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Abstract—We present a new construction of 16-QAM Golay techniques. This, in turn, reduces the range of OFDM trans-
sequences of lengthn = 2™. The number of constructed mjssions. A number of approaches have been proposed to deal

sequences i{14 + 12m)(m!/2)4™t1. When employed as a ,;; ;
code in an orthogonal frequency-division multiplexing (OFDM) with this power control problem [1], [3], [7], [8], [11], [13].

system; this set of sequences has a peak-to-mean envelope power A convenient approach to PMEPR reduction in OFDM
ratio (PMEPR) of 3.6. By considering two specific subsets of these transmission is to use codes constructed from Golay comple-
sequences, we obtain new codes with PMEPR bounds 2f0 and mentary sequences. These sequences are employed as pilot
2.8 and respective code sizes of2 + 2m)(m!/2)4™+* and  gequences by the European Telecommunications Standards
(4 + 4m)(m!/2)4™ 1. These are larger than previously known Institute (ETSI) Broadband Radio Access Networks (BRAN)
codes for the same PMEPR bounds. . .

committee. These classes of sequences enjoy PMEPR as low
as2 and are very attractive for this reason [5], [6], [10], [9],
[12]. In [6], Davis and Jedwab developed a powerful theory
which yields2°-PSK Golay sequences as unions of cosets of
I. INTRODUCTION the classical Reed—Muller codes and new generalizations of
Hiem. Special realization of Golay sequences as cosets of these

of complementary binary sequences. These sequences s were also given in [9], [10]. The underlying theory was
found numerous applications in various fields of science afigfther developed in[12].
engineering. An important application of Golay complemen- Given the practical applications of-PSK Golay sequences
tary sequences is to orthogonal frequency-division multiplexifd given that quadrature amplitude modulation (QAM) se-
(OFDM). This is a communication technique with a long historguénces are widely used in OEDM, itis natural to look for Golay
which is rapidly emerging as a technology of choice in wirele§@mplementary sequences with symbols chosen from 16-QAM
applications. International standards such as IEEE 802.11 &Rl higher QAM constellations. The underlying theory for these
employing OFDM for wireless local-area network (LAN) apSeduences is highly underdeveloped. In this paper, we make a
plications. For wireless applications, an OFDM-based Systé:(gntribution in this direction by presenting a construction of
can be of particular interest because it provides a greater imm§-QAM Golay sequences of length= 2™ from quaternary
nity to impulse noise and fast fades and eliminates the need Fh@se-shift_keying (QPSK) complementary sequences. We
equalizers, while efficient hardware implementations can be @nstruct a total of14 + 12m)(m!/2)4™*! sequences whose
alized using fast Fourier transform (FFT) techniques. average envelope powersis Of these(m!/2)4™*! sequences

One of the major impediments to deploying OFDM is th8ave peak envelope power (PEP) bounded aboves.by,
high peak-to-mean envelope power ratio (PMEPR) of uncodiifee subsets of size + 4m)(m!/2)4™** contain sequences
OFDM signals. To prevent spectral growth of the OFDMpaving PEPs less than @f8n, 2.0n, and1.2n, respectively,
signal in the form of intermodulation among subcarriers arfid @ subset of sizen!/2)4™*! contains sequences that has
out-of-band radiation, the transmit amplifier must be operat&fFP bounded above lyin. By selectively discarding some of
in its linear region. Amplifiers with large linear range ardhese sequences, we obtain two codes having PMEPRS of
expensive and this can increase the cost of the implementatﬂﬂﬁu& The con_structed sequences are ideal for application as
of OFDM. Moreover, if the peak transmit power is limitedPilot sequences in future OFDM systems. _
either by regulatory or application constraints, then a high The outline of this paper is as follows. In Section II, we re-
PMEPR has the effect of reducing the average power allow¥gw some background material for the results developed in this

under OFDM relative to that under constant power modulatigt#Per- In Section |1, we examine a construction of 16-QAM
Golay sequences that was previously given in [4]. This con-

. ) ) ) struction yields two codes with PMEPR bound<df and3.6.
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Il. PRELIMINARIES where the summations are performed indexasd« for which
&othz’ andi+wliein {0,1,...,n — 1}. Let the aperiodic auto-

