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Abstract—This paper presents a methodology for safety veri-
fication of continuous and hybrid systems in the worst-case and
stochastic settings. In the worst-case setting, a function of state
termed barrier certificate is used to certify that all trajectories of
the system starting from a given initial set do not enter an un-
safe region. No explicit computation of reachable sets is required
in the construction of barrier certificates, which makes it possible
to handle nonlinearity, uncertainty, and constraints directly within
this framework. In the stochastic setting, our method computes
an upper bound on the probability that a trajectory of the system
reaches the unsafe set, a bound whose validity is proven by the exis-
tence of a barrier certificate. For polynomial systems, barrier cer-
tificates can be constructed using convex optimization, and hence
the method is computationally tractable. Some examples are pro-
vided to illustrate the use of the method.

Index Terms—Barrier certificates, hybrid systems, nonlinear
systems, safety verification, stochastic systems, sum of squares
optimization.

I. INTRODUCTION

COMPLEX behaviors that can be exhibited by modern en-
gineering systems, many of which have hybrid (i.e., a mix-

ture of continuous and discrete) dynamics, make the safety ver-
ification of such systems both crucial and challenging. The im-
portance of safety verification increases tremendously for sys-
tems whose functions are safety critical, such as air traffic con-
trol [21], [50], life support devices [18], etc. In principle, safety
verification aims to show that starting at some initial conditions,
a system cannot evolve to some unsafe region in the state space.
The verification can be cast either in the worst-case setting or
the stochastic setting. A problem instance in the former setting
may consist of a system with an uncertain disturbance input,
where a hard bound on the input magnitude is known, and we
are asked to show that for all possible disturbance inputs the
system cannot evolve to the unsafe region. On the other hand,
in the latter setting no hard bound is given, but instead a sto-
chastic characterization of the disturbance is available, and we
are asked to show that the probability of the system evolving to
the unsafe region is sufficiently small.
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For safety verification of continuous and hybrid systems in
the worst-case setting, various methods have been proposed.
Explicit computation of either exact or approximate reachable
sets corresponding to the continuous dynamics is crucial for
most of these methods. For linear continuous systems with
certain eigenvalue structures and semialgebraic initial sets,
exact reachable set calculation using quantifier elimination has
been proposed in [4] and [28]. Unfortunately, their approach re-
quires knowing the exact solution of the differential equations,
and hence does not seem extendable to the nonlinear case.
In another vein, several techniques have also been developed
for approximate reachable set calculation. For linear systems,
there are results based on quantifier elimination [47], ellip-
soidal calculus [26], [10], polygonal approximation [8], [6],
geometric programming [53], and real algebraic geometry [54].
Other techniques have been proposed for nonlinear systems,
for example, based on the Hamilton Jacobi equations [50],
polygonal approximations [14], and approximating the system
as a piecewise linear system [5]. In the case of hybrid systems,
most of the techniques are based on constructing abstractions
(i.e., discrete quotients) of the systems, and then performing
model checking on the resulting discrete systems. See, for
instance, [3], [6], [14], and [48].

In this paper, we will present a method for safety verification
that is different from the above approaches as it does not require
computation of reachable sets, but instead relies on a deductive
inference using what we term barrier certificates, which have
been previously used in the context of nonlinear model valida-
tion [36]. For a continuous system, a barrier certificate is a func-
tion of state satisfying a set of inequalities on both the function
itself and its Lie derivative along the flow of the system. In the
state space, the zero level set of a barrier certificate separates an
unsafe region from all system trajectories starting from a set of
possible initial states. Therefore, the existence of such a func-
tion provides an exact certificate/proof of system safety.

Similar to the Lyapunov approach for proving stability [25],
the main idea here is to study properties of the system without
the need to compute the flow explicitly. Although an overap-
proximation of the reachable set may also be used as a proof
for safety, a barrier certificate can be much easier to compute
when the system is nonlinear and uncertain. Moreover, a bar-
rier certificate can be easily used to verify safety in infinite time
horizon. Note also that there are some connections between our
method and viability theory [7], invariant set theory [7], [9], and
also the verification approaches in [11], [22], [45], and [49]. We
will discuss these connections later as we progress.

Our method can be easily extended to handle hybrid systems.
In the hybrid case, a barrier certificate is constructed from a
set of functions of continuous state indexed by the system lo-
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cation.1 Instead of satisfying the aforementioned inequalities in
the whole continuous state space, each function needs to sat-
isfy the inequalities only within the invariant of the location.
Functions corresponding to different locations are linked via ap-
propriate conditions that must be satisfied during discrete tran-
sitions between the locations. The idea is analogous to using
multiple Lyapunov-like functions [23] for stability analysis of
hybrid systems.

With this methodology, it is possible to treat a large class of
hybrid systems, including those with nonlinear continuous dy-
namics, uncertainty, and constraints. When the vector fields of
the system are polynomials and the sets in the system descrip-
tion are semialgebraic (i.e., described by polynomial equalities
and inequalities), a tractable computational method called sum
of squares optimization [32], [33], [38], [39] can be utilized for
constructing a polynomial barrier certificate, e.g., using the soft-
ware SOSTOOLS [38], [39]. While the computational cost of
this construction depends on the degrees of the vector fields and
the barrier certificate in addition to the number of discrete loca-
tions and the continuous state dimension, for fixed polynomial
degrees the complexity grows polynomially with respect to the
other quantities. Hence, we expect our method to be more scal-
able than many other existing methods. Successful application
of our method to a NASA life support system, which is a non-
linear hybrid system with 6 discrete modes and 10 continuous
states, has been reported in [18].

