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Abstract – There is growing demand for online hardware 
checking capability to cope with increasing in-field 
failures resulting from variability and reliability 
problems. While many online checking schemes have been 
proposed, their area overhead remains too high for cost-
sensitive applications. We introduce a time-multiplexed 
online checking scheme using embedded field-
programmable blocks for checker implementation, which 
enables various system parts to be checked dynamically 
in-field in a time-multiplexed fashion. This incurs less area 
overhead, and could maintain fault coverage similar to 
traditional checkers. The test quality is studied using a 
probabilistic model. The implementation feasibility using a 
Field-Programmable Gate Array (FPGA) is demonstrated.  
 
Keywords – Fault Detection, Online Testing, Dynamic 
Checker, Low-cost Checker, Availability 
 
1. Introduction 
 

Semiconductor technology continues to progress toward 
greater speed and density, but designers have not managed 
to address the increasing variability and reliability of future 
nano-scale devices. Moreover, increasing design complexity 
as well as costly production testing and burn-in make it more 
difficult to ensure the shipment of failure-free chips. 
Additional in-field failure sources such as infant mortality, 
soft errors, and silicon aging contribute to chip failures as well.  

To increase in-field chip availability, online checking 
followed by a fault circumvention process could be a 
promising direction. One possible scheme could monitor the 
chip using an online checker and, after error detection, enable 
self-repairing and failure recovery in the field. Such a solution 
would result in increased system availability and, in turn, a 
lower product return rate and service cost. 

Although substantial efforts have been devoted to 
optimizing checking schemes and checker implementations 
for lower cost and greater fault coverage, the area overhead 
and performance penalties of existing approaches are still very 
significant. For combinational circuits, for example, a single 
parity bit checker – which works only for an odd number of bit 
errors – could incur an average area overhead of 77% and a 
performance penalty of 19% in an FPGA-implemented circuit 
for those benchmark circuits reported in [1]. The area 
overhead of an optimized online checker for a sequential 
circuit could exceed 100 percent [2]. Thus, these online 

checking solutions would not be suitable for cost-sensitive 
applications such as most consumer electronics.  

To reduce hardware overhead, roving emulation -- a time-
sharing method for offline fault detection -- was discussed in 
[3]. Probabilistic models were provided for estimating the fault 
detection latency of permanent faults using this offline method. 
No details regarding the hardware implementation of the 
method were reported. A concurrent fault detection method for 
combinational logic was described in [4], in which a roving 
type of checking scheme was mentioned for sharing the 
checker among identical Circuits Under Test (CUTs).   

In this paper, we investigate an online checking scheme, 
Time-Multiplexed Online Checking (TMOC), which offers 
sufficient fault coverage with less overhead at the cost of 
increased fault detection latency. In TMOC, a design is 
partitioned into modules, each of which has its own TMOC 
checker. One or more embedded, field-reprogrammable 
blocks are used as shared checker spaces. Several TMOC 
checkers for different modules are sequentially and 
periodically mapped into a shared field-reprogrammable 
checker space in a time interleaved fashion. Utilizing this 
TMOC principle, different checker schemes, such as duplex 
checkers [5] or Error Detection Code (EDC) [6], can be 
chosen for different modules.  

Current field-reprogrammable technology enables the 
time-interleaved implementation of TMOC checkers without 
disturbing normal system operation. The TMOC scheme can 
be applied to systems that can tolerate a certain level of fault 
detection latency and implemented either in FPGA or in 
SoC/SiP with embedded field-reprogrammable blocks.  

In the next section, we propose an online checking scheme 
suitable for cost-sensitive designs that can be implemented in 
currently available fabrics. Section 3 presents detailed benefits 
and design trade-offs analyses. We propose a probabilistic 
model to estimate the fault detection latency and probability of 
fault detection of this scheme for permanent, transient, and 
intermittent faults. In Section 4, we show the implementation 
feasibility of the TMOC scheme. Solutions to the state 
synchronization problem for applying TMOC to sequential 
circuits are addressed. A case study based on applying TMOC 
to a JPEG encoder is presented in Section 5 to demonstrate the 
feasibility, benefits, and tradeoffs of employing TMOC in 
complex designs. Finally, we offer concluding remarks and 
discuss potential future work in Section 6. 