The transmitted OFDM signal is the real part of the compl : !
correlation of sequenaeat delay shiftu be

signal
n—1 Ca(u) = Z a”ia’:+u' (5)
St) =Y a;(t)eX it
=0 Then,Cy(0) = ||a||*>. We can rewrite (4) as
where f; is the frequency of theth carrier,j = /—1, and Pa(t) = lla]* + ) Ca(u)e ™45, (6)
a;(t) is constant over a symbol period of duratiBnTo ensure u0
orthogonality, the carrier frequencies are related by Suppose that
fz:f0+LAf (1) T:(JI(]’.Z‘l./..../.T}n_l)
wheref is the smallest carrier frequency, and is an integer and
multiple of the OFDM symbol rate, i.e’Af € Z. Suppose Y= (Y0, Y1, Yn—1)

a;(t) takes the value,; over a given symbol period. Then, the ; e
corresponding OFDM signal (denoted By(t)) is given by are two complex-valued sequences of lengtiatisfying
Ca(u) + Cy(u) = ([l2]* + llyl*)é(u) @)

n—1
Salt) =Y a;e®™i, (2) whereé(u) = 1if w = 0 andé(u) = 0 otherwise. Theng

i=0 andy are calledGolay complementary sequenceamed after
The instantaneous envelope powef S,(t) associated with Marcel J. E. Golay in recognition of his extensive study of their
the sequenca = (ag,ai,...,a,_1) is defined asP,(t) = properties [2]. In the context of finite fields, we say that two
|Sa(t)|2. Then, (1) and (2) imply that sequences,y € Z% areGolay complementary ovéy if the

complex-valued sequences
Pa(t) =|Sa(t)?

e el (€7,€7,..., &™) and (€7,€%,...,¢")
= 29T fit * —2jmfit ' . o
- (Z aie”! ) (Z age” T ) are Golay complementary, whefe= ¢27/H is a primitive Hth
_11:0_1 F=0 root of unity. Finally, we say that is aGolay sequenci there
= nz: nz: s e2dm(i—k)Aft 3) exists a sequenggthat is complementary to. Golay made the
i—0 k—0 o ’ following observation.
Thus, the mean power &f,(¢) during a symbol period is Lemma 1: Leta andb be Golay complementary sequences of

lengthn. Then, the peak value df,(t) is at most|al|? + ||b]|?.

1 Pa(t)dt = “aHQdﬁfS g2 Proof: Leta andb be a Golay complementary pair, so that
T Jio,ry “ N N —~ kL by definitionC, (u) + Cyp(u) = 0 for all u # 0. Then from (6),
o - Pu(t) + Po(t) = |[al|* + |[b]|*, and sincePy(t) = |s,(1)]> > 0,
The PEP of a codeword is defined as we deduce thaP,(t) < ||a||? + ||b]|?. 0
PERa) = sup Fu(t) Corollary 1: For constellations in which all symbols have
tefo.T] unit power, any cod€ constructed from Golay sequences has
and the PMEPR of a code is PMEPRC) < 2.

Proof: Note that all sequences in the codebabkave
power n because all symbols in the constellation have unit

whereP,,(C) is the mean envelope power of an OFDM signdfOWer: Thereforeja||* = ||B]|” = Pay(C) = n. Lemma 1 now

PMEPRC) = max PERa)/P..(C)

averaged over all OFDM signals generated from a codeBpokiMmplies that PERC) < 2n and PMEPRC) < 2. 0
€ ) A. Reed-Muller Codes and Golay Sequences
Py (C) =7 Z p(a) / Pa(t)dt We briefly review a result of Davis and Jedwab [6] that links
acC /10,7 a subset oR"-PSK Golay complementary sequences to first-
_1 ZP(“)H“HQ order cosets of second-order Reed—Muller codes.
T = We confine the sequence lengthto be a power of, i.e.,
n = 2™. Letz = (z1,z9,...,z,,) denote a vector of size

wherep(a) is the probability of transmitting the codewaosd

/ g ! m. A generalized Boolean functids a functionu from 23 =
Lettingk = ¢ + u in (3) we obtain

