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A New Construction of 16-QAM Golay
Complementary Sequences
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Abstract—We present a new construction of 16-QAM Golay
sequences of length = 2 . The number of constructed
sequences is(14 + 12 )( ! 2)4 +1. When employed as a
code in an orthogonal frequency-division multiplexing (OFDM)
system; this set of sequences has a peak-to-mean envelope power
ratio (PMEPR) of 3 6. By considering two specific subsets of these
sequences, we obtain new codes with PMEPR bounds of2 0 and
2 8 and respective code sizes of(2 + 2 )( ! 2)4 +1 and
(4 + 4 )( ! 2)4 +1. These are larger than previously known
codes for the same PMEPR bounds.

Index Terms—Golay complementary sequences, orthogonal fre-
quency-division multiplexing (OFDM), Reed–Muller codes.

I. INTRODUCTION

I N a fundamental paper [2], Golay presented the construction
of complementary binary sequences. These sequences have

found numerous applications in various fields of science and
engineering. An important application of Golay complemen-
tary sequences is to orthogonal frequency-division multiplexing
(OFDM). This is a communication technique with a long history
which is rapidly emerging as a technology of choice in wireless
applications. International standards such as IEEE 802.11 are
employing OFDM for wireless local-area network (LAN) ap-
plications. For wireless applications, an OFDM-based system
can be of particular interest because it provides a greater immu-
nity to impulse noise and fast fades and eliminates the need for
equalizers, while efficient hardware implementations can be re-
alized using fast Fourier transform (FFT) techniques.

One of the major impediments to deploying OFDM is the
high peak-to-mean envelope power ratio (PMEPR) of uncoded
OFDM signals. To prevent spectral growth of the OFDM
signal in the form of intermodulation among subcarriers and
out-of-band radiation, the transmit amplifier must be operated
in its linear region. Amplifiers with large linear range are
expensive and this can increase the cost of the implementation
of OFDM. Moreover, if the peak transmit power is limited,
either by regulatory or application constraints, then a high
PMEPR has the effect of reducing the average power allowed
under OFDM relative to that under constant power modulation
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techniques. This, in turn, reduces the range of OFDM trans-
missions. A number of approaches have been proposed to deal
with this power control problem [1], [3], [7], [8], [11], [13].

A convenient approach to PMEPR reduction in OFDM
transmission is to use codes constructed from Golay comple-
mentary sequences. These sequences are employed as pilot
sequences by the European Telecommunications Standards
Institute (ETSI) Broadband Radio Access Networks (BRAN)
committee. These classes of sequences enjoy PMEPR as low
as and are very attractive for this reason [5], [6], [10], [9],
[12]. In [6], Davis and Jedwab developed a powerful theory
which yields -PSK Golay sequences as unions of cosets of
the classical Reed–Muller codes and new generalizations of
them. Special realization of Golay sequences as cosets of these
codes were also given in [9], [10]. The underlying theory was
further developed in [12].

Given the practical applications of -PSK Golay sequences
and given that quadrature amplitude modulation (QAM) se-
quences are widely used in OFDM, it is natural to look for Golay
complementary sequences with symbols chosen from 16-QAM
and higher QAM constellations. The underlying theory for these
sequences is highly underdeveloped. In this paper, we make a
contribution in this direction by presenting a construction of
16-QAM Golay sequences of length from quaternary
phase-shift keying (QPSK) complementary sequences. We
construct a total of sequences whose
average envelope power is. Of these, sequences
have peak envelope power (PEP) bounded above by,
three subsets of size contain sequences
having PEPs less than of , , and , respectively,
and a subset of size contains sequences that has
PEP bounded above by . By selectively discarding some of
these sequences, we obtain two codes having PMEPRs of
and . The constructed sequences are ideal for application as
pilot sequences in future OFDM systems.