 
2. Time-Multiplexed Online Checking 
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2.1. Operating Principles 
 The TMOC scheme starts by partitioning a design into 

several modules, each of which has a TMOC checker. One or 
more field-programmable blocks, called checker space(s), are 
used. Each checker is placed into a checker space in a time-
interleaved fashion and each module is checked sequentially 
and periodically in a time-multiplexed fashion.  
    The TMOC scheme is illustrated in Figure 1. Here, the 
design is partitioned into two modules: A and B. Checkers Ack 
and Bck are the online checkers designated for modules A and 
B. The two checkers are time-multiplexed in the shared field-
reprogrammable checker space X, Necessary interfaces isolate 
the signal and clock domains between the checker space X and 
the circuit. When checker space X is configured as checker Ack, 
errors occurring in module A will be detected. Similarly, when 
this checker space X is configured as checker Bck, it starts to 
monitor module B, and errors in module B could be detected. 
Checker space X will be periodically re-configured between 
checker Ack and checker Bck throughout the system operation, 
as shown in Figure 1. The design should operate without 
interruption even during re-configuration.   
 
2.2. Design Parameters and Design Flow 

Three primary design parameters – partition policy, 
checker scheme, and time division and distribution – should be 
considered when employing TMOC. A typical design flow 
shown in Figure 2, explores these design parameters. 

Partition policy not only provides the information about 
the way a circuit is divided into modules, but also specifies the 
checker space’s placement and use. Finer partitioning creates 
smaller module sizes and also increases the flexibility of the 
checker space assignment. The more modules that share the 
same time-multiplexed checker space, the less area overhead. 
However, having a large number of modules sharing a single 
checker space would require very complex routing and incur 
extra overhead for additional wiring. The number of partitions, 
the number and placement of checker spaces, and the mapping 
of modules to checker spaces must all be considered to 
effectively minimize area overhead and performance penalties. 

The size of each module need not necessarily be the same. 
In general, it is beneficial to map similar sized checkers to the 
same space. This helps minimize area overhead since a shared 

checker space must be sufficiently large to accommodate the 
largest checker. The checker designated for each module need 
not be the same. Depending upon the fault coverage 
requirements and area overhead constraints, different checker 
schemes can be employed. Parity-based checking techniques 
[2] incur less implementation complexity and area overhead, 
but they also provide less fault coverage than the EDC-based 
checking techniques [6]. While incurring less area overhead 
than diverse duplex checking techniques [5], identical duplex 
checking techniques [7] are vulnerable to Common Mode 
Failures (CMF) [8]. Without loss of generality, we employ 
identical duplex checking as an exemplar checking scheme in 
this paper. The proposed method is not tied to any specific 
checking scheme and other checking schemes can be 
employed interchangeably. 

While the previous two parameters are determined during 
the design phase, time division and distribution are adjustable 
in the field. Thus, the fault detection latency can be 
dynamically adjusted even after the placement and routing of 
system. Here, time division refers to the minimum granularity 
of each user-defined time slot in which a checker continues 
monitoring a module. Time distribution is the time slot 
assignment policy among modules.  

These specific design parameter choices are design - and 
implementation-dependent. In Section 3, we illustrate how the 
number of partitions and the test window of each partition 
affect the test quality. A complete analysis involving all 
parameters and existing design constraints is beyond the scope 
of this paper and will require further research.  

 
3. Analysis 
 
3.1. Area Overhead 

Consider a circuit that is partitioned into N modules of 
equal size and the size of the checker for each module –
including the interfaces, extra routing and control circuits – is 
β times the size of the module. In practice, β is often 
greater than one, especially for duplex checkers. Let U denote 
the size of the original design. Thus, U/N is the size of each 
module and β×U/N is the area overhead incurred by each 
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Figure 2: TMOC design flow. 