{z|z; € {0,1}} to Z% for an integerh > 1. A general-
Pa(t) :Zzaiaf_i_“erquft ized B(_Jolean function inm variables can be written in
= algebraic normal form as the sum of constant functiofze-

roth-order monomial) and theh-order monomials of the form

n—1
= Z |ai|* + Zzaiajﬂe?imﬂﬂ (4) Tj,Thy,..,x forl < < m, wherel < jy,...,5,. <m
i=0 ut0 i are distinct numbers.
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For any generalized Boolean functianin m variables, we P g
can identify aZ,-valued vectors = (ug,uq,...,usm_1) Of . '10 01’ 5 .\00
length2™ in whichu; = u(i) wherei = (iq, 2, ...%,) is the Fodo
binary expansion of, i.e.,

m
i= § a2k
k=1

The rth-order Reed—Muller code RM(r, m) over Z,. is a
linear code of lengt®™ generated by the monomials in the

of degree at most. Davis and Jedwab [6] proved the following 22:" %93 32 R "33
result.

Theorem 2:Let w denote any permutation of the sefig. 1. Construction of 16-QAM symbols from two QPSK symbols.

{1,2,...,m}, ande; € Z,.. Then, the sequences generated by
b) If w andv are Golay sequences, but not necessarily com-

m—1 m

() =2h-1 Z T ()T (s1) + Z e +c (8) plementary to each other, then REP< 3.6n.
k=1 k=1 Theorem 2, which provides an explicit construction of com-
v(z) =u(z) + 2" '@y + ¢ (9) plementary sequences #3., can be used in conjunction with

are Golay complementary ov&:. for anycy, ¢, ¢ € Zy. and Theorem 3 Fo produce codes whose PMEPRs can be pounded.
u e {1,m) In the remainder of the paper, we assume that 2. Define
' two sets of sequences (cod€g)andC, as follows:
Let denote the set of Golay sequences of the form (8), and Co ={8: 85 = qlus,v:), u € U,v € V(w)}
V(u), the set of sequencesof the form (9) that are comple-
Co ={8:5; = q(u;,u}), u,u’ €U}

mentary tou € U. Clearly
— (! hym+1 — o(9h where ¢/ and V are the sets defined immediately after
(] = (m1/2) (2%) and[V(u)] = 2(2%) (10) Theorem 2. In other words¢; consists of all 16-QAM

for allu € U, where| - | denotes the cardinality of a set. Thussequences; = q(u;,v;) whereu andv are Golay comple-
Theorem 2 provides a setofl (2" )™+2 pairs of complementary mentary sequences of the form (8) and (9) &actonsists of
sequences. Numerical searches were unable to find any oth&/QAM sequences; = q(u;,u.) whereu andu’ are two
Golay sequences ifi,. of length2™, but it is unproved this Golay sequences of the form (8).
construction produces all Golay sequences. Itis easily verified that’,,(C,) = Pa (Cy) = n. Therefore,
by (10) and Theorem 3, we have
Il. 16-QAM GOLAY SEQUENCES |Ca| :(m!)4m+2 and PMEPRCG) <2 (12)

RoRing and Tarokh [4] demonstrated a construction of ICy| :((m!/2)4m+1)2 and PMEPRC,) < 3.6.  (13)
16-QAM sequences from QPSK Golay complementary se- N
quences, and derived bounds for the PMEPR of the 16-QAN
sequences. They observed that any 16-QAM symbol can be )
decomposed unigquely into a pair of QPSK symbols because/Ve nNow present a new construction of 16-QAM sequences.

any point on the 16-QAM constellation can be written as Recall that a 16-QAM symbol can be represented in terms of
two QPSK symbols (major and minor coordinates) as in (11).

g(u,v) = /™ + eI/ (11)  The following theorem describes the new construction.

whereu € Z, describes the quadrant in which the symbol lies Thegrem 4: Suppose the major and minor coordinates of a
andv € Z, identifies the location of the symbol within the16.0aM sequences are of the form

quadrant andv, 5 € R. We callu andv the major and minor

New Construction of 16-QAM Golay Sequences

m—1 m
coordinatesand« andg themajor and minor radii Assuming Alz) =2 T Zints + S CnZp + €
that all the 16-QAM symbols are equiprobable, we requite () kzzl TRk kzzl w
2/+/5 andB = 1/+/5 for the constellation to have unit average a(z) =A(z) + s(z)

energy. This representation of a 16-QAM symbol in terms
two QPSK symbols is shown in Fig. 1.