In addition to the worst-case setting outlined above, we will
also consider safety verification of continuous and hybrid sys-
tems in the stochastic setting. The stochasticity of a contin-
uous system may originate from random inputs to the dynamics,
which can be taken into account by considering stochastic dif-
ferential equations. In the case of stochastic hybrid systems,
stochasticity may also be induced by randomness in the discrete
transitions. Study of systems modelled by stochastic differen-
tial equations has a long history and readers can find relevant
references in [31]. On the other hand, only quite recently have
people started to consider stochastic hybrid systems. See [15],
[17], [19], [20], and [34] for an overview.

When the system is stochastic, answering the safety verifica-
tion question in a worst-case nonstochastic manner will usually
lead to a very conservative and restrictive answer, since there is
no hard bound on the value of stochastic input. Indeed it is more
natural to formulate and consider a safety verification problem
that has a probabilistic interpretation. For example, it may be
of interest to prove that the probability that a system trajectory
reaches the unsafe region is lower than a certain safety margin.
For some references on safety verification of stochastic contin-
uous and hybrid systems, readers are referred to [13], [21], [52],
and [12].

The approach that we take to solve the stochastic safety veri-
fication problem still relies on barrier certificates. However, in-
stead of using a barrier certificate whose zero level set separates
the unsafe region from all possible system trajectories, we will
use a barrier certificate that yields a supermartingale (loosely
speaking, its expected value along time is nonincreasing) under
the given system dynamics. In addition, we ask that the value of
the barrier certificate at the initial state be lower than its value

1The term “location” here means discrete state; cf. Section II-B–1.

at the unsafe region. The probability of reaching the unsafe re-
gion can then be bounded from above using a Chebyshev-like
inequality for supermartingales. We derive conditions that must
be satisfied by barrier certificates for stochastic continuous sys-
tems and a class of stochastic hybrid systems called switching
diffusion processes. Similar to their nonstochastic counterpart,
polynomial barrier certificates can be computed using sum of
squares optimization when the description of the system is poly-
nomial and the sets are semialgebraic.

For these classes of systems, our method can be used to effi-
ciently compute an exactly guaranteed upper bound on the prob-
ability that a system trajectory reaches the unsafe set. Refer-
ences [13] and [12], for example, suggest (theoretical) ways to
calculate such a probability, yet they have not provided a compu-
tational technique for that. Reference [21] does provide a com-
putational method to approximate the reach probability for sto-
chastic differential equations, but since their method is based
on discretizing the state space, there are still some unresolved
issues with guaranteeing the accuracy of the computed proba-
bility and the scalability of the method. Finally, the work in [52]
approximates the reach probability for stochastic discrete time
systems using randomized simulations, and currently there is no
accuracy guarantee either.

The outline of the paper is as follows. In Section II, we con-
sider safety verification in the worst-case setting. Safety verifi-
cation in the stochastic setting is addressed in Section III. Com-
putation of barrier certificates using sum of squares optimiza-
tion is discussed in Section IV. Some examples will be given in
Section V, and finally the paper will be ended by conclusions in
Section VI.

1) Notations: Most of the notations are standard. We denote
the set of real numbers by and the Euclidean -space by .
The trace of an matrix , i.e., the sum of its diagonal el-
ements, is denoted by . By we mean a func-
tion mapping to . We denote the spaces of

-times continuously differentiable functions mapping
to by , and when we will write .
Correspondingly, the spaces of continuous functions on are
denoted by and . For a differentiable function

, we use to denote the row vector
of partial derivatives of with respect to . The Hes-
sian of a twice-differentiable function is de-
noted by . Finally, and denote
the total and conditional probability, respectively, whereas
and denote the total and conditional expectation.

II. SAFETY VERIFICATION IN THE WORST-CASE SETTING

A. Continuous Systems

1) Convex Conditions: Consider a continuous system de-
scribed by a set of ordinary differential equations:

(1)

with the state taking its value in and the disturbance
input taking its value in . Here is assumed to
be piecewise continuous and bounded on any finite time interval.
Some smoothness conditions will be imposed on the vector field
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. At the least it will be continuous, which makes
piecewise continuously differentiable.

In safety verification, only parts of trajectories that are con-
tained in a given set and that start from a given set of
possible initial states are considered. We denote the
unsafe region of the system by , with . With these
notations, the safety property in the worst-case setting can be
defined as follows. The definition can be directly extended for
other classes of systems as needed.

Definition 1 (Safety): Given (1), the state set , the
initial set , the unsafe set , and the disturbance
set , we say that the safety property holds if there
exist no time instant and a piecewise continuous and
bounded disturbance that gives rise to an unsafe
system trajectory, i.e., a trajectory satisfying

, , and for all .
Our method for verifying safety relies on the existence of

what we will call a barrier certificate. For continuous systems,
the following proposition states the conditions that are satisfied
by a barrier certificate.

Proposition 2: Let and , ,
, be given, with . Suppose

there exists a differentiable function such that

(2)

(3)

(4)

then the safety of the system in the sense of Definition 1 is guar-
anteed.

Proof: Our proof is by contradiction. Assume that there
exists a barrier certificate satisfying (2)–(4), while at the
same time the system is not safe, i.e., there exist a time instance

, a disturbance signal , and an initial
condition such that a trajectory of the system
starting at satisfies for all and

. Condition (4) implies that the derivative of
with respect to time is nonpositive on the time interval .
A direct consequence of this (which for example can be shown
using the mean value theorem) is that must be less than
or equal to , which is contradictory to (2)–(3). Thus, the
initial hypothesis is not correct: the system must be safe.