 
Figure 1: TMOC operating principles. 
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checker. If these modules share M checker spaces and each 
checker space is used to check the same number of modules, 
the area overhead AO would be: 

             
N

UMAO β×=                    (1) 

   Equation (1) indicates that given a fixed number of 
checker spaces, more partitions yield less area overhead as 
more checkers share a checker space; however, when the ratio 
of checker spaces to partitions, M/N, decreases, the β factor 
will increase. β cannot be accurately estimated since it is 
platform and design dependent.  

Assuming all checker spaces and circuit partitions are the 
same sized, Equation (2) shows a first-order estimation of AO, 
in which Sif denotes the size of interfaces and extra routing 
circuitry for each checker space, and Sck is the size of each 
checker space. 

             SS ckif
MNAO ∗+∗=                 (2) 

3.2. Test Quality 
In this section, we propose a probabilistic model to 

estimate the test quality achieved by TMOC for three classes 
of faults -- permanent, transient and intermittent. Our analysis 
offers the following unique aspects:  
1. Besides permanent faults [3], our analysis addresses the 

detection of transient faults and randomly repeatable 
intermittent faults. 

2. In contrast to the previous intermittent fault detection 
models [4][9], we model an intermittent fault as a series of 
independent transient faults separated by random intervals. 
Two independent random variables -- Active-Period (TAP) 
and Time-Between-Active-Periods (TBA) -- are defined to 
characterize the intermittent faults. 

3. To quantify the test quality of a checker design employing 
TMOC, we examine two primary metrics, probability of 
fault detection and fault detection latency.  

3.2.1. Parameters 

1. TMOC design parameters 
N:  The number of design modules sharing one checker 

space. N = 1 means a dedicated checker is employed 
for each module. 

TTW: The time duration of one test window for each 
module. Assuming a round-robin checking scheme is 
implemented among the N modules, the test window 
for a given module will recur with a period of N*TTW. 

TOV: Time overhead incurred due to checker 
reconfiguration and synchronization.  

m:   The number of clock cycles that the module-under-
checking is really been checked during one test 
window. Note that m is proportional to (TTW - TOV). 

2. Random variables for fault characteristics 
We model an intermittent fault as a series of independent 

transient faults, each of which is characterized by its active 

period and successive occurrences are separated by a random 
interval.  
TAP(i): The time duration of the ith active period of an 

intermittent fault. Note that transient faults are a 
special case of intermittent faults with only one 
active period. Thus, TAP is used in place of TAP(i). 
Similarly, permanent faults are a special case for 
which the active period TAP is infinity.  

TBA(i): The period between the ith and (i+1)th active periods 
of an intermittent fault.  

3. Detectability of input patterns 
q:  The probability that an input vector detects the fault 

during on-line checking, given that the module is 
faulty.  

The outputs of our fault detection analysis are:  
DL:  Fault detection latency which is defined as the time 

interval between the occurrence of a fault and its 
detection. 

PD:  Fault detection probability which is defined as the 
probability of detecting a fault before the fault 
vanishes, given that the fault exists in the system. 

3.2.2. Probabilistic Model 

In the following analysis, we focus on quantifying TMOC 
with respect to the increase in fault detection latency (DL) and 
the probability of missing a fault (1-PD), in comparison with a 
dedicated checker. 

During a given TAP, the average number of clock cycles 
when a module is indeed checked can be expressed as: 
                 

T
m

N
Tk

TW

AP ∗= ,                 (3) 

Assuming the fault is detected during this TAP, the 
average clock cycles required for fault detection would be: 

            ( )
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Based on these parameters, the detection latency can be 
expressed as the average time to detect a fault (D) plus the 
average waiting time before checking begins (W): 

( ) TNTN
m
rWDDL TWTW ∗−∗+∗∗=+= 1

2
1        (5) 

In the expression of D, the term r/m can be interpreted as 
the average number of the test windows required for fault 
detection, and the term N*TTW is the interval between two 
successive test windows for checking a module. In the 
expression of W, (N-1)*TTW is the worst case initial waiting 
time for a module. The initial waiting time is the interval 
between the occurrence of a fault and the beginning of the 
following TTW. 