Ro6Ring and Tarokh [4] construct 16-QAM sequences starti
from Golay QPSK sequences and provide bounds on their PEP.

f
?or anycg, ¢ € Z4. Then the 16-QAM sequencé; = ayE4: +
£, wherea, f € R andy = ¢/™/* is a Golay sequence for
following offsets:

The following is a summary of their result in an equivalent form. 30 + 31%(1)
— ) Qo+ dilx(m)
Theorem 3:For anyu,v € Z%, let s denote the 16-QAM s(z) do + A1 n(uy + doT i1y, 1<w <m—1,
sequence; = q(u;, v;). 2o+ dy +ds =0
a) Ifuandv are Golay complementary sequences, thand wheredy,d;,ds € Z4.
t are Golay complementary whetie= q(u;,v; +2), and Proof: We first establish our notation and derive

PERs) < 2n. some basic expressions that we will use in the proof. Let
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i = (L1,227.. im) denote the binary representation ©f Similarly
ie,i = Yo, Lk2m k Let A;, a;, and s; denote theith n—u—1
elements of the sequences generated fdfm), a(z), and Cs(u) = [a2£(3i_31’“) + BRebi=bivu)
s(z), respectively, irZ,. Therefore, i=0
+ap (@t 4 02 ] @)
Ai =2 in(oyin(ean) + ) Crik +C (14) " Adding (20) and (21), and using (18) and (19), we obtain
= = n—u—1
a; =A; + s;. (15) Ca(u) + Cp(u) = Z o [f(Aa—amL f(aa Aitu)
Define functions i=0
B(z) =A(x) + 2 (B 0P| (22)
b(z) =a(z) + 22x(1)- for u > 0. Using (15)—(17) we obtain
Thus, the sequences they generate are glimair) g gaimdinn) = dimdive (g9 4 m50w)
(Bi—=bitu) (b;—Bitw) _ ¢Bi—Bitu Si —S(itu
B; :Ai+2’iﬁ(1) (16) 3 g i _fA A+ (5 +€( (J)r ))
— i—Aidtu 2i7r —2(1+u P
b =a; + 2ig(1) = A + s + 2ir(1). (17) =< gt T
Theorem 2 states that the sequented, ¢41, ..., ¢A2m—1) X (7 4+ €0
and(¢Bo ¢Br o ¢Bema) are complementary Furthermorewhere((z+u)17 (i+u)a, ..., (i+u)m) is the binary represen-
if s(z)isa polynomlal of degreg, i.e., tation of (i + w). Summlng the above equations oveK i <
m m n — u — 1 and combining with (22) yields
S(Q):doﬁ-de.Tk:Si:S-l'deik n—u-1
k=1 k=1 Cx(u) + Cp(u) =af Z g Aitu (é:sl pes l“))
then (14) and (15) imply that =0
m—1 m % (1 +£2i,,(1)—2(i+u),,(1))
a; = A; +5; = Z i‘n’(k)iﬂ'(k+1) + Z C;(:ik + d n—u—1
k=1 k=1 =af3 Z €A7—A7+w (fsa _}_g—smu))
wherec’ = c+dp andcj, = ¢ +dj.. Using Theorem 2 again, we i=0
conclude that(¢e, ¢ar ... ¢an—1) and (¢bo, &b, ... gbnm) y (1+(_l)i,r(l)—('i-l-u),,(l))‘ 23)
are complementary. Therefore, . ] /
R We need to verify that the above summation vanishes to prove
Z [g(Ai—AHu) n f(Bi—BHu)] —0 (18) that A and B are complementary. Consider the following two
— cases.
n—u—1 Case 1:5(z) = do + d1Zr(w) + d2Zr(w+1), Wherel < w <
> el g gliten] =0 (19) m—1anddy,d,ds € Z, such thaidy + d; + ds = 0.
=0 For a fixedu > 0, letj = i + u have a binary representation

for u > 0. No_te that C(u) is conjugate symmetrlc ie. ’J = (Jl J2s ey J'm) Whenevenﬂ_(l) 7& J7—1 , the Correspondmg
C(—u) = C*(u), it suffices to study the properties 6fu) for  term in (23) clearly vanishes. In the remaining terms, we have
u > 0. We assume that > 0 in the rest of the paper. Let ﬂ(1) — J7r(1) Letv denote the smallest index for whigly,) #