A function satisfying the conditions in Proposition 2 is
termed a barrier certificate. The zero level set of provides a
“barrier” between possible system trajectories and the given un-
safe region, in the sense that no trajectory of the system starting
from the initial set can cross this level set to reach the unsafe re-
gion. In proving that the system is safe, no explicit computation
of system trajectories nor reachable sets is required.

In the above proposition we have assumed that the distur-
bance input can vary arbitrarily fast. If the variation of the dis-
turbance is bounded, then a less conservative verification can be
performed by considering a barrier certificate that also
depends on the instantaneous value of the disturbance and mod-
ifying (2)–(4) accordingly. For example, in (4) we need to take
into account the extra derivative term , with
the disturbance variation taking its value in some bounded set.

Note that the set of barrier certificates satisfying the condi-
tions in Proposition 2 is convex. This can be established by

taking arbitrary and satisfying the above condi-
tions and showing that for all

satisfies the conditions as well. The convexity
property is very beneficial for the computation of . As we
will see later in Section IV-A, a barrier certificate in this
convex set can be searched directly using convex optimization.

Since the set is actually an invariant
set within , the method presented above is closely related to
the smallest invariant set approach for safety verification (see,
e.g., [22]). The latter approach differs from ours in that it tries
to compute the smallest invariant set that contains , and then
show that this set does not intersect . Although such a set will
give the least conservative verification result, it can have a very
complicated description, and in general is not computable. Thus,
for computation purposes, it is necessary to consider invariant
sets whose descriptions have bounded complexity (e.g., sets de-
scribed using finite degree polynomials). Nevertheless, among
invariant sets whose descriptions have bounded complexity, the
smallest set may not be one that does not intersect . Not only
that, such smallest invariant set may still be very difficult to find
and may not be unique. Our approach, on the other hand, uses
an arbitrary invariant set containing that does not intersect

. As such, our method is computationally much easier than
the smallest invariant set approach.

We would like to remark that other approaches similar to ours
are also presented in [45], [49]. These papers address the veri-
fication problem from a computer science point of view, and
propose methods for constructing invariants of the system. An
invariant here is a property that holds for every reachable state
of the system. Thus, in the barrier certificate framework, for ex-
ample, is an invariant of the system. The difference is
that their conditions for the invariants are more restrictive than
ours, and the invariants are not computed using convex opti-
mization, but instead using the Gröbner basis method followed
by solving a system of linear equations.

2) Nonconvex Conditions: Although the conditions in Propo-
sition 2 are good for computation since they define a convex set
of barrier certificates, the conditions seem rather conservative
(i.e., within a class of barrier certificates with bounded com-
plexity) as the derivative inequality (4) needs to be satisfied on
the whole state set . It is natural to expect that the conditions
can be relaxed by requiring a similar derivative inequality to
hold only on and near the set of for which .
This kind of condition is used in Proposition 3 below. Unfor-
tunately, the set of barrier certificates will no longer be convex,
hence a direct computation of a barrier certificate using convex
optimization is not possible, although we can still try to search
for a barrier certificate in the nonconvex set using an iterative
method, as we will see in Section IV-B.

Proposition 3: Let the system and the sets
be given, with

. If there exists a function that
satisfies the following conditions:

(5)

(6)

(7)
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then the safety of the system in the sense of Definition 1 is guar-
anteed.

Proof: Suppose that a disturbance signal
and a corresponding unsafe trajectory exist.
Let and be two time instants such that

, and

Now integrate over the time in-
terval to obtain a contradiction, thus proving that the
system is safe.

The above proposition is sufficient for our purposes and also
the proof is straightforward. However, it is interesting to note
that other (nonconvex) conditions can be derived using viability
theory [7]. Interested readers are referred to [35]. An early work
on safety verification using nonconvex conditions that can be
considered as alternatives to Proposition 3 can also be found
in [11]. However, no computational scheme is provided in that
paper, and the construction of safety proofs has to be done man-
ually.

B. Hybrid Systems

1) Modelling Framework: Throughout this subsection, we
adopt the hybrid modelling framework that was first proposed
in [1]; see also [2] for a more detailed explanation and example.
A hybrid system is a tuple with the
following components.

• is the continuous state space.
• is a finite set of locations. The overall state space of the

system is , and a state of the system is denoted
by .

• is the set of initial states.
• is the invariant, which assigns to each location

a set that contains all possible continuous states
while at location .

• is a set of vector fields. assigns to each
a set which constrains the evo-

lution of the continuous state according to the differential
inclusion .

• is a relation capturing discrete transitions be-
tween two locations. Here a transition
indicates that from the state the system can undergo
a discrete jump to the state .

Valid trajectories of the hybrid system start at some ini-
tial state and are concatenations of a sequence
of continuous flows and discrete transitions. During a contin-
uous flow, the discrete location is maintained and the contin-
uous state evolves according to the differential inclusion

, with remains inside the invariant set .
For our purpose, we will model the uncertainty in the continuous
flow by introducing some disturbance inputs in the following
manner:

for some

where is a vector field that governs the flow of the
system at location , and is a vector of disturbance in-

puts that takes value in the set . We assume that
is piecewise continuous and bounded on any finite time

interval, and that for all . Finally,
at a state , a discrete transition to can occur if

. We assume nondeterminism in the dis-
crete transition, i.e., the transition may or may not occur, but no
stochastic characterization is used or given.