We made the following assumptions in our analysis. (a) 
There are only single-faults. No multiple faults occur 
simultaneously in the circuit. (b) TAP(i)’s are independent 
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and identically-distributed (i.i.d.) random variables. We 
denote its expected value as E(TAP(i))=CAP. Similarly, 
TBA(i)’s are i.i.d. and the expected value E(TBA(i)) is denoted 
as CBA. Also, TAP(i) and TBA(j) are independent, for any pair 
of i and j. (c) Round-robin scheduling is used as the time 
interleaving policy for the TMOC checker space. 

For permanent faults, TAP = ∞, TBA = 0, and k = ∞. 
Therefore, we can conclude that: 
         

22
11 TTN

qm
DL TW

TW −∗∗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=               (6) 
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For transient faults, TAP < ∞ and TBA = ∞. Let ( )xfap
 

denote the probability density function of TAP, i.e., 
( ) { }xTPxf APap == . Note that the expected value of DL is 

derived under the condition that such a transient fault will 
be detected before it vanishes. 
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  For intermittent faults, TAP < ∞; TBA < ∞. Let DLi 
denote the fault detection latency of the ith active period of an 
intermittent fault. Since DLi’s have the same mean value (from 
assumption (b) mentioned earlier), we denote E(DL1) = 
E(DL2) = E(DL3) = …=CDL. Similarly, let PDi denote the 
probability that the fault detection occurs during the ith active 
period of an intermittent fault. We denote E(PD1) = E(PD2) = 
…=CPD.  The total expected PD and DL for an intermittent 
fault are: 
           ( ) ( ) 1
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3.2.3. Parameter Sensitivity Analysis 
 By varying the values of various design and fault 

parameters defined earlier, we could evaluate the impact of 
these parameters on test quality.  

Figure 3 shows the area overhead (AO from Equation 2) 
and the average DL for a permanent fault as functions of N, 
assuming all the partitions share one checker space (i.e. M = 
1). When N is small, increasing N reduces the size of the 
checker space. However, when N becomes sufficiently large, 
the checker interfaces and required extra routing circuitry will 
offset the checker size reduction benefit. This causes AO to 
level out or even increase. The effect of N on DL is more 
direct: DL increases linearly as N increases. These two trends 
can be used to determine a suitable value of N. As an example, 
N=3 in this figure shows a design striking the best balance for 
meeting both area overhead and fault detection latency 
constraints from the design specification. 

In addition to increasing DL, the curves in Figure 4 show 
that increasing N reduces the PD of transient faults. As TTW 
approaches infinity, the PD approaches a constant as shown in 
Equation (12). TTW is always infinite with a dedicated checker 
(N=1). The fault detection probability is limited by the 
probability of a fault being activated and observed.  

( ) ( )q
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q T
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Figure 3: AO and E(DL) versus N. Parameters: M=1, Sif=25, 
Sck=1000, q=10-7, TTW=20 ms, TOV=10 ms. 

Figure 4: E(PD) versus TTW (Transient Faults). Parameters: q 
=10-5, TAP=2 ms, TOV=10 ms. 

 
Figure 5: E(DL) versus TTW with different N. Parameters: q=10-7, 

CAP=5 ms, CBA=400 ms, TOV=10 ms. 
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In Figure 5, these curves for intermittent faults can help 
find a proper TTW to meet a certain DL constraint. The “elbow” 
of each curve indicates a theoretically optimal TTW for 
minimizing the DL for a given fault. When the TTW is small 
and dominated by TOV, the average time to detect a fault (D) 
dominates the DL. This makes the DL significantly increase 
as the TTW decreases. However, as the TTW increases beyond 
the optimal point, few test windows are required to detect a 
fault and the average waiting time before checking begins 
(W) will dominate the DL. 