A= (Ag, A1,..., Asm_1) and B= (By,Bi,..., Bom_1) Jr(v), 1-€,0 = inf{k : irk) # jrr)}. This is guaranteed to
exist becausg # i. Furthermorev > 2. Let4’ andj’ denote

be 16-QAM sequences defined as indexes whose binary representations differ from thoseaofl
A; =&t + Bryem j only at positionsr(k) fork < v — 1, i.e.,
B; =ay&P + pryeb k<v—-1=— ’i;(k) =1 — (k) j;,(k) =1—Jn(r)
wherea andg3 are the major and minor radii of the QPSK com- k2v=irg) =i, Ty = (i)

ponents¢ = e/™/2 = j andy = e/™/*. We now prove that the Clearly,j’ =i’ + u. Fork < v — 1, we haveiw(k) = Jn(k) 7
sequencesA andB are complementary for specific choices ofi;. () While for k = v, we haveir(,) # jr(w) = Jr ) There-
s(x) stated in the theorem which are all polynomials of degrdere,
1. Sincea, 8 € R and|y|?> = 1, we obtain
n—u—1

Calu) = Z (ar€™ + Brye™) (ar€™ + Bre™++)"  Recall thats; — do + diix(w) + doizw+1)- Thus, whenever

(k) T j;(k) =1, k <w. (24)

i=0 w > v, we haves; = sy ands; = s;; because g, = i,
n—u—1 ; i/ ;
_ 2 f(AimAira) 1 a2 e(@i—ais) andj~(ry = Jr) forallk > v. Forw < v — 1, however, we
= [a 3 4 7 ! use (24) to conclude that

i=0

Si + s = 2d0 + dy ([’7!'(111) + J;T(w))

(Ai—aitu) (ai—Aitu)
+ O[/B (5 + g ):| . (20) +ds (iw(w—'rl) + j;r(w-l—l))
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=2dy + dy + ds.
Thus, if2dy + di + d2 = 0, we haves; = —s;» and, similarly,
s; = —s;. Our last two observations imply that
E% 4 €759 = ¢85 4 £, 1<w<m-—1. (25)
Using (14) and the definition of we see that
m—1
A —Aj =2 Z (ir (k) r(ht1) = Jr(k)Im(k+1))
k=1
+ Z Cr(k)in(k) = Tr(k))
k=1
m—1
=2 (i (k)i (kt1) = Jr(k) I (k41))
k=v—1
+ Z Cr(h) (im (k) = Jr(k))- (26)
k=v
Similarly
m—1
Ap —Aj =2 Z (T (k)T (k1) = Ik I (ot1))
k=v—1

+ Z Crk) () = Jmiy)- (27)
k=v

Subtracting (26) from (27) and using the definitions’adnd;’
we obtain

(Ai/ - A]') - (A7 - AJ) = Q(i;('n—l)i;(w) _j;(’lf—l)j:'r(’l/))
- 2(Z7r(v—l)l7r(v) _Jw(v—l)]ﬁ(v))
=2.
Therefore,

EAH—AJ-; _ _£A7_Aj- (28)
In view of (25) and (28) it follows that replacingoy i’ in (23)
negates the whole summation. Since the mapping frem’
is invertible, the summation (23) must vanish.

Case 2:s(z) = do+d1Tx(m) OF 8(z) = do+d12(1), Where
d07d1 € 1y.

First consider the case = do + diix(m). We defines’,
j', andv as in Case 1. Since — 1 < m, we always have
si = s ands; = s;» with no additional conditions od, and
d,. Going through the proof as before, we conclude that (2
vanishes. Finally, using the permutatiot{k) = 7(m + 1 — k)
instead ofr (k)

s; = do + dli,,r/(m) =dpy+ dlivr(l)- O

Observe that the major and minor sequences are comple
tary in Z, for offsets of the forms(z) = do + 2z,¢;) and

s(z) = do + 27.(m). Thus, all the sequences in case a) of The

orem 3 are included in the above construction.