Given a hybrid system and a set of unsafe states ,
the safety verification problem is concerned with proving that all
valid trajectories of the hybrid system cannot enter the unsafe
region . More specifically, the safety property is defined as
follows.

Definition 4 (Safety—Hybrid Systems): Given a hybrid
system and an unsafe set , the safety property holds
if there exist no time instant , a piecewise continuous
and bounded disturbance input , and a finite
sequence of transition times
that give rise to an unsafe system trajectory, i.e., a trajec-
tory satisfying

for , and . (Note
that the disturbance input here must also satisfy
for all ).

In our analysis conditions, we will also need the following
definitions. For each location , the sets of initial and unsafe
continuous states are defined as

and , both of which
can be empty. To each tuple with , we associate
a guard set for
some , which is the set of continuous states from which
the system can undergo a transition from location to location

, and a (possibly set valued) reset map
, whose domain is .

Obviously, if no discrete transition from location to location
is possible, then will be regarded as empty, and the
associated reset map needs not be defined.

2) Conditions for Safety: Verification of hybrid systems
should use a barrier certificate that not only is a function of
the continuous state, but also depends on the discrete location.
For this purpose, we construct a barrier certificate from a set of
functions of continuous state, where each function corresponds
to a discrete location of the system. Since in each location the
continuous state can only take value within the invariant of
the location, each function only needs to satisfy inequalities
similar to (2)–(4) or (5)–(7) in the invariant associated to its
location. Functions corresponding to different locations are
linked via appropriate conditions that take care of possible
discrete transitions between the locations. Analogous idea
was used in stability analysis of affine hybrid systems using
piecewise quadratic Lyapunov functions [23].

We state the conditions that must be satisfied by the barrier
certificate in the following theorem. The notations and assump-
tions imposed on the system are as described in Section II-B–1.

Theorem 5: Let the hybrid system and the unsafe set
be given. Suppose there exists a collection

of functions which, for all and
, satisfy

(8)
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(9)

such that (10)

for all s.t.

(11)

Then the safety of the system in the sense of Definition 1 is
guaranteed.

Proof: Assume that a barrier certificate
satisfying the above conditions can be found. Take any trajec-
tory of the hybrid system that starts at arbitrary ,
and consider the evolution of along this trajectory.
Condition (8) asserts that . Next, (10) implies
that during a segment of continuous flow cannot
become positive, which can be shown using Proposition 3. On
the other hand, (11) guarantees that during a discrete transition

cannot jump to a positive value. Consequently, any
such trajectory can never reach an unsafe state ,
whose is positive according to (8). We conclude that
the safety of the system is guaranteed.

Similar to what we encounter in the continuous case,
(10)–(11) in the above theorem define a nonconvex set of
barrier certificates. Conditions defining a convex set of barrier
certificates are given in the following theorem.

Theorem 6: Let the hybrid system , the unsafe set ,
and a collection of nonnegative constants

be given. Suppose there exists a collection
of differentiable functions which, for all

and , satisfy

(12)

(13)

(14)

for all (15)

Then the safety of the system in the sense of Definition 4 is
guaranteed.

Proof: Analogous to the Proof of Theorem 5, but with
Proposition 2 now being used to show that during a segment
of continuous flow cannot become positive.

Remark 7: The convexity of the set of barrier certificates in
Theorem 6 can be established by taking two arbitrary collections

and satisfying the conditions
in the theorem and showing that for all the collection

satisfies the conditions as
well. Note that for this convexity it is crucial that the multipliers

are fixed in advance.
Remark 8: Two possible choices for are 0 and 1.

The choice corresponds to modifying (11) to
for all for some and

, and in this case a successful verification will
actually prove that the system is safe even if during a transition
from location to the continuous state is allowed to jump to
any continuous state in the image of the reset map. On the

other hand, choosing is useful for handling integral
constraints, as we will shortly see.

3) Hybrid Systems With Constraints: In the remainder of this
subsection, we will briefly discuss how constraints can be incor-
porated in verification of hybrid systems. There are three kinds
of constraints that can be handled: algebraic equality, algebraic
inequality, and integral constraints. Here we will focus on inte-
gral constraints, as verification by explicit calculation of reach-
able sets is the most difficult when such constraints exist. To the
best of our knowledge, the only existing literature addressing
this problem is [24], in which a method for bounding an image
of the flow map between two affine switching surfaces for affine
hybrid systems with integral quadratic constraints is presented.

Instead of assuming that the disturbance is contained in
, suppose now that and the continuous state is

constrained via a “hard” integral constraint2

(16)

where is again assumed to be piecewise continuous and
bounded on any finite time interval. Constraints like this usu-
ally arise in systems analysis in the form of integral quadratic
constraints [29] and are useful, e.g., for describing a set of
norm-bounded operators (cf. the example in Section V-B),
which may represent unmodelled continuous dynamics. Apart
from this change, valid trajectories of the system are generated
in the same manner as in Section II-B–1. Conditions guaran-
teeing safety when an integral constraint is present are given in
the following theorem.