 
4. TMOC Implementation Feasibility 
 
4.1. TMOC Implementation Platforms 

The proposed TMOC scheme works for designs that are 
capable of dynamic in-field reconfiguration –a SoC/SiP with 
embedded field-reconfigurable blocks, an FPGA-based design, 
or a heterogeneous multi-core system with spare or idle cores.  

It becomes increasingly common to embed 
reprogrammable blocks in a SoC design, or to embed an 
FPGA die in an SiP. Examples include Triscend’s E5, IBM’s 
Cu08 family, and Atmel’s FPSLIC. It has been illustrated that 
such solutions can efficiently improve the quality of 
manufacturing test [10], post-silicon validation [11], and 
silicon debug [11]. Furthermore, after shipment, these blocks 
can function as in-field reconfigurable blocks for other 
purposes. By utilizing them as the checker spaces, we illustrate 
that the TMOC scheme can perform in-field error detection 
without incurring much extra hardware overhead. Similarly, 
for multi-core SoCs, some cores can be used as spares to 
improve the die yield [12]. Such spare cores, along with the 
idle functional cores, could be reused to perform in-field 
TMOC. Although our current experiments and the case study 
were implemented on a pure FPGA platform, the TMOC 
scheme could be employed for SoC/SiP designs with 
embedded FPGAs and for both homogeneous and 
heterogeneous mult-core chips. 

For FPGA-based designs, Xilinx®’s Virtex series FPGA, 
for example, supports an in-field reprogrammable feature 
called Partial Reconfiguration (PR) [13]. In PR, portions of an 
FPGA can be re-reprogrammed without interrupting the 
functional operation of the rest of the FPGA. When a TMOC 
scheme is implemented on an FPGA, the checker spaces are 
defined as the dynamic regions [13] that can be in-field 
reconfigured with pre-computed bit-streams. These checker 
spaces are separated from the circuit modules with a specific 
tri-state buffer called the bus macro and the inputs to a circuit 
are fed into both the module-under-check and the checker 
space. We have successfully demonstrated the TMOC scheme 
on a set of arithmetic circuits on a Virtex II Pro/ML321 board. 
 
4.2. Solutions to the State Synchronization Problem 

State synchronization between a sequential design module 
F and its checker Fck should be considered during the 
reconfiguration of the TMOC checker spaces. 

A means of synchronizing F and Fck is to directly copy the 
value of the state registers from F to Fck if the initial values are 
different. Such a mechanism is called state-copy. In our FPGA 
experiments, this worked well for some simple FSM designs. 

We propose a state-flush mechanism as another method to 
synchronize F and Fck. In many applications, two successive 
data units are state-independent. The synchronization could be 
achieved automatically when input data stream into both 
design module and its checker until they both reach the same 
state. For example, in the following case study using JPEG 
encoder, the processing unit is an eight-by-eight pixel matrix, 
and two successive matrices are state-independent. A counter 
was used to guarantee the synchronization by simply counting 
input pixels and detecting whether enough matrices have 
flushed the pipeline of checker. 

Generally speaking, the state-copy mechanism might be 
costly for complex designs due to the wiring and routing 
issues. Especially, for an encrypted commercial Intellectual 
Property (IP) core whose implementation information is not 
available, employing the state-flush mechanism would be a 
good choice. However, this would incur some extra time 
overhead - the result of flushing state registers  

 
5. Case Study: JPEG Encoder 

 
We apply TMOC to a modified open-source JPEG 

encoder [14] to further evaluate the area overhead and the fault 
detection latency in realistic designs. The implementations 
were on a Xilinx Virtex II Pro FPGA on a BEE2 system [15]. 