Corollary 5: Theorem 4 yields(14 + 12m)(m!/2)4™m+!
16-QAM Golay sequences fan > 2.
Proof: The following is a list of all thelistinctoffset poly-
nomialss(z):
a) s(z) = do;
b) 8(&) = d() + dlfL'ﬂ.(l), for d1 75 0;
C) s(z) = do + d1Tr(m), fOrd; # 0;

2957

d) s(g) = dy + dlxﬂ(w), for 2dy + d; = 0, dq ;é 0, and
2<w<m-1,

e) s(g) =dp +d1$,r(w) +d2£17,,r(w+1) for2dg+di +ds = 0,
di1#0,dy #0, andl <w <m-—1wheredy, d;,ds € Z4.
We find that this is a collection of14 4+ 12m) distinct
polynomials. The number of major sequences is clearly
(m!/2)4m+1, Therefore, the construction of Theorem 4
produces a total of14 + 12m)(m!/2)4™+1 16-QAM
sequences. O

B. PEP Bounds

We now compute PEP upper bounds for the 16-QAM Golay
sequences constructed in Theorem 4. Recall thathgymbol
of a transmitted 16-QAM sequence is given by
Ai = q(Ai, a;) = y(ag™ + BES)
wherea = 2/\/5, 8= 1/\/5, v = ei™/4 anda; = A; + s;.
Therefore,

AP =y (™ + 564 P = |+ 5%
|+ B2 = 1.8, if s, =0
=< |2+ |82 =1, if s; € {1,3}
|Oé—ﬂ|2:027 if SLZQ
Therefore, the energy of the sequentés

om_q

AP =D A2
1=0

:1.8TLO(.A) + Tll(.A) + O.QRQ(A) + n3 (.A)
wheren,(.A) is the number of times the symbeobccurs in the
sequence = A — a.

From the proof of Theorem 4 we see tbhis complementary
to B whereB; is eitherA;(—1)= or A;(—1)=t= . In either
case||A||* = ||B]|*>. Hence, by Lemma 1

PERA) <|lA|* + ||B]|* = 2/ Al
:3.6n0(.A) + 2%1(./4)

Tables | and Il list the PEP bound (29) for each ofthé+12m)
offsetss(z) in the construction of the 16-QAM sequences.

Our construction gives us complementary 16-QAM se-
quences whose PMEPR bounds are easily calculated. For each
o € {0.4,1.2,2.0,2.8,3.6}, let C, denote the collection of
16-QAM sequences that correspond to a PEP boundnof
%Ance the energy of each Golay sequences constructed is one

half of its PEP bound (see (29)), we have
, we see that (23) also vanishes for the choice ( (29)

|A||? = on/2, VAeC,.
Therefore,P,.(C29) = n and when viewed as a cod, ( has

mt'ﬁ'&'following characteristics:

1C20| = (242m)m!4™  and PMEPRC,) = 2.0. (30)

From (12) and (30) we see thét, andC, have the same
PMEPR of2.0, butCs o has a larger code rate.

Define another codé. =C; ,UC, ¢UCs 5. Then,P,, (C.) =mn,
and we obtain
ICe| = (6 + 6m)m!4™ ! and PMEPRC.) =2.8. (31)

This is a new code with a larger code rate and a larger PMEPR
thanCs ¢. Finally, we could define a code