The outline of this paper is as follows. In Section II, we re-
view some background material for the results developed in this
paper. In Section III, we examine a construction of 16-QAM
Golay sequences that was previously given in [4]. This con-
struction yields two codes with PMEPR bounds of and .
We compute sizes of codes resulting from the construction. We
then provide a new construction of 16-QAM Golay sequences
and compute PEP bounds for the sequences. These sequences
result in two codes: a code with PMEPR that improves
on the construction in [4] and new code with PMEPR .
Finally, we compute code rates for these codes. In Section IV,
we demonstrate that our technique automatically allows us to
construct 8-QAM Golay sequences as a special case.
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II. PRELIMINARIES

The transmitted OFDM signal is the real part of the complex
signal

where is the frequency of theth carrier, , and
is constant over a symbol period of duration. To ensure

orthogonality, the carrier frequencies are related by

(1)

where is the smallest carrier frequency, and is an integer
multiple of the OFDM symbol rate, i.e., . Suppose

takes the value over a given symbol period. Then, the
corresponding OFDM signal (denoted by ) is given by

(2)

The instantaneous envelope powerof associated with
the sequence is defined as

. Then, (1) and (2) imply that

(3)

Thus, the mean power of during a symbol period is

The PEP of a codeword is defined as

PEP

and the PMEPR of a code is

PMEPR PEP

where is the mean envelope power of an OFDM signal
averaged over all OFDM signals generated from a codebook,
i.e.,

where is the probability of transmitting the codeword.
Letting in (3) we obtain

(4)

where the summations are performed indexesand for which
both and lie in . Let the aperiodic auto-
correlation of sequenceat delay shift be

(5)

Then, . We can rewrite (4) as

(6)

Suppose that

and

are two complex-valued sequences of lengthsatisfying

(7)

where if and otherwise. Then,
and are calledGolay complementary sequences, named after
Marcel J. E. Golay in recognition of his extensive study of their
properties [2]. In the context of finite fields, we say that two
sequences areGolay complementary over if the
complex-valued sequences

and

are Golay complementary, where is a primitive th
root of unity. Finally, we say that is aGolay sequenceif there
exists a sequencethat is complementary to. Golay made the
following observation.

Lemma 1: Let and be Golay complementary sequences of
length . Then, the peak value of is at most .

Proof: Let and be a Golay complementary pair, so that
by definition for all . Then from (6),

, and since ,
we deduce that .

Corollary 1: For constellations in which all symbols have
unit power, any code constructed from Golay sequences has
PMEPR .

Proof: Note that all sequences in the codebookhave
power because all symbols in the constellation have unit
power. Therefore, . Lemma 1 now
implies that PEP and PMEPR .

A. Reed–Muller Codes and Golay Sequences

We briefly review a result of Davis and Jedwab [6] that links
a subset of -PSK Golay complementary sequences to first-
order cosets of second-order Reed–Muller codes.

We confine the sequence lengthto be a power of , i.e.,
. Let denote a vector of size

. A generalized Boolean functionis a function from
to for an integer . A general-

ized Boolean function in variables can be written in
algebraic normal form as the sum of constant function(ze-
roth-order monomial) and theth-order monomials of the form

for where
are distinct numbers.
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For any generalized Boolean functionin variables, we
can identify a -valued vector of
length in which where is the
binary expansion of, i.e.,

The th-order Reed–Muller code RM over is a
linear code of length generated by the monomials in the
of degree at most. Davis and Jedwab [6] proved the following
result.

Theorem 2: Let denote any permutation of the set
, and . Then, the sequences generated by

(8)

(9)

are Golay complementary over for any and

Let denote the set of Golay sequences of the form (8), and
, the set of sequencesof the form (9) that are comple-

mentary to . Clearly

and (10)

for all , where denotes the cardinality of a set. Thus,
Theorem 2 provides a set of pairs of complementary
sequences. Numerical searches were unable to find any other
Golay sequences in of length , but it is unproved this
construction produces all Golay sequences.

III. 16-QAM GOLAY SEQUENCES

Rößing and Tarokh [4] demonstrated a construction of
16-QAM sequences from QPSK Golay complementary se-
quences, and derived bounds for the PMEPR of the 16-QAM
sequences. They observed that any 16-QAM symbol can be
decomposed uniquely into a pair of QPSK symbols because
any point on the 16-QAM constellation can be written as

(11)

where describes the quadrant in which the symbol lies
and identifies the location of the symbol within the
quadrant and . We call and themajor and minor
coordinates, and and themajor and minor radii. Assuming
that all the 16-QAM symbols are equiprobable, we require

and for the constellation to have unit average
energy. This representation of a 16-QAM symbol in terms of
two QPSK symbols is shown in Fig. 1.

Rößing and Tarokh [4] construct 16-QAM sequences starting
from Golay QPSK sequences and provide bounds on their PEP.
The following is a summary of their result in an equivalent form.