Theorem 9: Let the hybrid system , the unsafe set ,
and (16) be given, with . Suppose there exist
a collection of functions and
constant multipliers that satisfy

(17)

(18)

(19)

for all

(20)

(21)

for all and , . Then the safety of the
system is guaranteed in the sense of Definition 4 [except that

is not contained in , but instead must satisfy (16)].
Proof: Assume that a barrier certificate satisfying the

above conditions can be found, but at the same time there exists
a and a valid trajectory of the hybrid system on the time
interval such that . Assume that discrete
transitions for this trajectory occur at time where

2The notion “hard” here means that the constraint must be satisfied for all
t � 0; a “soft” integral constraint has the form �(x(�); d(�))d� � 0.
Some important integral constraints for robustness analysis of uncertain systems
[29] are soft constraints.
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the system switches to location . Denote the
continuous states before and after the -th transition by and

, respectively. Then from (19) and (20) we obtain

Now, (20) guarantees that for
, and, hence, it follows from the above inequality that

. Using (17)–(18), we obtain a contradic-
tion, thus, proving the theorem.

Remark 10: The set of and satisfying the
conditions in Theorem 9 is convex.

III. SAFETY VERIFICATION IN THE STOCHASTIC SETTING

A. Continuous Systems

Consider a complete probability space and a stan-
dard -valued Wiener process defined on this space. In
this subsection, we will be dealing with stochastic differential
equations of the form

(22)

where , and are of appropriate dimen-
sions. We denote the state space, the initial set, and the unsafe
set, respectively, by , and , all of which are subsets of

, with assumed to be bounded and . To
guarantee the existence and uniqueness of solution, we will also
assume that both and satisfy the local Lipschitz conti-
nuity and the linear growth condition on . Since is bounded,
the last condition can be replaced by the boundedness of
and on .

It can be shown that the process described above is right
continuous and a strong Markov process [31]. The generator
of the process is defined as follows.

Definition 11 (Generator): The (infinitesimal) generator
of the process is defined by

and the domain of the generator is the set of all functions
such that the above limit exists for all .

The generator can be considered as the stochastic analog of
the Lie derivative, and characterizes the evolution of the expec-
tation of via the so-called Dynkin’s formula (see, e.g.,
[44]):

for and for any function in the domain of the
generator.

Since in general the process is not guaranteed to always
lie inside the set , we define the stopped process corresponding
to and as follows.

Definition 12 (Stopped Process): Suppose that is the first
time of exit of from the open set . The stopped
process is defined by

for
for

The stopped process satisfies various properties. For
example, it inherits the right continuity and strong Markovian
property of . Furthermore, in most cases the generator
corresponding to is identical to the one corresponding to

on the set , and is equal to zero outside of the set
[27]. This will be implicitly assumed throughout the chapter.
Having defined the system and the stopped process , we
can now formulate the safety verification problem for stochastic
differential equations as follows.

Problem 13: Given the system (22) and the bounded sets
, compute an upper bound for

the probability of the process to reach . In other words,
find such that

for some (23)

for all or

for some (24)

if an initial probability distribution whose support is in is
also given for .

Obviously, the ultimate objective of safety verification is to
show that the above probability is small enough, for example
less than some safety margin. Hence, it is of interest to obtain
an upper bound that is as tight as possible.

In this section, our approach to solve the above problem is
based on finding an appropriate barrier certificate from
which we can deduce an upper bound . As in the nonstochastic
case, the approach is again analogous to using Lyapunov func-
tions for proving stability.3 However, instead of requiring the
value of to decrease along the trajectory of the system,
we ask that the expected value of decreases or stays
constant as time increases. A process satisfying such a prop-
erty is called a supermartingale [44]. In our setting, a process

is a supermartingale with respect to the filtration
generated by the process , if is -mea-

surable for all for all , and

for all . Since we will use that is twice continuously
differentiable and takes its value in a bounded set , the
first and second conditions are always fulfilled. For nonnegative

3See, e.g., [27] for some notions of stochastic stability and stochastic Lya-
punov functions.
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supermartingales, there exists the following result, which will be
used several times here.

Lemma 14 ([27]; see [16] for the Discrete Version): Let
be a supermartingale with respect to the process

and be nonnegative on . Then for a positive and any
initial condition

(25)

At this point, we are ready to state and prove our first main
result in the stochastic setting.

Theorem 15: Let the stochastic differential (22) and the
bounded sets be given, with

being locally Lipschitz continuous and bounded on
. Consider the stopped process . Suppose there exists a

function such that

(26)

(27)

(28)

(29)

then the probability bound (23) holds. If an initial probability
distribution is given, then (27)–(29) and

(30)

imply that the probability bound (24) holds.
Proof: For the stochastic differential (22), the generator of

the process is given by (see, e.g., [31])

where the domain of the generator is the set of twice continu-
ously differentiable functions with compact support. Since is
bounded, we can use any . Next, using Dynkin’s
formula, we have for

and therefore (29) will imply that is a supermartingale.
By (28) and Lemma 14 we conclude that (25) holds. Now use
(26) and the fact that , which
follows from (27), to obtain the following series of inequalities:

for some

Thus the probability bound (23) is proven.
Finally, if an initial probability distribution is given, then

the above derivation can be combined with the law of total prob-
ability and (30) to obtain

for some

hence, finishing the proof.
Note that it is possible to choose to be at most equal to one,

since when the function will satisfy (26)–(29)
and (30). The intuitive idea behind the theorem is clear. The
process is a supermartingale, and therefore its value is
likely to stay constant or decrease as time increases. When we
start from a lower initial value of (i.e., as gets smaller)
it becomes less likely for the trajectory to reach the unsafe set,
on which the value of is greater than or equal to one. This
is quantified by Lemma 14, which provides a Chebyshev-like
inequality for bounding the probability of the distribution tail.