Ca=0Cps4UC12UCroUC8UC36
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TABLE |
PEP BOUNDS FORCONSTRUCTED16-QAM SEQUENCES OFLENGTHRn = 2™
s(z) | Possibilities | no(A) | n1(A) [ n2(A) [ n3(A) | PEP bound |
0 1 n 0 0 0 3.6n
Ta(1) 1 n/2 n/2 0 0 2.8n
T (m) 1 n/2 n/2 0 0 2.8n
2T (1) 1 n/2 0 n/2 0 2.0n
2% 5 (1m) 1 n/2 0 n/2 0 2.0n
3T (1) 1 n/2 0 0 n/2 2.8n
3Ty (m) 1 n/2 0 0 n/2 2.8n
T (w) + 3T (wt1) m—1 n/2 n/4 0 n/4 2.8n
2% n (1) F 2T (1) m—1 n/2 0 n/2 0 2.0n
3T (w) + Tor(w+1) m—1 n/2 n/4 0 n/4 2.8n
1 1 0 n 0 0 2.0n
1+ 2z, 1 0 n/2 n/2 0 1.2n
14+ Tr(m) 1 0 n/2 n/2 0 1.2n
1+ 3,1 1 n/2 n/2 0 0 2.8n
1 + 3% 5 () 1 n/2 n/2 0 0 2.8n
1+ 2% () m 0 n/2 0 n/2 2.0n
14+ Tr(w) + Ta(wt1) m—1 0 n/4 n/2 n/4 1.2n
14+ 3Tx(w) + 3Tx(wt1) m—1 n/2 n/4 0 n/4 2.8n
2 1 0 0 n 0 0.4n
2+ Tx1) 1 0 0 n/2 n/2 1.2n
2+ ZTn(m) 1 0 0 n/2 n/2 1.2n
24 2z.(y) 1 n/2 0 n/2 0 2.0n
24 2T x(m) 1 n/2 0 n/2 0 2.0n
2 4 3zx(1) 1 0 n/2 n/2 0 1.2n
2+ 3T r(m) 1 0 n/2 n/2 0 1.2n
2+ To(w) + 3Tr(wt1) m—1 0 n/4 n/2 n/4 1.2n
2+ 2T n(w) + 2Tn(wt1) m—1 n/2 0 n/2 0 2.0n
2+3:L‘,r(u,) + T (wt1) m—1 0 n/4 n/2 n/4 1.2n
3 1 0 0 0 n 2.0n
34+ Zn(1) 1 n/2 0 0 n/2 2.8n
3+ Tr(m) 1 n/2 0 0 n/2 2.8n
3 + 3z, (1) 1 0 0 n/2 n/2 1.2n
3 ¥ 3T (m) 1 0 0 n/2 n/2 1.2n
3 + 2% (w) m 0 n/2 0 n/2 2.0n
3+ Ty(w) + Tr(wt1) m—1 n/2 n/4 0 n/4 2.8n
3 + 3T r(w) + 3Tr(wt1) m—1 0 n/4 n/2 n/4 1.2n
TABLE I TABLE Il
NUMBER OF CONSTRUCTED16-QAM GOLAY SEQUENCES OFLENGTH CODE RATES OF CONSTRUCTED16-QAM SEQUENCES
n = 2™ FOREACH OF THE PEP BOUNDS ‘ poa— l R(Ca) | R(C.) |
PEP bound | Number of 16-QAM sequences 7 2.3962 27995
3.6n (m/2)4m+ 8 1.6081 | 1.8962
2.8n (2 + 2m)mlqm™*? 16| 1.1192 | 1.2182
2.0n (2 + 2m)ml4mi* 32 | 0.7029 | 0.7524
1.2n (2 +2m)ml4m+ 64 | 0.4266 | 0.4513
0.4n (ml/2)4m™+" 198 | 0.2523 | 0.2647
256 0.1464 | 0.1526
12 . .
which has a PMEPR df.6 and|Cy| = (7+6m)m!4™+1. How- 15024 g,gjif g.gig;

ever, owing to its smaller code size, this code is worse than the

codeC; with characteristics (13). ) S ) ) )
practical application in the design of pilot symbols, as well as in

C. Code Rates for Constructed Complementary 16-QAM  scenarios where peak power control and encoder complexity are
Sequences overriding concerns, not code rate. One such scenario could be
H’n mobile handsets, where high peaks in the transmitted signal

The code rate of a code consisting of sequences of lengt . )
g g g would have a deleterious effect on battery life.

n symbols is
log, |C]

R(C) = — bits/ symbol IV. 8-QAM GOLAY SEQUENCES

where|C| is the number of codewords. Table 11l shows the code Consider the 16-QAM Golay sequences constructed from
rates forC, o andC.. for various values ofi = 2™. Observe that two QPSK sequences described in Section Ill. Suppose we
the code rates are reasonable for smalbut drop quickly for limit the possible values for the minor coordinatesitor 2,
increasing lengths. These codes would be unsuitable for génis results in the 8-QAM constellation is shown in Fig. 2. If the
eral use in OFDM systems with a large number (32 or morgymbols are equiprobable, we need= 2/v/5 andj3 = 1/V/5

of subcarriers. However, the constructed sequences could &edhe constellation to have unit average energy.
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by 0.4n. The average envelope power of all the sequences
is n. These sequences are used to construct two codes of
PMEPRs o2.0 and2.8. When restricted to 8-QAM, we obtain

(14 + 12m)(m!/2)2™*! Golay sequences with two sets of
(m!/2)2m+1 sequences each having PEP bounds.6f and
0.4n, respectively, and three sets 6f + 4m)(m!/2)2m+!
sequences each having PEP boundg.8f., 2.0n, and1.2n,
respectively. Computer studies indicate that there other 8-
and 16-QAM Golay complementary sequences than those
we constructed here. Unfortunately, these sequences were
difficult to classify based on their polynomial structure. The
classification of these sequences and their realization as OFDM

Fig. 2. 8-QAM signal constellation.