Theorem 3: For any , let denote the 16-QAM
sequence .

a) If and are Golay complementary sequences, thenand
are Golay complementary where , and

PEP .

Fig. 1. Construction of 16-QAM symbols from two QPSK symbols.

b) If and are Golay sequences, but not necessarily com-
plementary to each other, then PEP .

Theorem 2, which provides an explicit construction of com-
plementary sequences in , can be used in conjunction with
Theorem 3 to produce codes whose PMEPRs can be bounded.
In the remainder of the paper, we assume that . Define
two sets of sequences (codes)and as follows:

where and are the sets defined immediately after
Theorem 2. In other words, consists of all 16-QAM
sequences where and are Golay comple-
mentary sequences of the form (8) and (9) andconsists of
16-QAM sequences where and are two
Golay sequences of the form (8).

It is easily verified that . Therefore,
by (10) and Theorem 3, we have

and PMEPR (12)

and PMEPR (13)

A. New Construction of 16-QAM Golay Sequences

We now present a new construction of 16-QAM sequences.
Recall that a 16-QAM symbol can be represented in terms of
two QPSK symbols (major and minor coordinates) as in (11).
The following theorem describes the new construction.

Theorem 4: Suppose the major and minor coordinates of a
16-QAM sequences are of the form

for any . Then the 16-QAM sequence
, where and is a Golay sequence for

the following offsets:

where .
Proof: We first establish our notation and derive

some basic expressions that we will use in the proof. Let
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denote the binary representation of,
i.e., . Let , , and denote the th
elements of the sequences generated from , , and

, respectively, in . Therefore,

(14)

(15)

Define functions

Thus, the sequences they generate are

(16)

(17)

Theorem 2 states that the sequences
and are complementary. Furthermore,
if is a polynomial of degree, i.e.,

then (14) and (15) imply that

where and . Using Theorem 2 again, we
conclude that and
are complementary. Therefore,

(18)

(19)

for . Note that is conjugate-symmetric, i.e.,
, it suffices to study the properties of for

. We assume that in the rest of the paper. Let

and

be 16-QAM sequences defined as

where and are the major and minor radii of the QPSK com-
ponents, and . We now prove that the
sequences and are complementary for specific choices of

stated in the theorem which are all polynomials of degree
. Since and , we obtain

(20)

Similarly

(21)

Adding (20) and (21), and using (18) and (19), we obtain

(22)

for . Using (15)–(17) we obtain

where is the binary represen-
tation of . Summing the above equations over

and combining with (22) yields

(23)

We need to verify that the above summation vanishes to prove
that and are complementary. Consider the following two
cases.

Case 1: , where
and such that .

For a fixed , let have a binary representation
. Whenever , the corresponding

term in (23) clearly vanishes. In the remaining terms, we have
. Let denote the smallest index for which

, i.e., . This is guaranteed to
exist because . Furthermore . Let and denote
indexes whose binary representations differ from those ofand

only at positions for , i.e.,

Clearly, . For , we have
while for , we have . There-

fore,

(24)

Recall that . Thus, whenever
, we have and because

and for all . For , however, we
use (24) to conclude that
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Thus, if , we have and, similarly,
. Our last two observations imply that

(25)

Using (14) and the definition of we see that

(26)

Similarly

(27)

Subtracting (26) from (27) and using the definitions ofand
we obtain

Therefore,

(28)

In view of (25) and (28) it follows that replacingby in (23)
negates the whole summation. Since the mapping from
is invertible, the summation (23) must vanish.

Case 2: or , where
.

First consider the case . We define ,
, and as in Case 1. Since , we always have

and with no additional conditions on and
. Going through the proof as before, we conclude that (23)

vanishes. Finally, using the permutation
instead of , we see that (23) also vanishes for the choice

.

Observe that the major and minor sequences are complemen-
tary in for offsets of the form and

. Thus, all the sequences in case a) of The-
orem 3 are included in the above construction.

Corollary 5: Theorem 4 yields
16-QAM Golay sequences for .

Proof: The following is a list of all thedistinctoffset poly-
nomials :

a) ;
b) , for ;
c) , for ;

d) , for , , and
;

e) for ,
, , and where

We find that this is a collection of distinct
polynomials. The number of major sequences is clearly

. Therefore, the construction of Theorem 4
produces a total of 16-QAM
sequences.