Following the TMOC design flow in Figure 2, we first 
functionally partition the design into five modules: Color 
Conversion (CC), Discrete Cosine Transform (DCT), 
Quantization (QT), Fist-In-First-Out (FIFO), and Huffman 
Encoding (HE). A duplex checker was built for each module, 
and the state-flush mechanism was employed. In 
implementations J2 and J3, checker space CK1 was dedicated 
to checking the DCT module. In J1, those small partitions 
were grouped into one module for more balanced partitioning. 

The important design metrics of each TMOC configuration 
are summarized in Table 1. The third column shows the area 
overhead caused by the checker circuits. The fourth column 
shows the fault detection latency estimated using the analytical 
model proposed in Section 3, with the following assumptions 
(“w/o TMOC” means N = 1 and a dedicated checker is 
employed.): (a) The detection probability q for intermittent 
fault is 10-7, and TAP and TBA are geometrically distributed with 
their mean values that CAP = 10ms, and CBA = 50ms; (b) TTW = 
100ms, and TOV =5ms; (c) The system clock frequency is 
100MHz. The fifth column shows, in percentage, the increase 
in fault detection latency compared to a dedicated checker. 

As seen in Table 1, when we applied a proper partitioning 
policy, CK2 of J3 for instance, two duplex checkers sharing 
one checker space incurred 54.17% area overhead -- less than 
CED-based duplex checkers, which typically required more 
than 110% area overhead [1][2]. However, the area overhead 
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of some non-dedicated checkers in Table 1 is still close to 
100%, because the DCT module (1650 slices) dominates the 
overall area of the JPEG encoder (2376 slices). The DCT IP 
core cannot easily be further functionally partitioned. This is 
common in designs with reused IP cores. For such cases, 
structural partitioning should be employed for finer design 
partitions granularity to help reduce area overhead. In J2, for 
example, this technique can be applied as follows: 

Step 1: Partition the DCT module (1650 slices) into four 
modules. Each is smaller than the HE module (520 slices); 

Step 2: Combine CC (66 slices), QT (78 slices), and FIFO 
(13 slices) into a group G1 (66+78+13 = 157 slices);  

Step 3: HE, G1, and the four modules from DCT share 
one checker space CK1. 

With this implementation, the overall area overhead can 
be reduced to around 21.89% with an increase in the fault 
detection latency by 519%，from 0.654 sec to 4.049 sec, 
for the same intermittent fault. 

 
6. Conclusion 

 
We proposed a Time-Multiplexed Online Checking scheme 

that could achieve fault coverage similar to that of 
conventional online checking methods. Our method offers 
significantly less area overhead at the cost of some increased 
fault detection latency. Such an advantage makes TMOC a 
prominent candidate for implementing online checking in 
cost-sensitive electronics. To demonstrate the feasibility of 
TMOC, we used field-reprogrammable blocks to implement 
the online checkers and to periodically check the pre-
partitioned design modules. This online checking scheme can 
capture all permanent and repeatable intermittent errors in a 
circuit, but it may miss some transient or soft errors that occur 
when the module is not monitored and that do not occur again 
later when the module is monitored. The probability of having 
such non-repeatable transient errors should be low, but further 
validation is needed to justify this claim.  

Our on-going research efforts include applying the 
proposed online checking scheme to a modern complex design. 
Using such a design as a driver, we will perform further 
investigation regarding the physical implementation 
constraints of TMOC, such as power consumptions, 
partitioning policy, and performance penalty. 
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Table 1: Implementation Results of TMOC Using JPEG Encoder 

 

Number of 
modules 

sharing one 
checker 

Area 
Over- 
-head 

DL (ms) 
(w/o) / (w/) 

TMOC 

Increase 
of 
DL 

J1 CK1: 2 67.55% 654/1333 103.8% 

J2 CK1: 1 100% 654/654 0% 
CK2: 4 81% 654/2691 311.5% 

J3 
CK1: 1 100% 654/654 0% 
CK2: 2 54.17% 654/1333 103.8% 
CK3: 2 97.56% 654/1333 103.8% 
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