QAM codes with low encoding/decoding complexities remains

an interesting open problem.

We can easily construct 8-QAM Golay sequences by re-
stricting the minor sequence to be even. Thus, the general

form for a(z) is [1]
m—1 m
a(z) =2 Z Tr(k)Tr(k+1) T 2 Z crry + 2 [2]
k=1 k=1 [3]
wherec, € {0,1} ande = 0 or 1. The corresponding major
sequence takes the form 4]

A(z) = a(z) - s(z)

for any of thel4 + 12m polynomialss(z) listed in Theorem 4. 5
Note that the above statement is equivalent to the original state-
ment of Theorem 4 becausés a polynomial of degreg. This [6]
construction results in a total 6f4 + 12m)(m!/2)2™+! Golay
sequences. Of these, two sets(of! /2)2™+1 sequences have 7]
PEP bounds 08.6n and0.4n, respectively, and three sets of
(4 + 4m)(m!/2)2m+1 sequences each having PEP bounds Of[s]
2.8n, 2.0n, and1.2n, respectively.

V. CONCLUSION [©]

In this paper, we initiated the studies of 16- and
8-QAM Golay complementary sequences. We constructe&ol
a new class of 16-QAM Golay sequences consisting of
(14 + 12m)(m!/2)4™+1  sequences. When employed [11]
in an OFDM system, (m!/2)4™+1 of these sequences
have PEP bounded above 36n, three subsets of size [12]
(4 4+ 4m)(m!/2)4™*! contain sequences having PEPs of less
than2.8n, 2.0n, and1.2n, respectively, and a subset of size |15
(m!/2)4™+1 contains sequences that have PEP upper-bounded

REFERENCES

M. Friese, “Multicarrier modulation with low peak-to-mean average
power ratio,”Electron. Lett, vol. 32, pp. 713-714, 1996.

M. J. E. Golay, “Complementary seriedRE Trans. Inform. Theory

vol. IT-7, pp. 82-87, Apr. 1961.

T. F. Ho and V. K. Wei, “Synthesis of low-crest waveforms for multicar-
rier CDMA systems,"Proc. IEEE GLOBECOMM 199%p. 131-135,
1995.

C. Ro6Ring and V. Tarokh, “A construction of OFDM 16-QAM sequences
having low peak powers,IEEE Trans. Inform. Theoryvol. 47, pp.
2091-2094, Nov. 2001.

J. A. Davis and J. Jedwab, “Peak-to-mean power control and error cor-
rection for OFDM transmission using Golay sequences and reed-muller
codes, Electron. Lett, vol. 33, pp. 267-268, 1997.

——, “Peak-to-mean power control in OFDM, Golay complementary
sequences, and reed-muller coddg&EE Trans. Inform. Theoryol.

45, pp. 2397-2417, Nov. 1999.

X. Li and L. J. Cimini Jr., “Effects of clipping and filtering on the per-
formance of OFDM, Proc. IEEE 47th Vehicular Technology Cargp.
1634-1638, 1997.

S. H. Muller, R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “OFDM
with reduced peak-to-average power ratio by multiple signal represen-
tation,” Ann. Télécommunvol. 52, pp. 58-67, 1997.

R. D. J. van Nee, “OFDM codes for peak-to-average power reduction
and error correction,’Proc. IEEE GLOBECOM 1996pp. 740-744,
1996.

H. Ochiai and H. Imai, “Block coding scheme based on complemen-
tary sequences for multicarrier signal$£ICE Trans. Fundamentals

pp. 2136-2143, 1997.

R. O’'Neilland L. B. Lopes, “Envelope variations and spectral splatter in
clipped multicarrier signals,” iRroc. Conf. Personal Indoor and Mobile
Radio Communications (PIMRC’95%ept. 1995, pp. 71-75.

K. G. Paterson, “Generalized reed-muller codes and power control in
OFDM modulation,”IEEE Trans. Inform. Theoryol. 46, pp. 104-120,
Jan 2000.

D. Wulich, “Reduction of peak-to-mean ratio of multicarrier modulation
using cyclic coding,’Electron. Lett, vol. 32, pp. 432—-433, 1996.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