B. PEP Bounds

We now compute PEP upper bounds for the 16-QAM Golay
sequences constructed in Theorem 4. Recall that theth symbol
of a transmitted 16-QAM sequence is given by

where , , , and .
Therefore,

if
if
if

Therefore, the energy of the sequenceis

where is the number of times the symboloccurs in the
sequence .

From the proof of Theorem 4 we see thatis complementary
to where is either or . In either
case, . Hence, by Lemma 1

PEP

(29)

Tables I and II list the PEP bound (29) for each of the
offsets in the construction of the 16-QAM sequences.

Our construction gives us complementary 16-QAM se-
quences whose PMEPR bounds are easily calculated. For each

, let denote the collection of
16-QAM sequences that correspond to a PEP bound of.
Since the energy of each Golay sequences constructed is one
half of its PEP bound (see (29)), we have

Therefore, and when viewed as a code, has
the following characteristics:

and PMEPR (30)

From (12) and (30) we see that and have the same
PMEPR of , but has a larger code rate.

Define another code Then, ,
and we obtain

and PMEPR (31)

This is a new code with a larger code rate and a larger PMEPR
than . Finally, we could define a code
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TABLE I
PEP BOUNDS FORCONSTRUCTED16-QAM SEQUENCES OFLENGTHn = 2

TABLE II
NUMBER OF CONSTRUCTED16-QAM GOLAY SEQUENCES OFLENGTH

n = 2 FOR EACH OF THE PEP BOUNDS

which has a PMEPR of and . How-
ever, owing to its smaller code size, this code is worse than the
code with characteristics (13).

C. Code Rates for Constructed Complementary 16-QAM
Sequences

The code rate of a codeconsisting of sequences of length
symbols is

bits/ symbol

where is the number of codewords. Table III shows the code
rates for and for various values of . Observe that
the code rates are reasonable for small, but drop quickly for
increasing lengths. These codes would be unsuitable for gen-
eral use in OFDM systems with a large number (32 or more)
of subcarriers. However, the constructed sequences could see

TABLE III
CODE RATES OFCONSTRUCTED16-QAM SEQUENCES

practical application in the design of pilot symbols, as well as in
scenarios where peak power control and encoder complexity are
overriding concerns, not code rate. One such scenario could be
in mobile handsets, where high peaks in the transmitted signal
would have a deleterious effect on battery life.

IV. 8-QAM GOLAY SEQUENCES

Consider the 16-QAM Golay sequences constructed from
two QPSK sequences described in Section III. Suppose we
limit the possible values for the minor coordinates toor ,
this results in the 8-QAM constellation is shown in Fig. 2. If the
symbols are equiprobable, we need and
for the constellation to have unit average energy.
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Fig. 2. 8-QAM signal constellation.

We can easily construct 8-QAM Golay sequences by re-
stricting the minor sequence to be even. Thus, the general
form for is

where and or . The corresponding major
sequence takes the form

for any of the polynomials listed in Theorem 4.
Note that the above statement is equivalent to the original state-
ment of Theorem 4 becauseis a polynomial of degree. This
construction results in a total of Golay
sequences. Of these, two sets of sequences have
PEP bounds of and , respectively, and three sets of

sequences each having PEP bounds of
, , and , respectively.

V. CONCLUSION

In this paper, we initiated the studies of 16- and
8-QAM Golay complementary sequences. We constructed
a new class of 16-QAM Golay sequences consisting of

sequences. When employed
in an OFDM system, of these sequences
have PEP bounded above by , three subsets of size

contain sequences having PEPs of less
than , , and , respectively, and a subset of size

contains sequences that have PEP upper-bounded

by . The average envelope power of all the sequences
is . These sequences are used to construct two codes of
PMEPRs of and . When restricted to 8-QAM, we obtain

Golay sequences with two sets of
sequences each having PEP bounds of and

, respectively, and three sets of
sequences each having PEP bounds of , , and ,
respectively. Computer studies indicate that there other 8-
and 16-QAM Golay complementary sequences than those
we constructed here. Unfortunately, these sequences were
difficult to classify based on their polynomial structure. The
classification of these sequences and their realization as OFDM
QAM codes with low encoding/decoding complexities remains
an interesting open problem.
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