B. Hybrid Systems

In this subsection, we consider a class of stochastic hybrid
systems called switching diffusion processes [17]. Systems in
this class have both continuous and discrete states, where the
continuous state evolves according to a stochastic differential
equation that depends on the discrete state, and the discrete tra-
jectory itself is a Markov chain whose transition matrix depends
on the continuous state. As implied by the name, these systems
are switching systems, meaning that the value of the continuous
state does not change during a discrete transition. The method
proposed in Section III-A can be extended to handle switching
diffusion processes. The main idea is similar to before, i.e., use
the appropriate generator for the process, find a barrier certifi-
cate from the domain of the generator that yields a supermartin-
gale, and then bound the reach probability using the barrier cer-
tificate.

Formally, a switching diffusion process is a tuple
with the following components:

• is the continuous state space, assumed to be
bounded.

• is a finite set of locations. The overall state space of
the system is , and the state is denoted by

.
• is an initial probability measure, with its support in

.
• , is a set of drift vector fields.
• , is a set of diffusion coefficients,

where the -th column of corresponds to the th compo-
nent of the -valued Wiener process .

• , is a set of -dependent tran-
sition rates, with for all if , and

for all .
Here we denote the unsafe set by , with .

A trajectory of the system starts with an initial condition
drawn from the initial probability measure . As mentioned
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above, the continuous part of the state evolves according to a
stochastic differential equation, which at location is given by

On the other hand, the dynamics of the discrete state is described
by the following transition probability:

if
if

with . See [17] for more details on how the discrete transi-
tions are generated. During a discrete transition, the value of the
continuous state is held constant. It is assumed that the discrete
transition is independent from the Wiener process . In addi-
tion, we assume that , and are bounded and
locally Lipschitz continuous. Under these assumptions, the so-
lution to the stochastic differential equation at each location ex-
ists and is unique, and also that is a Markov process
and almost every sample path of it is a right continuous function
[17]. Similar to the continuous case, we stop the process when

goes out from .
The conditions for a barrier certificate are stated in the fol-

lowing theorem.
Theorem 16: Let the switching diffusion process

be given, with bounded and
bounded, locally Lipschitz continuous s, s, and

s. Suppose there exists a collection of
functions , which satisfy

(31)

(32)

(33)

for all , and

(34)

Then for some .
Proof: Define . In this case

is the generator of the process, and is in the domain of
the generator if for all . See [17]. Condition
(33) implies that is a supermartingale, which can
be shown using Dynkin’s formula. Since is also

nonnegative (as implied by (32)), Lemma 14 can be applied.
The rest of the proof is similar to the Proof of Theorem 15.

In principle, other classes of stochastic hybrid systems such as
piecewise deterministic Markov processes [15], stochastic hy-
brid systems of Hu et al. [20], and stochastic hybrid systems of
Hespanha [19] can be handled in a similar fashion, by using the
suitable generator for each class and modifying the other con-
ditions for appropriately.

IV. COMPUTATIONAL METHOD

For systems whose vector fields are polynomial and whose
set descriptions are semialgebraic (i.e., described by polynomial
equalities and inequalities), a tractable computational method
for constructing a barrier certificate exists if we also postulate
the barrier certificate to be polynomial. The method uses sum of
squares optimization [32], [33], [38], [39]—a convex relaxation
framework based on sum of squares decompositions of multi-
variate polynomials [43] and semidefinite programming [51].

A sum of squares (SOS) program is a convex optimization
problem of the following form:

Minimize

subject to

is SOS for

where the s are scalar real decision variables, the s are
given real numbers, and the are given polynomials
(with fixed coefficients). See also another equivalent canonical
form of SOS programs in [38]. Here we say that the polyno-
mial is an SOS if it can

be decomposed as for some polyno-
mials . Sum of squares programs can be
solved via semidefinite programming, e.g., using the software
SOSTOOLS [38], [39] in conjunction with a semidefinite
programming solver such as SeDuMi [46].

A. Direct Computation of Barrier Certificates

The setting of Section II-B–2 is used in this and the next sub-
sections; other settings can be treated analogously. Consider a
hybrid system whose vector fields are polynomial for
all . Furthermore, assume that for all the invariant
region is given by

In these set descriptions, the s are vectors of polynomials,
and the inequalities are satisfied entry-wise. For example, when

is the -dimensional hypercube ,
we may define

...
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Similarly, define the sets , and
by the inequalities

, and . Finally, assume

to be the value of the reset map evaluated at
.

To compute a polynomial barrier certificate for this system,
real coefficients are used to parameterize sets of
candidates for the functions , for all , in the following
way:

(35)

where the s are elements of some finite polynomial basis;
for example, they could be monomials of degree less than or
equal to some pre-chosen bound. Then the search for a barrier
certificate , or equivalently the values of s,
such that the convex conditions in Theorem 6 are satisfied can
be directly performed by solving a SOS program, as stated in
the following algorithm.

Algorithm 17 (Direct Method): Let the hybrid system and
the descriptions of ,
and be given, along with some nonnegative con-
stants , for each and .

• Parameterize s: Fix a degree bound for the barrier
certificate, and parameterize for all in terms
of some unknown coefficients s as in (35), by having all
monomials whose degrees are less than the degree bound
as the s.

• Parameterize the multipliers: In a similar way, fix
some degree bounds and use some other unknown coef-
ficients to parameterize polynomial vectors

of the same dimensions as the corre-
sponding s.

