.17% 654/1333 103.8%
CK3: 2 97.56% 654/1333 103.8%

374376

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 17, 2008 at 18:40 from IEEE Xplore. Restrictions apply.