• Compute the coefficients: Choose a small positive
number . Use SOS optimization to find values of the
coefficients which make the expressions

(36)

(37)

(38)

(39)

and the entries of
sums of

squares, for each and .

Proposition 18: If the sum of squares optimization problem
given in Algorithm 17 is feasible, then the polynomials

obtained by substituting the corresponding values of s
to their polynomial parameterization satisfy the conditions of
Theorem 6, and therefore is a barrier certificate.

Proof: We show that the entries of and (36)
being SOS implies (8) as follows. Notice that

is globally nonnegative since it is a SOS
and also that for any the second term is non-
negative. Thus for all

, i.e., (8) holds. Similar arguments can be used for
the other conditions.

Remark 19: If the reset map actually maps
to a singleton, e.g., if

for some polynomial vector , then
expression (39) can be simplified to

.
The computational cost of Algorithm 17 depends on three

factors: the degrees of (36)–(39), the cardinality of , and the
dimension of . For fixed degrees, however, the required
computations grow polynomially with respect to the cardinality
of and/or the dimension of . A hierarchy of computa-
tions can then be proposed, where we start with a low degree for
the barrier certificate and increase it as needed. In many cases, a
low degree barrier certificate can be used to verify safety if the
system is “sufficiently” safe (in the sense that a small perturba-
tion will not make the system unsafe).

B. Iterative Computation

The SOS optimization approach described in the previous
subsection can be used to find a barrier certificate that lies in
the convex set defined by the conditions in Theorem 6. The con-
ditions in Theorem 5, however, define a nonconvex set of barrier
certificate. As a consequence, the search for a barrier certificate
in this set cannot be performed through direct SOS optimiza-
tion, although conditions for the barrier certificate can still be
formulated as sum of squares conditions as follows.

Proposition 20: Let the hybrid system and the de-
scriptions of , and

be given. Suppose there exist polynomials
and ; positive numbers and ; and vectors of sums
of squares

, and ; such that
the following expressions:

(40)

(41)

(42)

(43)
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are sums of squares for all and .
Then the collection satisfies the conditions in
Theorem 5, and therefore the safety property holds.

Proof: Analogous to the Proof of Proposition 18.
In this case, direct computation of via

SOS optimization is impossible due to the multiplication of
the unknown coefficients of s with those of s
and s in (42)–(43). By fixing either of them, all the
unknown coefficients will be constrained in an affine manner,
which reduces the problem4 to a SOS program. For example,
fixing the multipliers will convexify the set of s
satisfying (40)–(43), resulting in a smaller convex set contained
in the original nonconvex set.

The motivation to search for barrier certificates in the orig-
inal nonconvex set is that when we put a bound on their com-
plexity (e.g., by bounding the polynomial degrees), such bar-
rier certificates are generally less conservative than barrier cer-
tificates in the convex set (cf. the comment at the beginning of
Section II-A–2). For instance, the former may prove safety for
larger disturbance sets, guard sets, unsafe sets, etc. We will now
present a simple iterative method to search for a barrier certifi-
cate in the nonconvex set. In the iteration we start with some
sufficiently small sets, and increase their sizes as the iteration
progresses.

Algorithm 21 (Iterative Method):
1) Initialization: Start with sufficiently small

, etc. Specify and in ad-
vance, e.g., by choosing and
or . Search for s and the remaining multipliers
using SOS optimization as described in Algorithm 17.

2) Fix the barrier certificate: Fix the s obtained from
the previous step. Enlarge , etc. Search
for s, s, and the remaining multipliers.

3) Fix the multipliers: Fix the s and s
obtained from the previous step. Enlarge

, etc. Search for s and the remaining
multipliers. Repeat to Step 2.

It should be noted, however, that solving a nonconvex opti-
mization problem by an iteration like this is not guaranteed to
yield the globally optimal solution, as the iteration may actually
converge to a local optimum. In our case, the barrier certificate
we obtain at the end of our iteration may not be a barrier cer-
tificate that is able to prove safety for the maximum possible
disturbance sets, etc.

C. Computation of Barrier Certificates for Stochastic Systems

When the description of the stochastic differential equation
in Section III-A is polynomial and the sets are semialgebraic,
an upper bound and a polynomial barrier certificate
which certifies the upper bound can be computed by formulating
(26)–(29) or (27)–(29) and (30) as a sum of squares optimiza-
tion problem, similar to what we describe in Section IV-A. Fur-
thermore, can be chosen as the objective function of the SOS

4Note that the original problem is actually equivalent to a bilinear matrix in-
equality (BMI) problem [30].

program, whose value is to be minimized. The minimum value
of obtained from the optimization will be the tightest upper
bound for a given polynomial and sum of squares parameteri-
zation. Obviously, we may get a better bound as we expand the
parameterization, for example, when we use higher degree bar-
rier certificates. However, there is a tradeoff between using a
larger set of candidate barrier certificates and the computational
complexity of finding a true certificate within it.

Similar to the stochastic differential equation case, a polyno-
mial barrier certificate for a switching diffusion
processes can be computed using sum of squares optimization,
provided , and are polynomials and the sets

are semialgebraic.

V. EXAMPLES

Here we will present two examples in the worst-case setting
and one example in the stochastic setting. The MATLAB m-files
for solving these examples can be found at http://www.cds.cal-
tech.edu/~prajna/files/PraJP06. More examples can be found in
[41]. For an application to a NASA life support system, which
is a hybrid system with 6 discrete locations and 10 continuous
state variables, see [18].

A. Continuous System

Consider the two-dimensional system (taken from [25, p.
180])

with . We want to verify that all trajectories of the
system starting from the initial set

will never reach the unsafe set
. Note that the system has

a stable focus at the origin and two saddle points at .
Since contains a part of the unstable manifold corresponding
to the equilibrium , the safety of this system cannot be
verified exactly by computation of forward reachable sets in a
finite time horizon.

A polynomial barrier certificate that satisfies (2)–(4) is
given by, e.g.,

. For example, we can show
that the Lie derivative is less than or equal
to zero by exhibiting the quadratic form

, with

and . In this case, the
matrix is positive semidefinite, which implies the existence
of a sum of squares decomposition for (and
hence its nonnegativity). That (2)–(3) are satisfied can be shown
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Fig. 1. Phase portrait of the system in Section V-A. Solid patches are (from
left to right) X and X , respectively. Dashed curves are the zero level set of
B(x), whereas solid curves are some trajectories of the system. The function
B(x) is strictly greater than zero for all x 2 X and strictly less than zero for
all x 2 X .

by sum of squares arguments as well, and is also depicted picto-
rially in Fig. 1. The zero level set of the barrier certificate sepa-
rates from all trajectories starting from . Hence the safety
of the system is verified.

B. Hybrid System With Integral Constraint

This example illustrates a possible application of safety ver-
ification techniques to determine the feasibility of a controller
design. More specifically, we will analyze the reachability prop-
erty of a linear system in feedback interconnection with a relay.
The block diagram of the system is shown in Fig. 2, with the
matrices , and given by

and the relay element having the following characteristic:

if
if

For the sets

we pose the following question: is it possible to design a
controller (possibly nonlinear and time-varying) with the

-gain no greater than one, which is connected to the system

Fig. 2. Block diagram of the system in Section V-B. We ask if it is possible to
design a controllerK that steers the system from an initial setX to a destination
set X , subject to some other specifications.

Fig. 3. Phase portrait of the system in Section V-C. Trajectories of the systems
_x = A x and _x = A x starting at x(0) = (0; 3) are shown by the dashed
and dash-dotted curves, respectively. A realization of the switching diffusion
process for � = 10 is depicted by the solid curve. Shaded region at the bottom
of the figure is the unsafe set.

in the way shown in Fig. 2, such that the system can be steered
from to while maintaining the state in ?

The requirement that the -gain of the controller is no
greater than one can be equivalently formulated as an integral
quadratic constraint (IQC) [29]

This specification introduces dynamic uncertainty to the
problem. Nevertheless, we can perform reachability analysis
by adjoining the above IQC using a nonnegative constant
multiplier to the conditions on the time derivative of barrier
certificates (cf. Theorem 9). For this example, a quartic barrier
certificate that satisfies the required conditions can be found.
Hence, we conclude that the given specification is impossible
to meet.
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C. Switching Diffusion Process

In this example, we consider the system

where and

It can be shown using a common polynomial Lyapunov func-
tion of degree six that the deterministic system corresponding
to is globally asymptotically stable under arbitrary
switching (cf. [37, Example 2]).

We assume that the initial condition is given by or
, with equal probability for both locations, and .

For the initial continuous condition , trajectories
of the deterministic system corresponding to the first and second
locations are shown in Fig. 3. We choose

as the set of continuous states,
and as the unsafe set. The
safety of the stochastic system with transition rates

, is to be verified, where the
nonnegative parameter will be varied. Larger means that
from location 2 the system tends to switch to location 1 faster.

This problem can be given the following interpretation.
Although in both locations the system will evolve toward the
origin, location 2 is different from location 1 in the sense that
it has an oscillatory response which tends to bring the system
to the unsafe region whereas the trajectory corresponding to
location 1 will evolve directly to the origin without going
through the unsafe region. In the verification, we will show that
by using a large , i.e., making the system be in location 1 for
most of the time, the probability of reaching the unsafe set can
be kept small.

Using polynomial barrier certificates of degree 10, we can
prove that the probability of reaching the unsafe region is
bounded from above by for
for , and for . As expected, the
probability bound decreases when we increase .

VI. CONCLUSION

We have presented in the previous sections a framework
based on deductive inference and functions of states termed
barrier certificates for verifying system safety in the worst-case
and stochastic settings. In the worst-case setting, such prop-
erties can be verified without explicitly computing the set
of reachable states. This makes the methodology directly
applicable to continuous and hybrid systems with nonlinear,
uncertain, and constrained dynamics. In addition, by using
barrier certificates that generate nonnegative supermartingales
under the given system dynamics, we are able to handle safety
verification of stochastic continuous and hybrid systems by
computing certified upper bounds on the probability of reaching
the unsafe region.

Most of the conditions satisfied by barrier certificates form
convex optimization problems. When the system is described in
terms of polynomials, this provides the possibility to search for
appropriate barrier certificates using a convex relaxation frame-
work called sum of squares optimization. For nonconvex condi-
tions, an iterative method for computing barrier certificates has
also been proposed. A hierarchical search based on bounding
the degrees of the polynomial expressions can be performed,
such that at each level the complexity grows polynomially with
respect to the system size. Some examples have been presented
to illustrate the use of the proposed methodology.

A derivation of a converse theorem for barrier certificates,
and extensions of the barrier certificate approach for verifying
properties other than safety, such as reachability or eventuality,
can be found in [40] and [41].
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